
Math 711: Lecture of November 17, 2006

Our next objective is to give a matrix factorization of a generic form over Z instead of
Z[ξ]. The idea is to replace the ring Z[ξ] by a ring of matrices over Z.

Discussion: block form. Let R be any associative ring with identity, and letMn(R) denote
the ring of n×n matrices with entries of R, which we may identify, as usual, with the ring
of R-linear edomorphisms of Rn, thought of as n× 1 column vectors over R. The matrix
η acts on the column γ by mapping it to ηγ. The observation we want to make is that
we may identify Mkh(R) ∼= Mk(Mh(R)). The naive way to make the identification is to
partition each kh × kh matrix into a k × k array of h × h blocks. More conceptually, we
may think of the domain of an R-linear map Rkh → Rkh as the direct sum of k copies of
Rh, i.e., as (Rh)⊕k, and we may think of the target of the map as (Rh)k, the product of
k copies of Rh. Then the map is determined by its restrictions to the k direct summands
Rh of the domain, and the map from a particular summand Rh → (Rh)k corresponds to
giving k R-linear maps Rh → Rh, one for each factor of the target module.

Discussion: polynomials in commuting variables over a matrix ring. . Let X1, . . . , Xk

denote indeterminates both over R and over each matrix ring over R such that the Xi

commute with one another, with elements of R, and with matrices over R. Then we may
identify the rings

Mn(R[X1, . . . , Xk]) ∼= Mn(R)[X1, . . . , Xk].

Given a finite linear combination
∑
h η

(h)µh where each η(h) =
(
r
(h)
ij

)
∈ Mn(R) and each

µh is a monomial in the Xi, we let it correspond to the matrix
(∑

h r
(h)
ij µh

)
.

Let ξ be a primitive d th root of unity. Recall that its minimal polynomial is denoted
Ψd(t): suppose that δ = Φ(d), which is the degree of Ψd, and that

Ψd(z) = zδ + cδ−1z
δ−1 + · · ·+ c0,

where the cj ∈ Z. If we take 1, ξ, ξ2, . . . , ξδ−1 as a basis for Z[ξ], then the matrix of
multiplication by ξ on Z[ξ] is

θ =


0 0 0 · · · 0 −c0
1 0 0 · · · 0 −c1
0 1 0 · · · 0 −c2

· · ·
· · ·

0 0 0 · · · 1 −cδ−1

 ,

the companion matrix of Ψd(t), and Z[ξ] ∼= Z[θ] ⊆Mδ(Z). Notice that each of the powers
Iδ, θ, θ

2, . . . , θd−1 has an entry equal to 1, because θi maps the basis element 1 to the
basis element θi, 0 ≤ i ≤ d− 1.

We then have:
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Theorem. Let d ≥ 2 and s ≥ 1 be integers, and let f denote the degree d linear form over
Z in sd variables given as

f = X1,1X1,2 · · ·X1,d + · · ·+Xs,1Xs,2 · · ·Xs,d.

Let δ = Φ(d). Then f has a matrix factorization fIδds−1 = α1 · · ·αd over

R = Z[Xi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ d]

of size δsd−1 such that I(α) = (Xi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ d)R.

Proof. We begin with the matrix factorization over R[ξ] which has size ds−1 given in the
Theorem on p. 5 of the Lecture Notes of November 15. We write X for the collection of
variables Xi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ d. By the Discussions above, we have an embedding of

Z[ξ][X] ↪→Mδ(Z)[X] ∼= Mδ(Z[X])

which will give a matrix factorization of (fIδ)Ids−1 with d factors in Mds−1

(
Mδ(R)

)
.

Under the identification Mds−1

(
Mδ(R)

) ∼= Mδds−1(R) this yields a matrix factorization
for fIδds−1 whose entries are Z-linear forms in the variables X. In the factorization given
in the previous Theorem, every Xi,j occurred, possibly with a coefficient ξk, 0 ≤ k ≤ δ−1.
In the new factorization ξkXi,j is replaced by a block corresponding to θkXi,j . Since θk

has an entry equal to 1, the variable Xi,j occurs as an entry. �

Now that we have dealt with the generic case, we can immediately get a corresponding
result for any finitely generated ideal in any ring.

Theorem. Let I be a finitely generated ideal of a ring R, and let f ∈ Id, where d ≥ 2.
Then for some integer N there exists a matrix factorization fIN = α1 · · ·αd such that
I(α) = I. In fact, there exists such a factorization in which α1 = α2 = · · · = αd, and
I(αi) = I, 1 ≤ i ≤ d.

Proof. Since f ∈ Id, for some choice of elements uij ∈ I we can write

f = u1,i · · ·u1,d + · · ·+ us,1 · · ·us,d
with all of the ui,j ∈ I. We may assume all of the finitely many generators of I occur
among the ui,j by including some extra terms in which one of the factors is 0. We may then
map Z[Xi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ d] → R so that Xi,j 7→ ui,j . Applying the homomorphism
to the factorization for the generic form given in the preceding Theorem, we obtain a
factorization of f satisfying all but one of the conditions needed: it need not satisfy the
condition that

α1 = α2 = · · · = αd.

But we may satisfy the additional condition by increasing the size by a factor of d and
taking all of the matrices to be cyc(α1, . . . , αd): see the discussion on p. 5 of the Lecture
Notes of November 15. �

The following result will play an important role in our construction of linear maximal
Cohen-Macaulay modules over hypersurfaces.
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Theorem. Let (R, m, K) be a local ring, and let f ∈ md be a nonzerodivisor, where d ≥ 2.
Then for some s there is a matrix factorization fIs = α1 · · ·αd such that I(αi) = m for
1 ≤ i ≤ d. Let G = G0 = Rs, and let Gi be the image of ψi = α1α2 · · ·αi, so that
Gi ⊆ Rs as well, and Gd = fRs. Let Mi = Gi/Gi+1, 1 ≤ i ≤ d. Then all of the
modules Gi/Gd, G/Gi+1 and Mi, 0 ≤ i ≤ d − 1, are maximal Cohen-Macaulay modules
over R = R/fR, and all of them have finite projective dimension, necessarily 1, over R.
Moreover, ν(Mi) = s, 0 ≤ i ≤ d− 1.

