Math 711: Lecture of November 27, 2006

Before giving a second proof of the existence of linear maximal Cohen-Macaulay modules
for K[X]/I>(X) and the extension of this result to the case of more general Segre products,
we want to note that the Segre product of two Cohen-Macaulay rings need not be Cohen-
Macaulay, even when one of them is a normal hypersurface and the other is a polynomial
ring.

In fact, let K be any field whose characteristic is different from 3, and let
R=K[X,Y, Z]) (X} +Y?+ Z%) = K[z, y, 7]

and S = K]s, t] where X, Y, Z, s, and t are indeterminates over K. We shall show that
T = R(®g S is a three-dimensional domain that is not Cohen-Macaulay.

We have that
T = Klzs, ys, zs, zt, yt, 2t] C K[z, y, 2, s, t].

The equations
(25)° + ((s)® + (ys)°) =0 and (2t)® + ((2t)® + (y1)*) =0

show that zs and zt are both integral over D = Klzs, ys, xt, zt|] C T. The elements
x, Yy, s, and t are algebraically independent, and the fraction field of D is Klzs, ys, t/s],
so that dim (D) = 3, and

D = K[Xlla X127 X217 X22]/(X11X22 - X12X21)

with X711, X2, X291, Xoo mapping to xs, ys, xt, yt respectively.

It is then easy to see that ys, xt, xs — yt is a homogeneous system of parameters for D,
and, consequently, for T" as well. The relation

(z8)(2t)(xs — yt) = (25)*(xt) — (2t)*(ys)

now shows that 7" is not Cohen-Macaulay, for (zs)(zt) ¢ (xt, ys)T. To see this, suppose
otherwise. The map
Kz, y, z, s, t]| — K|z, y, Z]

that fixes K[z, y, z] while sending s — 1 and ¢ — 1 restricts to give a K-algebra map
Klxs, ys, zs, xt, yt, zt] — K[z, y, z].
If (zs)(zt) € (wt, ys)T, applying this map gives 2% € (x, y) K[z, y, 2], which is false — in

fact, K|z, y, 2]/(z, y) = K|[z]/(z*). O 1



Segre products do have good properties that are important. It was already noted that
R(®x S is a direct summand of R ®x S. This implies that every ideal of R S is
contracted from R ®p S. In particular, R (), S is Noetherian and, since it is N-graded,
finitely generated over K. This is quite obvious when R and S are standard, since it is then
generated by the products of elements in a basis for Ry with elements in a basis for 5.
When R®g S is normal, so is R (8)x S. In particular, this is true of the ring in the example
above. R = K[X,Y, Z]/(X3 + Y3 + Z3) is normal, since it is Cohen-Macaulay and the
singular locus is the origin (the partial derivatives of X3 + Y3 + Z3 vanish simultaneously
only at the origin), and R ®x S = R][s, t].

Discussion: the dimension of the Segre product. For any finitely generated N-graded K-
algebras R and S with Ry = K = Sy, we have that

dim (R®g S) = dim (R) + dim (5) — 1.

Each of R and S has a homogeneous system of parameters. After raising the elments
to powers, we find that R is module-finite over A = K|[Fy, ..., F.], where Fy, ..., F,
form a homogeneous system of parameters of degree k, and S is module-finite over B =
K|[Gy, ... ,Gs] where Gy, ... Gy is a homogeneous system of parameters of degree k as
well. If K is infinite and R and S are standard, we may even assume that & = 1 here.
Then A®) ) B = K[X]|/I3(X) where X is an r X s matrix of indeterminates over K, and
so has dimension r + s — 1. The result now follows because R () S is module-finite over
A®)g B. To see this, choose h > 0 so that homogenous generators for R over A and for
S over B have degree < h. Let Vi be a K-basis for Ry for £ < h and let Wy, be a K-basis
for Sy for k < h. Then the finite set § of elements of the form v ® w, where v € V;, and
W € wy, for some k < h, generate RS S as a module over A(8) B. To see this, let
F € R; and G € S; be given. Then F' is an A-linear combination of elements in a fixed Vj
with coefficients in A;_j, and G is a B-linear combination of elements in a fixed W}, with
coefficients in B;_j. Here, if t < h one may take k = t, and if ¢ > h, one may take k = h.
It follows that every element of the form F' ® G is in the A (8)) B-span of S, as claimed,
and elements of this form span R(®)y S over K. [

