
Math 711: Lecture of November 22, 2006

Our next objective is to exhibit linear maximal Cohen-Macaulay modules for rings
defined by the vanishing of the minors of a matrix of indeterminates in two special cases:
one is the case of maximal minors, and the other the case of 2 × 2 minors. We shall
solve the second problem in two different ways, one of which generalizes to the case of
Segre products of standard graded K-algebras each of which has a linear maximal Cohen-
Macaulay module.

Discussion: rings defined by the vanishing of the minors of a generic matrix. Let K be a
field and let X =

(
Xij

)
denote an r×s matrix of indeterminates over K, where 1 ≤ r ≤ s.

Let K[X] denote the polynomial ring in the rs variables Xij . The ideal generated by
the size t minors, It(X), is known to be prime: in fact, K[X]/It(X) is known to be a
Cohen-Macaulay normal domain. This was first proved in [M. Hochster and J. A. Eagon,
Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci,
Amer. J. Math. 93 (1971), 1020–1058], and was treated by two methods in the Lecture
Notes from Math 711, Winter 2006: one is the method of principal radical systems, adapted
from the paper just cited, and the other is via the method of Hodge algebras. We shall
assume the fact that these ideals are prime here. An argument for the case t = 2 is
given in Problem 5 of Problem Set #5, in which the isomorphism of K[X]/I2(X) with the
Segre product of two polynomial rings over K, one in r variables and one in s variables, is
established.

We note that it is easy to see that when K is algebraically closed, the algebriac set
V

(
It(X)

)
⊆ Ars

K is irreducible: this is the algebraic set of r × s matrices of rank at most
t− 1. For any such matrix α, the map Ks → Kr that it represents factors through Kt−1,
e.g., through a (t − 1)-dimensional subspace of Kr containing the image of α, and the
factorization

Ks → Kt−1 → Kr

enables us to write α = βγ where β is r × (t − 1) and γ is (t − 1) × s. Any matrix that
factors this way has column space contained in the column space of β, which shows that
we have a surjection

Ar(t−1)
K × A(t−1)s � V

(
It(X)

)
.

This proves the irreducibility, since the image of an irreducible algebraic set is irreducible,
and shows, at least, that Rad

(
It(X)

)
is prime.

It is also easy to calculate the dimension of V
(
It(X)

)
and, hence, of K[X]/It(X). Let

ρ = t − 1. Consider the open set in W ⊆ X such that the first ρ rows of X are linearly
independent. The open set U of choices γ for these rows (we may think of points γ ∈ U as
ρ× s matrices of maximal rank) has dimension ρs. Each remaining row is a unique linear
combination of the rows of γ using ρ coefficients, so that the last r− ρ rows of the matrix
can be written uniquely in the form ηγ, where η is an arbitrary (r − ρ) × ρ matrix. This
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gives a bijective map of A(r−ρ)ρ×U onto the dense open W ⊆ X, and so the dimension of
V

(
It(X)

)
, which is the same as dim (W ), is (r− ρ)ρ + ρs = ρ(r + s− ρ), where ρ = t− 1.

It also follows that the height of It(X) is rs− ρ(r + s− ρ) = (r − ρ)(s− ρ).

If t = r, the case of maximal minors, the height is

rs− (r − 1)(s + 1) = rs− (rs− s + r − 1) = s− r + 1.

If t = 2, the dimension is r + s− 1.

Discussion: linear maximal Cohen-Macaulay modules over a standard graded ring. Let
K be a field. Recall that a standard graded K-algebra is a finitely generated N-graded
K-algebra R such that R0 = K and R = K[R1], i.e., R is generated over K by its forms
of degree 1. In dealing with the existence of linear maximal Cohen-Macaulay modules
over the local ring Rm of a standard graded K-algebra at its homogeneous maximal ideal
m =

⊕∞
n=1 Rn, it is convenient to work entirely in the graded case.

Note that grmRm
Rm

∼= grm(R) ∼= R, so that each of the local ring and the graded ring
determines the other. If N is a linear maximal Cohen-Macaulay module over a local ring
(S, n, K), then M = grnN is a maximal Cohen-Macaulay module over R = grnS, and
R is a standard graded K-algebra. To check this it suffices to to do so after replacing S
by S(t), so that the residue class field is infinite. R is replaced by K(t)⊗K R, and M by
K(t) ⊗K M , which does not affect the Cohen-Macaulay property. But when the residue
class field is infinite, we can choose a minimal reduction I = (x1, . . . , xr)S for m, where
r = dim (R) = dim (S) and x1, . . . , xr is a system of paramters, and then

grn(N) = grI(N) ∼= (N/IN)⊗K K[X1, . . . , Xr],

where K[X1, . . . , Xr] is a polynomial ring. Note that M = grn(N) is generated in degree
0: M0 = N/IN = N/mN .

