Math 711: Lecture of November 17, 2006

Our next objective is to give a matrix factorization of a generic form over Z instead of
Z[€]. The idea is to replace the ring Z[{] by a ring of matrices over Z.

Discussion: block form. Let R be any associative ring with identity, and let M,,(R) denote
the ring of n x n matrices with entries of R, which we may identify, as usual, with the ring
of R-linear edomorphisms of R"™, thought of as n x 1 column vectors over R. The matrix
n acts on the column ~ by mapping it to ny. The observation we want to make is that
we may identify Myp(R) = Mp(Mp(R)). The naive way to make the identification is to
partition each kh x kh matrix into a k X k array of h x h blocks. More conceptually, we
may think of the domain of an R-linear map R¥" — R*" as the direct sum of k copies of
Rl ie., as (R")®* and we may think of the target of the map as (R")¥, the product of
k copies of R". Then the map is determined by its restrictions to the k direct summands
RP of the domain, and the map from a particular summand R" — (R")* corresponds to
giving k R-linear maps R" — R", one for each factor of the target module.

Discussion: polynomials in commuting variables over a matrix ring. . Let Xq, ..., Xk
denote indeterminates both over R and over each matrix ring over R such that the X;
commute with one another, with elements of R, and with matrices over R. Then we may
identify the rings

Mn(R[Xla s 7Xk]) = Mn(R)[Xla s 7Xk]

Given a finite linear combination Y, ")y, where each n(*) = (fr’z(Jh)) € M,,(R) and each
iy is a monomial in the X;, we let it correspond to the matrix (Zh rgl) ,uh).

Let £ be a primitive dth root of unity. Recall that its minimal polynomial is denoted
W,4(t): suppose that § = ®(d), which is the degree of ¥,, and that

Wy(z) = 2° +c512° 1+ + o,

where the ¢; € Z. If we take 1, &, €2, ..., £°71 as a basis for Z[¢], then the matrix of
multiplication by & on Z[¢] is
00 0 --- 0 —c¢
100 --- 0 —¢
0 — 01 0 --- 0 —co 7
00 0 -+ 1 —cs5_q

the companion matrix of W4(t), and Z[¢] = Z[0] C Ms(Z). Notice that each of the powers
I5,0,60% ..., 0% 1 has an entry equal to 1, because #* maps the basis element 1 to the
basis element 6%, 0 <7 < d — 1.

We then have:



Theorem. Letd > 2 and s > 1 be integers, and let f denote the degree d linear form over
Z in sd variables given as

f=Xi1 X0 Xig+ -+ X1 X520 Xsa.
Let 6 = ®(d). Then f has a matriz factorization fIsgs—1 = ay -+ - aq over
R=7Z[X;;:1<i<s, 1<j<d
of size 55?1 such that I(a) = (Xi;:1<i<s, 1<j<d)R.

Proof. We begin with the matrix factorization over R[¢] which has size d*~! given in the
Theorem on p. 5 of the Lecture Notes of November 15. We write X for the collection of
variables X; ;, 1 <17 < s, 1 < j <d. By the Discussions above, we have an embedding of

Z[§)X] — Ms(Z)[X] = Ms(Z[X])

which will give a matrix factorization of (fIs)I;—1 with d factors in Mdsfl(M(S(R)).
Under the identification M gs—1 (Ms(R)) = Msqs—1(R) this yields a matrix factorization
for fIs;s—1 whose entries are Z-linear forms in the variables X. In the factorization given
in the previous Theorem, every X; ; occurred, possibly with a coefficient P 0<k<§—1.
In the new factorization kai,j is replaced by a block corresponding to HkXi,j. Since 6%
has an entry equal to 1, the variable X; ; occurs as an entry. [

Now that we have dealt with the generic case, we can immediately get a corresponding
result for any finitely generated ideal in any ring.

Theorem. Let I be a finitely generated ideal of a ring R, and let f € I, where d > 2.
Then for some integer N there exists a matriz factorization fIn = aq---agq such that

I(a) = 1. In fact, there exists such a factorization in which oy = g = -+ = g, and

Proof. Since f € I¢, for some choice of elements u;; € I we can write
J=uriurg+tUs1Usd

with all of the u; ; € I. We may assume all of the finitely many generators of I occur
among the u; ; by including some extra terms in which one of the factors is 0. We may then
map Z[X;;:1<i<s,1<j<d — Rsothat X;; — u; ;. Applying the homomorphism
to the factorization for the generic form given in the preceding Theorem, we obtain a
factorization of f satisfying all but one of the conditions needed: it need not satisfy the
condition that

A1 = Qg =+ = Q.

But we may satisfy the additional condition by increasing the size by a factor of d and
taking all of the matrices to be cyc(aq, ... ,aq): see the discussion on p. 5 of the Lecture
Notes of November 15. [J

The following result will play an important role in our construction of linear maximal
Cohen-Macaulay modules over hypersurfaces.
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Theorem. Let (R, m, K) be a local ring, and let f € m? be a nonzerodivisor, where d > 2.
Then for some s there is a matriz factorization fIs = oy ---aq such that I(a;) = m for
1 <i<d Let G =Gy = R*, and let G; be the image of V; = aras---«ay, so that
G; C R*® as well, and G4 = fR*. Let M; = G;/Giy1, 1 < i < d. Then all of the
modules G;/Gq, G/Giy1 and M;, 0 < i < d — 1, are mazimal Cohen-Macaulay modules
over R = R/fR, and all of them have finite projective dimension, necessarily 1, over R.
Moreover, v(M;) =s,0<i<d—1.

