
Math 711: Lecture of November 20, 2006

The following result can be deduced easily from the Buchsbaum-Eisenbud acyclicity
criterion, but we give a short, self-contained argument.

Proposition. Let (R, m, K) be a local ring and N a maximal Cohen-Macaulay module
over R. If M is a finitely generated R-module of finite projective dimension over R, then
TorRi (M,N) = 0 for all i ≥ 1.

Proof. For any prime ideal P in Supp (N), NP is again a maximal Cohen-Macaulay module
over RP . (This is clear if height (P ) = 0. If height (P ) > 0, choose x ∈ P not in
any minimal prime of R. Then x is not a zerodivisor on N , and the result follows by
Noetherian induction, since N/xN will be a maximal Cohen-Macaulay module for R/xR.)
Let pdR(M) = h. Then TorRi (M, N) = 0 for i > h. If we have a a counterexample, we
can localize at a minimal prime P of

⊕h
i=1 TorRi (M, N). Thus, we may assume without

loss of generality that all of the non-vanishing TorRi (M, N) for i ≥ 1 have finite length,
and we can choose i as large as possible for which one of these Tor modules is not 0. If

0 → Gh → · · · → G0 → 0

is a minimal free resolution of M over R, the modules TorRi (M, N) are the homology
modules of the complex

0 → Gh ⊗R N → · · · → G0 ⊗R N → 0.

Let dj denote the map
Gj ⊗R N → Gj−1 ⊗R N.

Let Zj = Ker (dj) and let Bj = Im (dj+1). Thus, Zj = Bj for j > i. Note that we cannot
have dim (R) = 0, for then pdRM ≤ depthm(R) = 0, and M is free. Thus, we may assume
dim (R) ≥ 1. Also note that we cannot have i = h, because TorhR(M, N) ⊆ Gh ⊗R N , a
finite direct sum of copies of N , and has no submodule of finite length, since depthmN =
dim (R) > 0. Then we have a short exact sequence

0 → Bi → Zi → TorRi (M, N) → 0

and an exact sequence

0 → Gh ⊗R N → · · · → Gi+1 ⊗R N → Bi → 0.

Since TorRi (M, N) is a nonzero module of depth 0, Zi 6= 0, and Zi ⊆ Gi ⊗N has depth at
least one. It follows that depthm(Bi) = 1. The exact sequences

0 → Bj → Gj ⊗R N → Bj−i → 0

for j > i enable us to see successively that depthmBi+1 = 2, depthmBi+2 = 3 and,
eventually, depthmBh−1 = (h − 1) − (i − 1) = h − i. But Bh−1 = Gh ⊗R N has depth
dim (R) ≥ depthmR ≥ h > h− i, since i ≥ 1, a contradiction. �

We next observe the following result related to the final Corollary of the Lecture of
November 17.
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Lemma. Let (R, m, K) be local, and f ∈ md −md+1 be such that L(f) is part of a ho-
mogeneous system of parameters for grm(R). Let N be a linear maximal Cohen-Macaulay
module. Then e(N/fN) = de(N).

Proof. Without loss of generality we may replace R by R(t) and N by R(t)⊗R N , and so
assume that we have an infinite residue class field. Let dim (R) = r, and let x1, . . . , xr be
a minimal reduction of m. Then grN ∼= (N/mN) ⊗K K[X1, . . . , Xr] is Cohen-Macaulay
of depth r over grm(R): the images of the xj in m/m2 form a regular sequence. It follows
that L(f), which has degree d, is a nonzerodivisor on grm(N), and we may apply part (b)
of the final Corollary of the Lecture of November 17. �

We are now ready to prove the result we are aiming for (cf. [J. Herzog, B. Ulrich, and
J. Backelin, Linear maximal Cohen-Macaulay modules over strict complete intersections,
Journal of Pure and Applied Algebra 71 (1991) 187–202.]

Theorem (Herzog, Ulrich, and Backelin). Let (R, m, K) be a Cohen-Macaulay local
ring that has a linear maximal Cohen-Macaulay module N . Let f ∈ md − md+1 be a
nonzerodivisor such that its leading form L(f) ∈ grm(R) is part of a homogeneous system
of parameters for grm(R). Then R/fR has a linear maximal Cohen-Macaulay module.

Proof. We adopt the notation of the Theorem on p. 3 of the Lecture of November 17, so
that we have a chain

Rs = G0 ⊇ G1 ⊇ · · · ⊇ Gd = fRs

as in the statement of that Theorem. Thus, the modules

0 ⊆ Gd−1/Gd ⊆ · · · ⊆ Gi/Gd ⊆ · · · ⊆ G0/Gd

give an ascending filtration of G0/Gd ∼= Rs/fRs in which every factor module Mi is
a maximal Cohen-Macaulay module over R = R/fR that is minimally generated by s
elements and such that all of the modules Gi/Gd, G0/Gi, and Mi = Gi/Gi+1 have finite
projective dimension over R.

We shall show that the modules Gi/Gd ⊗ N give an ascending filtration of Ns/fNs

such that each factor Mi ⊗R N is a maximal Cohen-Macaulay module over R. We then
prove that at least one of Mi ⊗R N is a linear maximal Cohen-Macaulay module over R.

First, we have short exact sequences

0 → Gi/Gd → G0/Gd → G0/Gi → 0,

0 ≤ i ≤ d − 1 (this is the range for i throughout). These remain exact when we apply
⊗R N , since G0/Gi has finite projective dimension over R and N is a maximal Cohen-

Macaulay module: Tor1(G0/Gi, N) = 0. This shows that each (Gi/Gd) ⊗R N embeds
in

G0/Gd ⊗R N ∼= R
s ⊗R N ∼= (N/fN)⊕s.
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The short exact sequences

0 → Gi+1/Gd → Gi/Gd →Mi → 0

likewise remain exact when we apply ⊗R N , and so it follows that the factors are the
modules Mi ⊗R N .