Conversely, if M is an N-graded maximal Cohen-Macaulay module over the standard
graded K-algebra R, and M is generated by elements of equal (necessarily smallest) degree,
we shall refer to M as a linear maximal Cohen-Macaulay module in the graded sense over
R if e(M) = ν(M), where e(M) is defined as the integer e such that

e

(r − 1)!
nr−1 agrees

with the leading term of the Hilbert polynomial of M (by which we mean the polynomial
that agrees with dim K(Mn) for all n � 0). Note that we can shift the grading on such
an M so that it is generated in degree 0. This does not affect ν(M) nor e(M). This is
precisely the condition for Mm to be a linear maximal Cohen-Macaulay module over R.

In fact, if we have a finitely generated graded module M over standard graded K-algebra
R, then

ν(Mm) = dim K(Mm/mMm) = dim K(M/mM) = ν(M),

and a minimal set of generators of M as a module may be taken to consist of homoge-
neous elements. Under the condition that M is generated in degree 0, grmRm

Mm
∼= M ,
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and eRm
(Mm) may be calculated from the Hilbert function of the associated graded mod-

ule, which yields that eRm
(Mm) = e(M). If R has a system of parameters x1, . . . , xr

consisting of linear forms, which is automatic when K is infinite, then we again have
mM = (x1, . . . , xr)M in the graded case, since e(M) = `

(
M/(x1, . . . , xr)M

)
and ν(M) =

`(M/mM).

Discussion: a linear homogeneous system of parameters for the maximal minors. Consider
an r×s matrix X of indeterminates Xi,j , over K, where r ≤ s. We can give a linear homo-
geneous system of parameters for K[X]/Ir(X). as follows. Let Dj be the diagonal whose
entries are X1,j , X2,j+1, . . . , Xr,j+r−1, where 1 ≤ i ≤ s− r + 1. The linear homogeneous
system of parameters consists of the elements below these diagonals (there are r(r − 1)/2
such elements), the differences Xk+1,j+k−Xj,1 (these are all on the diagonal Dj) as j varies,
1 ≤ j ≤ s−r+1, and the elements above all the diagonals (again, there are r(r−1)/2 such
elements). The total number of elements is r(r − 1) + (s− r − 1)(r − 1) = (r − 1)(s− 1),
which is the dimension of the ring K[X]/Ir(X). To check that the elements specified form
a system of parameters, it suffices to check that the the maximal ideal is nilpotent in the
quotient. Note that, because all elements below D1 are 0 and the image of D1 in the
quotient has all entries equal to, say, x1 (the image of X11), we find from the vanishing
of the leftmost r × r minor that xr

1 = 0, so that x1 is nilpotent. We can then prove by
induction on j that all the elements on the diagonal that is the image of Dj (these are
all equal) are nilpotent. If we know this for all variables below the diagonal Dj by the
induction hypothesis, and xj , the image of X1,j , is the common image of the elements on
Dj , then the xr

j is nilpotent, from the vanishing of the minor consisting of r consecutive
columns beginning with the j th.

In fact, the quotient of K[X]/Ir(X) by this linear homogeneous system of parameters
turns out to be isomorphic with K[x1, . . . , xs−r+1]/Mr, where the numerator is a poly-
nomial ring and M = (x1, . . . , xs−r+1). This is left as an exercise: see Problem 2. in
Problem Set #5 . It follows that the multiplicity of the ring K[X]/Ir(X) is the number

of monomials of degree at most r − 1 in s− r + 1 variables, which is
(

s

r − 1

)
.

We can now show:

Theorem. With notation as above, the ideal P generated by the r − 1 size minors of the
first r− 1 rows of X is a linear maximal Cohen-Macaulay module for R = K[X]/Ir(X) in
the graded sense.

Proof. The generators of P have equal degree, and since P has rank one, e(P ) = e(R).

Clearly, ν(P ) =
(

s

r − 1

)
= e(P ). Thus, we need only see that P is maximal Cohen-

Macaulay when considered as an R-module. The key point is that P is a height one prime
in R: its inverse image in the polynomial ring has height s − (r − 1) + 1 = s − r + 2,
one more than the height of Ir(X). Moreover, the quotient R/P is Cohen-Macaulay: it
is a polynomial ring over a ring obtained by killing minors of an (r − 1) × s matrix of
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indeterminates, and so its depth on the homogeneous maximal ideal of R is dim (R) − 1.
The short exact sequence

0→ P → R→ R/P → 0

now implies that P has depth equal to dim (R) as an R-module. �

We next want to give a calculation of the multiplicity of the ring R = K[X]/I2(X) when
X =

(
Xij

)
is a matrix of indeterminates. We already know from Problem 5 of Problem

Set #5 and Problem 6 of Problem Set #4 that the answer is
(

r + s− 2
r − 1

)
. We give an

alternative proof of this by a completely different method. The idea of this method is the
same as the idea of the proof that these rings are Cohen-Macaulay via the technique of
principal radical systems.