Proof. Since fIs = ψiψ
′
i, where ψ′i = αi+1 · · ·αd, we have from the Discussion on the

first page of the Lecture Notes of November 13 concerning Cohen-Macaulay modules over
hypersurfaces that if indicates images after applying R⊗R , then

· · · ψ
′
i−→ R

s ψi−→ R
s ψ

′
i−→ R

s ψi−→ R
s → 0

is acyclic, and that
Kerψ′i = Imψi ∼= Cokerψ′i ∼= Cokerψ′i,

and the same holds with the roles of ψi and ψ′i interchanged. The image of ψi contains
fRs, which is the image of ψiψ′i, i.e., fRs ⊆ Gi ⊆ Rs, and Gi/fR

s = Gi/Gd may be
identified with Imψi. Thus, every Gi/Gd is a maximal Cohen-Macaulay module over R
of finite projective dimension over R. Note as well that Rd/Gi = Cokerψi is a maximal
Cohen-Macaulay module over R of finite projective dimension over R.

We have that Gi+1 = Imψi+1 = Imψiαi+1 ⊆ ψi(mRs), since I(αi+1) = m, and this is
contained in mψi(Rs) = mGi. Hence, Mi = Gi/Gi+1 is minimally generated over R by s
elements, and the short exact sequences

0 →Mi → Rs/Gi+1 → Rs/Gi → 0

show that every Mi is a maximal Cohen-Macaulay over R of finite projective dimension
over R as well.

A maximal Cohen-Macaulay module over R that has finite projective dimension over R
must have projective dimension 1 over R, since its depth is d− 1. �

Proposition. Let (R, m, K) be local and f ∈ md −md+1. Let L(f) denote the leading
form of f , i.e., the image of f in md/md+1 = [grm(R)]d. Suppose that N is a finitely
generated R-module (N = R is the most important case) and that L(f) is a nonzerodivisor
on grm(N). Let R = R/fR, which has maximal ideal m = m/fR, and let N = N/fN .
Then

(a) f is a nonzerodivisor on N .

(b) For every integer n ≥ 0, fN ∩mnN = fmn−dN .

(c) For every u ∈ N − {0}, L(fg) = L(f)L(u), and the m-adic order of fu is the sum of
the m-adic orders of f and u.
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(d) grm(N) ∼= grm(N)/L(f)grm(N).

Proof. We first prove (c). If u 6= 0, say u ∈ mhN − mh+1N , then it follows that fu /∈
md+h+1N , i.e., that fu ∈ md+hN−md+h+1N , or else L(f)L(u) = 0, a contradiction. This
proves both that ord (fu) = d + h and that L(fu) = L(f)L(u). Part (a) follows as well,
for if fu = 0, then L(f)L(u) = 0.

To prove (b), note that if fu ∈ mnN , then d + ord (u) ≥ n, and so ord (u) ≥ n − d,
which shows that u ∈ mn−dN .

Finally, to prove (d), note that

mnN/mn+1N ∼= (mnN + fN)/(mn+1N + fN) ∼= mnN/
(
mnN ∩ (mn+1N + fN)

)
.

Now if un = un+1 +fv with un ∈ mnN and un+1 ∈ mn+1N , then fv = un−un+1 ∈ mnN ,
and so v ∈ mn−dN by part (b). Then

mnN/mn+1N ∼= mnN/(mn+1N + fmn−dN)
∼= [grm(N)]/L(f)[grm(N)]n−d ∼= [grm(N)/L(f)grm(N)]n,

as required. �

Discussion. To calculate the multiplicity of a local ring (R, m, K) or of an R-module M
one may work alternatively with the Hilbert function of grm(R) or the Hilbert function
of grm(M): the lattter, for example, is defined as dimK [grm(M)]n, and is eventually a
polynomial of degree dim (M) − 1. This function is the first difference of the Hilbert
function. If the Hilbert function of M has leading term

e

r!
nr, where r = dim (M), then

the leading term of the Hilbert function of grm(M) will be
e

r!
rnr−1 =

e

(r − 1)!
nr−1.

Corollary. Let (R, m, K) be local and let f ∈ m be such that its leading form L(f) has
degree d.

(a) If L(f) is a nonzerodivisor in grm(R), then e(R/fR) = de(R).

(b) If N is a finitely generated R-module and L(f) is a nonzerodivisor on grm(N), then
e(N) = de(N/fN).

Proof. It suffices to prove (b), which is more general. In the notation of the preced-
ing proposition. e(N) may be calculated from the Hilbert function of grm(N), which
is gr(N)/L(f)gr(N). If the Hilbert function of grm(N) is H(n), the Hilbert function
for gr(N)/L(f)gr(N) will be H(n) − H(n − d). If the leading term of the polynomial

corresponding to H(n) is
e

(r − 1)!
nr−1, the new leading term is

de

(r − 2)!
nr−2, since the

polynomial cnr−1 − c(n− d)r−1 has leading term cd(r − 1)nr−2 for any constant c. �

In order to prove the result we want on existence of linear maximal Cohen-Macaulay
modules, we need to generalize the Theorem on p. 3 to a situation in which we have
tensored with a linear maximal Cohen-Macaulay module N over R.