Our next objective is to give a different proof that R = K[X]/I;(X) has a linear
maximal Cohen-Macaulay module. Again, we consider the isomorphism

K X]/L(X)2S=K[Y1,....Y. |®x K|[Z1, ..., Zs| CKYq, ..., Y., Zy, ..., Zs] =T.
For every 6 € Z, let Ty denote the K-span of the monomials u € T such that

degy (1) — degz(p) = 0,

where degy (1) denotes the total degree of p in the variables Y7, ..., Y, and deg, i denotes
the total degree of i in the variables 7y, ..., Z,;. Then T§ is obviously an S-module, and

The following result is proved in [S. Goto and K.-i. Watanabe, On graded rings, I,
Journal of the Mathematical Society of Japan 30 (1978) 179-213].



3

Theorem. With the above notation, Ts is a maximal Cohen-Macaulay module of torsion-
free rank one over the Segre product

K[Yi,....Y,)®x K|Z1, ..., Z] = S = R = K[X]/I,(X)
for s >4 > —r.

Proof. The case where § = 0 is the statement that Ty = S is Cohen-Macaulay, which we
are assuming here. We assume that 6 > 0 and proceed by induction on s. The case where
0 > 6 > —r then follows by interchanging the roles of Y7, ... .Y, and 23, ..., Z;.

The case where s = 1 is obvious. Note that T5 = ZfT(;, and that ZfT(s is the ideal
generated by the monomials of degree 6 in Y171, ..., Y, Z;, which is P?, where P =
(Y123, ..., Y. Zy). P corresponds to the prime ideal of R generated by the variables in the
first column. The quotient is K[X ~]/Io(X ), where X~ is the r x (s — 1) matrix obtained
by omitting the first column of X: this ring has dimension 7+ (s —1) —1 = r+s—2, from
which it follows that P is a height one prime of S. To complete the proof, it will suffice to
show that for 1 < § < s, S/P?% is Cohen-Macaulay: the short exact sequence

0—P —-8—8/p°—0

then shows that
depth,, P° = depth,, (S/P°) 4+ 1 = dim (S).

We filter S/P° by the modules P*/P*+1 0 < k < §. Each of these is a module over S/P,
and it suffices to show that each is a maximal Cohen-Macaulay module over S/P. We
already know this when k£ = 0, and so we may assume that 1 < k < 4.

We make use of the fact for every k € N, P* = ZFT'n S. This gives an injection of
Pr P o Tz T 2 T/ 2 T = K[YY, ... Yy, Zoy ... 2] =T".

If we identify P*¥/P**! as a submodule of T~ in this way, the action of S/P is obtained
by identifying S/P = K[Y1, ..., Y| ®x K[Zs,..., Zs] C T~. The generators of P* map
to the monomials of degree k in Y7, ...,Y,. Thus, we may identify P¥/Pk*+1 with T, .
Since s has been decreased by 1 and k < § < s — 1, the result follows from the induction
hypothesis. [J

Corollary. With notation as in the Theorem above, Ts_1 is a linear mazximal Cohen-
Macaulay module over S = R.

Proof. The generators of Ts_; have the same degree, and since Ts_; is rank one,

(i) =em) = ("7 2),

r—1

which is the same as the number of monomials of degree s — 1 in Yy, ...,Y,.. O

We can now prove:
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Theorem (D. Hanes). Let K be an infinite field. Let R and S be standard graded K -
algebras that possess linear maximal Cohen-Macaulay modules in the graded sense. Then
so does R(®)g S.