We want to prove that each Mi ⊗R N is a maximal Cohen-Macaulay module over R.
We use the notation of the proof of the Theorem on p. 3 of the Lecture Notes of November
17. Recall that the complex

· · · ψ
′
i−→ R

s ψi−→ R
s ψ

′
i−→ R

s ψi−→ R
s → 0

is acyclic, and that Cokerψi = Rs/Gi, which is also Cokerψi. Moreover, we have that
Imψi ∼= Gi/Gd. Therefore we have short exact sequences:

0 → Rs/Gi → R
s → Gi/Gd → 0 and 0 → Gi/Gd → R

s → Rs/Gi → 0

for all i, 0 ≤ i ≤ d− 1. Since these modules have finite projective dimension over R, both
sequences remain exact when we apply ⊗R N , yielding

(∗) 0 → (Rs/Gi)⊗R N → N
s → (Gi/Gd)⊗R N → 0

and
(∗∗) 0 → (Gi/Gd)⊗R N → N

s → (Rs/Gi)⊗R N → 0.

If
k = depthm

(
(Gi/Gd)⊗R N

)
< dim (R) = depthmN,

then (*) shows that
depthm

(
(Rs/Gi)⊗R N

)
= k + 1,

and then (∗∗) shows that

depthm
(
Gi/Gd)⊗R N

)
≥ k + 1 > k,

a contradiction. If
depthm

(
(Rs/Gi)⊗R N

)
< dim (R)− 1,

we get an entirely similar contradiction by first using (∗∗) and then (∗).

The exact sequences

0 →Mi → Rs/Gi+1 → Rs/Gi → 0

likewise remain exact when we apply ⊗R N , yielding exact sequences

0 →Mi ⊗R N → (Rs/Gi+1)⊗R N → (Rs/Gi)⊗R N → 0.
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Since the modules in the middle and on the right are maximal Cohen-Macaulay modules
over R, so is Mi ⊗R N , 0 ≤ i ≤ d− 1.

Since these d modules are the factors in a filtration of (N/fN)s, we have that

e
(
(N/fN)s

)
=
d−1∑
i=0

e(Mi ⊗R N).

The left hand side is se(N/fN), which is sde(N) by the preceding Lemma. Since there
are d terms in the sum, there is at least one choice of i such that e(Mi ⊗R N) ≤ se(N).
But

ν(Mi ⊗N) = dimK

(
K ⊗R (Mi ⊗N N)

)
= dimK

(
(K ⊗R K)⊗R (Mi ⊗R N)

)
= dimK

(
(K ⊗RMi)⊗K (K ⊗R N) = ν(Mi)ν(N) = sν(N) = se(N),

since N is a linear maximal Cohen-Macaulay module over R. Thus, there is at least one i
such that e(Mi ⊗R N) ≤ ν(Mi ⊗R N). Since the opposite inequality is automatic, for this
choice of i we have that Mi⊗RN is a linear maximal Cohen-Macaulay module over R. �

Corollary. Let (R, m, K) be a local ring that is a strict complete intersection, i.e., the
quotient of a regular ring (T,n) by a sequence of elements f1, . . . , fk whose leading forms
constitute a regular sequence in grnT . Then R has a linear maximal Cohen-Macaulay
module. �

Remark. In [J. Herzog, B. Ulrich, and J. Backelin, Linear maximal Cohen-Macaulay mod-
ules over strict complete intersections, Journal of Pure and Applied Algebra 71 (1991)
187–202], a converse to the Theorem on p. 3 of the Lecture Notes of November 17 is ob-
tained, showing that flitrations of Rs/fRs like the one given by the Gi/G)d all come from
matrix factorizatons. Also, the authors use the fact that I(α) = I to prove, in certain
cases, that there are infinitely many mutually non-isomorphic maximal Cohen-Macaulay
modules M satisfying certain restrictions on e(M) and ν(M) and, in particular, on the

ratio
ν(M)
e(M)

.

We next want to show that linear maximal Cohen-Macaulay modules exist for certain
determinantal rings and for certain Segre products when both factors have linear maximal
Cohen-Macaulay modules. We recall that if R and S are two finitely generated N-graded
K-algebras, the Segre product of R and S, which we shall denote R©s K S, is defined as⊕

n

Rn ⊗K Sn,

which is N-graded so that [R©s K S]n = Rn ⊗K Sn. This is a K-subalgebra of the tensor
product R⊗K S, which has an N2-grading in which

[R⊗K S]h,k = Rh ⊗K Sk.
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Note that R©s K S is a direct summand of R⊗K S: an R©s K S-module complement is⊕
h6=k

Rh ⊗K Sk.

For example, if R = K[x1, . . . , xr] and S = K[y1, . . . , ys] are polynomial rings,

T = R⊗K S = K[x1, . . . , xr, y1, . . . , ys],

a polynomial ring, and R©s K S = K[xiyj : 1 ≤ i ≤ r, 1 ≤ j ≤ s] ⊆ T . If Z =
(
zij

)
is an

r × s matrix of new indeterminates, the K-algebra map

K[zij : 1 ≤ i ≤ r, 1 ≤ j ≤ s] � R©s K S

sending zij 7→ xiyj can be shown to have kernel I2(Z), so that

K[zij : 1 ≤ i ≤ r, 1 ≤ j ≤ s]/I2(Z) ∼= R©s K S.

See Problem 5 of Problem set #5.

We shall see eventually that the Segre product of two Cohen-Macaulay rings need not
be Cohen-Macaulay in general.