Proof. Since fI, = ;., where ¥, = ;41 ---aq4, we have from the Discussion on the
first page of the Lecture Notes of November 13 concerning Cohen-Macaulay modules over
hypersurfaces that if indicates images after applying R ®r _, then
RNy PNy PRy Ry PN
is acyclic, and that - -
Ker ¢! = Im1); = Coker ¢, 2 Coker 9,

and the same holds with the roles of 1; and 1) interchanged. The image of 1; contains
fR?, which is the image of ;9. i.e., fR® C G; C R*®, and G;/fR* = G;/G4 may be
identified with Im1);. Thus, every G;/Gy is a maximal Cohen-Macaulay module over R
of finite projective dimension over R. Note as well that R?/G; = Coker); is a maximal
Cohen-Macaulay module over R of finite projective dimension over R.

We have that G;11 = Im ;11 = Im ;a1 C ;(mR?®), since I(a;11) = m, and this is
contained in m;(Rs) = mG;. Hence, M; = G;/G;11 is minimally generated over R by s
elements, and the short exact sequences

0— M, - R°/Git1 — R°/G; — 0

show that every M; is a maximal Cohen-Macaulay over R of finite projective dimension
over R as well.

A maximal Cohen-Macaulay module over R that has finite projective dimension over R
must have projective dimension 1 over R, since its depth is d — 1. [

Proposition. Let (R, m, K) be local and f € m® — m*L. Let L(f) denote the leading
form of f, i.e., the image of f in m?/m9tl = [gr, (R)]q. Suppose that N is a finitely
generated R-module (N = R is the most important case) and that L(f) is a nonzerodivisor
on gr,,(N). Let R = R/fR, which has mazimal ideal @ = m/fR, and let N = N/fN.
Then

(a) f is a nonzerodivisor on N.
(b) For every integer n >0, fN Nm"N = fm" N.
(¢) For everyu € N —{0}, L(fg) = L(f)L(u), and the m-adic order of fu is the sum of

the m-adic orders of f and u.
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(d) grm(N) = gr,,(N)/L(f)grm,(N).

Proof. We first prove (c). If u # 0, say u € m"N — m/"*' N, then it follows that fu ¢
mathTIN e, that fu € m3*thN —md+h+IN or else £(f)L(u) = 0, a contradiction. This
proves both that ord (fu) = d + h and that L(fu) = L(f)L(u). Part (a) follows as well,
for if fu =0, then L(f)L(u) = 0.

To prove (b), note that if fu € m™N, then d + ord (u) > n, and so ord (u) > n — d,
which shows that u € m"~N.

Finally, to prove (d), note that
m"N/m""'N = (m"N + fN)/(m""'N + fN) 2 m"N/(m"N 0 (m"T'N + fN)).
Now if w,, = U1+ fv with u,, € m"N and u,, 1 € m"*1N, then fv = u, —u,41 € m"N,
and so v € m" %N by part (b). Then
m"N/m" N =2 m"N/(m" "' N + fm" IN)
= [gr,, (N)I/L(f) (82 (N)]n—d = [gr,, (N)/L(f)er (N)]n,

as required. [J

Discussion. To calculate the multiplicity of a local ring (R, m, K) or of an R-module M
one may work alternatively with the Hilbert function of gr,,(R) or the Hilbert function
of gr,,(M): the lattter, for example, is defined as dim g |gr,,(M)],, and is eventually a
polynomial of degree dim (M) — 1. This function is the first difference of the Hilbert

function. If the Hilbert function of M has leading term Enr, where 7 = dim (M), then

7!
the leading term of the Hilbert function of gr,, (M) will be
E,’,nr—l _ € nr—l
r! - (r—1)!

Corollary. Let (R, m, K) be local and let f € m be such that its leading form L(f) has
degree d.

(a) If L(f) is a nonzerodivisor in gr,,(R), then e(R/fR) = de(R).

(b) If N is a finitely generated R-module and L(f) is a nonzerodivisor on gr,,(N), then
e(N)=de(N/fN).

Proof. 1t suffices to prove (b), which is more general. In the notation of the preced-
ing proposition. e(NN) may be calculated from the Hilbert function of gr—(N), which
is gr(NV)/L(f)gr(N). If the Hilbert function of gr,,(N) is H(n), the Hilbert function
for gr(N)/L(f)gr(N) will be H(n) — H(n — d). If the leading term of the polynomial

e de _
(r—1)!

corresponding to H(n) is n"~ !, the new leading term is ———n""2, since the
polynomial en”™! — ¢(n — d)"~! has leading term cd(r — 1)n" "2 for any constant c. [

(r—2)!

In order to prove the result we want on existence of linear maximal Cohen-Macaulay
modules, we need to generalize the Theorem on p. 3 to a situation in which we have
tensored with a linear maximal Cohen-Macaulay module N over R.