Proof. We may assume that M and N are the linear maximal Cohen-Macaulay modules
over R and S respectively and that they are generated in degree 0. Let Y1, ... .Y, be a
homogeneous linear system of parameters for R, where r = dim (R), and let 77, ..., Z
be a homogenous linear system of parameters for S, where s = dim (5). Let m and n be
the respective homogeneous maximal ideals in R and S.

Then R is module-finite over A = K[Y7, ... ,Y,], and S is module-finite over B =
K(Zy, ... ,Zs]. Moreover, R ® S is module-finite over A ® k¢ B, and R®) S is module-
finite over A () B, by the Discussion on the dimension of Segre products. Since M
is Cohen-Macaulay it is A-free, and its rank ¢ = e(M). Similarly, N is B-free of rank
d = e(N). Note that mM = (Y1, ... ,Y,)M and that nN = (74, ..., Zs)N.

The action of any degree one form F of R on M = A is an A-linear map and can be
thought of as being given by a ¢ X ¢ matrix over A. Since multiplication by F' increases
degrees by one, the entries of each such matrix must be degree one forms of A. Similarly,
the action of any degree one form G € S on N is given by a d x d matrix of linear forms
over B.

Consider the R ®x S module M @k N. We can consider it as
Ac ®K Bd ~ TCd,

where
T=K[Y1,...,Y | K[Z1, ..., Zg].

For § € Z, we can define (M @ N)s as (T5)?. Because the action of forms of R and forms
of S preserves the bigrading on 7°¢ coming from the Y-grading and the Z-grading on T,
every (M ®k N)s is a module over R(®), S. Since (M ®@x N)s is finitely generated even
as a module over

it is finitely generated over R(8)g. For s > § > —r it is maximal Cohen-Macaulay over
R®k S, since R@® S is module-finite over A (®)y B, and we know that it is maximal
Cohen-Macaulay over A (8)x B.

To complete the proof, we shall show that W = (M ®x N)s_1 is a linear maximal
Cohen-Macaulay module over R (), S. It is maximal Cohen-Macaulay and generated by
elements of equal degree. To complete the argument, we shall prove that

r+s—2
r—1

y(W) = cd ( ) = e(W).

Include Y3, ...,Y, in a set of one-forms Fy, ..., F} that generate m, and include
Z1,...,Z4s in a set of one-forms G4, ... ,Gy that generate n. Let M be the maximal
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ideal of R (®)x S, which is generated by the products F;G;. Let Q be the maximal ideal of
A ® g B, which is generated by the products Y;Z;. Then for every integer n > 0,

M (Mg N)=(FGj:1<i<h 1<j<k)"(M®gN)=
(Fi:1<i<r)"(G;:1<j<s)"(M®gN)=
(F:1<i<h)"M) ek (Gj:1<j<k)"N)=

m"M @gn"N = ((Y;:1<i<r)"M) @k ((Z;:1<j<s)"N) =
(Vi:1<i<r)(Z;:1<j<8)" (M@K N)=Q"M @k N).

Since M ®x N splits into

D (M ok N)s

0EZ

as R () S-modules, we also have that
M (M @k N)s = Q" (M @k N)s

for every ¢. In particular, M"W = Q"W for all n. Consequently, we have that v(W) =
(W/MW) = ((W/QW), which is the number of generators of W as a module over
—2
A@®k B. Since W is the direct sum of cd copies of (A® g B)s—1, this is cd(s r 1 ),
r —
as required. Similarly,

dim g (M"W/ M P1W) = dim g (Q"W/Q W),

and this is e¢d times the Hilbert function of (A (), B)s—1 with respect to Q. The multi-
plicity is therefore

cdeg((A®k B)s-1) :cd(r—:iz2). O