If r = 1 the ring is a polynomial ring in s variables and the multiplicity is 1, which is

correctly given by the formula. We prove that the multiplicity is
(

r + s− 2
r − 1

)
by induction

on the number of variables. The idea is to kill one of the entries of the matrix, say
x = x11. Since the ring is a domain x11 is not a zerodivisor, and the resulting ring has
the same multiplicity as R. In this ring, x1jxi1 = x11xij = 0 in R for i, j ≥ 1, and so
every prime ideal contains either all of the elements x1j or all of the elements xi1. Since
P = (x1j : 1 ≤ j ≤ s) is a prime, and Q = (xi1 : 1 ≤ i ≤ r) is a prime, P and Q are
precisely the minimal primes of x11R in R. If we localize at P the elements xi1, i ≥ 2
become invertible, and the resulting ring is easily checked to be a field (localizing at xi2

produces a localization of a polynomial ring over K). The situation is the same if we
localize at Q. Thus, e(R) = e(R/P ) + e(R/Q). The former is the ring obtained by killing
the 2 × 2 minors of an (r − 1) × s matrix of indeterminates, and the latter by killing the
2× 2 minors of an r × (s− 1) matrix of indeterminates. The result now follows form the
identity (

r + s− 2
r − 1

)
=

(
r − 1 + s− 2

r − 1− 1

)
+

(
r + s− 1− 2

r − 1

)
.

Discussion: linear maximal Cohen-Macaulay modules for K[X]/I2(X). Our first proof
uses the fact that the ring K[X]/I2(X) has, for t ≥ 1, and endomorphism reminiscent of
the Frobenius endomorphism. To wit, the K-algebra endomorphism K[X] → K[X] that
sends Xij 7→ Xt

ij for all i and j maps I2(X) into itself:

xijxhk − xikxhj 7→ xt
ijx

t
hk − xt

ikxt
hj .

and the latter element is a multiplie of the former element.

If we think of

R = K[X]/I2(X) ∼= K[Y1, . . . , Yr]©s K K[Z1, . . . , Zs]

this endomorphism is induced by the K-endomorphism of the polynomial ring

K[Y1, . . . , Yr, Z1, . . . , Zs]
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such that Yi 7→ Y t
i and Zj 7→ Zt

j . This is clearly an injective endomorphism. We can
restrict this endomorphism to the Segre product. We then have XiYj 7→ (XiYj)t. From
this point of view, it is clear that this endomorphism θt of R is injective. We write tR
for R viewed as an R-module via θt. The map R → tR is module-finite, since every xt

i is
in the image θt(R). A homogeneous system of parameters in R maps to a homogeneous
system of parameters in tR, which is Cohen-Macaulay, since R is. That is, tR is a maximal
Cohen-Macaulay module over R.

We can now decompose tR into a large number of R-modules. It will follow that each of
these, if nonzero, is a maximal Cohen-Macaulay R-module. This decomposition proceeds
as follows.

We can think of tR as R and the image of R as the subring S spanned by all monomials

Y a1
1 · · ·Y ar

r Zb1
1 · · ·Zbs

s

such that
a1 + · · ·+ ar = b1 + · · ·+ bs

and t divides every ai and every bj . Fix elements α = α1, . . . , αr and β = β1, . . . , βs in
Z/tZ such that

α1 + · · ·+ αr = β1 + · · ·+ βs

in Z/tZ. Let Mα,β be the K-span of all monomials Y a1
1 · · ·Y ar

r Zb1
1 · · ·Zbs

s such that ai
∼= αi

mod tZ, 1 ≤ i ≤ r and bj
∼= βj mod tZ, 1 ≤ j ≤ s. It is easy to see that Mα,β is an

S-module.

We claim that for all t ≥ r, the choice t− 1, t− 1, . . . , t− 1 for α and 0, 0, . . . , 0, t− r
for β produces a linear maximal Cohen-Macaulay module , namely Mα,β , in the graded
sense. This module has rank one, because multiplication by Y1 · · ·YrZ

r
s produces an ideal

in S. Hence, the multiplicity is the same as for S, i.e.,
(

r + s− 2
r − 1

)
. It is easy to see that

this module is generated minimally by all monomials of the form

Y t−1
1 · · ·Y t−1

r Za1t
1 · · ·Zas−1t

s−1 Zt−r
s ,

where the ai are nonnegative and

a1 + · · ·+ as−1 = r − 1.

These generators all have the same degree, and the number of generators is the same as

the number of monomials of degree r − 1 is s − 1 variables, which is
(

r + s− 2
r − 1

)
, as

required. �


