Math 711: Lecture of November 27, 2006

Before giving a second proof of the existence of linear maximal Cohen-Macaulay modules for $K[X]/I_2(X)$ and the extension of this result to the case of more general Segre products, we want to note that the Segre product of two Cohen-Macaulay rings need not be Cohen-Macaulay, even when one of them is a normal hypersurface and the other is a polynomial ring.

In fact, let K be any field whose characteristic is different from 3, and let

$$R = K[X, Y, Z]/(X^{3} + Y^{3} + Z^{3}) = K[x, y, z]$$

and S = K[s, t] where X, Y, Z, s, and t are indeterminates over K. We shall show that $T = R \bigotimes_K S$ is a three-dimensional domain that is not Cohen-Macaulay.

We have that

$$T = K[xs, ys, zs, xt, yt, zt] \subseteq K[x, y, z, s, t].$$

The equations

$$(zs)^{3} + ((xs)^{3} + (ys)^{3}) = 0$$
 and $(zt)^{3} + ((xt)^{3} + (yt)^{3}) = 0$

show that zs and zt are both integral over $D = K[xs, ys, xt, zt] \subseteq T$. The elements x, y, s, and t are algebraically independent, and the fraction field of D is K[xs, ys, t/s], so that dim (D) = 3, and

$$D \cong K[X_{11}, X_{12}, X_{21}, X_{22}]/(X_{11}X_{22} - X_{12}X_{21})$$

with X_{11} , X_{12} , X_{21} , X_{22} mapping to xs, ys, xt, yt respectively.

It is then easy to see that ys, xt, xs - yt is a homogeneous system of parameters for D, and, consequently, for T as well. The relation

$$(zs)(zt)(xs - yt) = (zs)^{2}(xt) - (zt)^{2}(ys)$$

now shows that T is not Cohen-Macaulay, for $(zs)(zt) \notin (xt, ys)T$. To see this, suppose otherwise. The map

$$K[x, y, z, s, t] \rightarrow K[x, y, z]$$

that fixes K[x, y, z] while sending $s \mapsto 1$ and $t \mapsto 1$ restricts to give a K-algebra map

$$K[xs, ys, zs, xt, yt, zt] \rightarrow K[x, y, z].$$

If $(zs)(zt) \in (xt, ys)T$, applying this map gives $z^2 \in (x, y)K[x, y, z]$, which is false — in fact, $K[x, y, z]/(x, y) \cong K[z]/(z^3)$. \Box

Segre products do have good properties that are important. It was already noted that $R \bigotimes_K S$ is a direct summand of $R \bigotimes_K S$. This implies that every ideal of $R \bigotimes_K S$ is contracted from $R \bigotimes_K S$. In particular, $R \bigotimes_K S$ is Noetherian and, since it is N-graded, finitely generated over K. This is quite obvious when R and S are standard, since it is then generated by the products of elements in a basis for R_1 with elements in a basis for S_1 . When $R \bigotimes_K S$ is normal, so is $R \bigotimes_K S$. In particular, this is true of the ring in the example above. $R = K[X, Y, Z]/(X^3 + Y^3 + Z^3)$ is normal, since it is Cohen-Macaulay and the singular locus is the origin (the partial derivatives of $X^3 + Y^3 + Z^3$ vanish simultaneously only at the origin), and $R \bigotimes_K S = R[s, t]$.

Discussion: the dimension of the Segre product. For any finitely generated N-graded Kalgebras R and S with $R_0 = K = S_0$, we have that

$$\dim (R \otimes_K S) = \dim (R) + \dim (S) - 1.$$

Each of R and S has a homogeneous system of parameters. After raising the elements to powers, we find that R is module-finite over $A = K[F_1, \ldots, F_r]$, where F_1, \ldots, F_r form a homogeneous system of parameters of degree k, and S is module-finite over B = $K[G_1, \ldots, G_s]$ where G_1, \ldots, G_s is a homogeneous system of parameters of degree k as well. If K is infinite and R and S are standard, we may even assume that k = 1 here. Then $A \otimes_K B \cong K[X]/I_2(X)$ where X is an $r \times s$ matrix of indeterminates over K, and so has dimension r + s - 1. The result now follows because $R \bigotimes_K S$ is module-finite over $A \otimes_K B$. To see this, choose $h \gg 0$ so that homogenous generators for R over A and for S over B have degree $\leq h$. Let V_k be a K-basis for R_k for $k \leq h$ and let W_k be a K-basis for S_k for $k \leq h$. Then the finite set \mathcal{S} of elements of the form $v \otimes w$, where $v \in V_k$ and $W \in w_k$ for some $k \leq h$, generate $R \otimes_K S$ as a module over $A \otimes_K B$. To see this, let $F \in R_t$ and $G \in S_t$ be given. Then F is an A-linear combination of elements in a fixed V_k with coefficients in A_{t-k} , and G is a B-linear combination of elements in a fixed W_k with coefficients in B_{t-k} . Here, if $t \leq h$ one may take k = t, and if $t \geq h$, one may take k = h. It follows that every element of the form $F \otimes G$ is in the $A \otimes_K B$ -span of \mathcal{S} , as claimed, and elements of this form span $R \bigotimes_K S$ over K. \Box

Our next objective is to give a different proof that $R = K[X]/I_2(X)$ has a linear maximal Cohen-Macaulay module. Again, we consider the isomorphism

$$K[X]/I_2(X) \cong S = K[Y_1, \dots, Y_r] \otimes_K K[Z_1, \dots, Z_s] \subseteq KY_1, \dots, Y_r, Z_1, \dots, Z_s] = T.$$

For every $\delta \in \mathbb{Z}$, let T_{δ} denote the K-span of the monomials $\mu \in T$ such that

$$\deg_Y(\mu) - \deg_Z(\mu) = \delta,$$

where $\deg_Y(\mu)$ denotes the total degree of μ in the variables Y_1, \ldots, Y_r and $\deg_Z \mu$ denotes the total degree of μ in the variables Z_1, \ldots, Z_s . Then T_{δ} is obviously an S-module, and $T = \bigoplus_{\delta \in \mathbb{Z}} T_{\delta}$.

The following result is proved in [S. Goto and K.-i. Watanabe, On graded rings, I, Journal of the Mathematical Society of Japan **30** (1978) 179–213].

Theorem. With the above notation, T_{δ} is a maximal Cohen-Macaulay module of torsion-free rank one over the Segre product

$$K[Y_1, \ldots, Y_r] \circledast_K K[Z_1, \ldots, Z_s] = S \cong R = K[X]/I_2(X)$$

for $s > \delta > -r$.

Proof. The case where $\delta = 0$ is the statement that $T_0 = S$ is Cohen-Macaulay, which we are assuming here. We assume that $\delta \ge 0$ and proceed by induction on s. The case where $0 \ge \delta > -r$ then follows by interchanging the roles of Y_1, \ldots, Y_r and Z_1, \ldots, Z_s .

The case where s = 1 is obvious. Note that $T_{\delta} \cong Z_1^{\delta} T_{\delta}$, and that $Z_1^{\delta} T_{\delta}$ is the ideal generated by the monomials of degree δ in Y_1Z_1, \ldots, Y_rZ_1 , which is P^{δ} , where $P = (Y_1Z_1, \ldots, Y_rZ_1)$. P corresponds to the prime ideal of R generated by the variables in the first column. The quotient is $K[X^-]/I_2(X^-)$, where X^- is the $r \times (s-1)$ matrix obtained by omitting the first column of X: this ring has dimension r + (s-1) - 1 = r + s - 2, from which it follows that P is a height one prime of S. To complete the proof, it will suffice to show that for $1 \leq \delta < s$, S/P^{δ} is Cohen-Macaulay: the short exact sequence

$$0 \to P^{\delta} \to S \to S/p^{\delta} \to 0$$

then shows that

$$\operatorname{depth}_m P^{\delta} = \operatorname{depth}_m(S/P^{\delta}) + 1 = \dim(S).$$

We filter S/P^{δ} by the modules P^k/P^{k+1} , $0 \le k < \delta$. Each of these is a module over S/P, and it suffices to show that each is a maximal Cohen-Macaulay module over S/P. We already know this when k = 0, and so we may assume that $1 \le k < \delta$.

We make use of the fact for every $k \in \mathbb{N}$, $P^k = Z_1^k T \cap S$. This gives an injection of

$$P^{k}/P^{k+1} \hookrightarrow Z_{1}^{k}T/Z_{1}^{k+1}T \cong T/Z_{1}T \cong K[Y_{1}, \ldots, Y_{r}, Z_{2}, \ldots, Z_{s}] = T^{-}.$$

If we identify P^k/P^{k+1} as a submodule of T^- in this way, the action of S/P is obtained by identifying $S/P \cong K[Y_1, \ldots, Y_r] \otimes_K K[Z_2, \ldots, Z_s] \subseteq T^-$. The generators of P^k map to the monomials of degree k in Y_1, \ldots, Y_r . Thus, we may identify P^k/P^{k+1} with T_k^- . Since s has been decreased by 1 and $k < \delta \leq s - 1$, the result follows from the induction hypothesis. \Box

Corollary. With notation as in the Theorem above, T_{s-1} is a linear maximal Cohen-Macaulay module over $S \cong R$.

Proof. The generators of T_{s-1} have the same degree, and since T_{s-1} is rank one,

$$e(T_{s-1}) = e(T_0) = \binom{r+s-2}{r-1}$$

which is the same as the number of monomials of degree s - 1 in Y_1, \ldots, Y_r . \Box

We can now prove:

Theorem (D. Hanes). Let K be an infinite field. Let R and S be standard graded Kalgebras that possess linear maximal Cohen-Macaulay modules in the graded sense. Then so does $R \bigotimes_K S$.

Proof. We may assume that M and N are the linear maximal Cohen-Macaulay modules over R and S respectively and that they are generated in degree 0. Let Y_1, \ldots, Y_r be a homogeneous linear system of parameters for R, where $r = \dim(R)$, and let Z_1, \ldots, Z_s be a homogeneous linear system of parameters for S, where $s = \dim(S)$. Let m and n be the respective homogeneous maximal ideals in R and S.

Then R is module-finite over $A = K[Y_1, \ldots, Y_r]$, and S is module-finite over $B = K[Z_1, \ldots, Z_s]$. Moreover, $R \otimes_K S$ is module-finite over $A \otimes_K B$, and $R \otimes_K S$ is module-finite over $A \otimes_K B$, by the Discussion on the dimension of Segre products. Since M is Cohen-Macaulay it is A-free, and its rank c = e(M). Similarly, N is B-free of rank d = e(N). Note that $mM = (Y_1, \ldots, Y_r)M$ and that $\mathfrak{n}N = (Z_1, \ldots, Z_s)N$.

The action of any degree one form F of R on $M \cong A^c$ is an A-linear map and can be thought of as being given by a $c \times c$ matrix over A. Since multiplication by F increases degrees by one, the entries of each such matrix must be degree one forms of A. Similarly, the action of any degree one form $G \in S$ on N is given by a $d \times d$ matrix of linear forms over B.

Consider the $R \otimes_K S$ module $M \otimes_K N$. We can consider it as

$$A^c \otimes_K B^d \cong T^{cd},$$

where

$$T = K[Y_1, \ldots, Y_r] \otimes_K K[Z_1, \ldots, Z_s].$$

For $\delta \in \mathbb{Z}$, we can define $(M \otimes_K N)_{\delta}$ as $(T_{\delta})^{cd}$. Because the action of forms of R and forms of S preserves the bigrading on T^{cd} coming from the Y-grading and the Z-grading on T, every $(M \otimes_K N)_{\delta}$ is a module over $R(\widehat{S}_K S)$. Since $(M \otimes_K N)_{\delta}$ is finitely generated even as a module over

$$T_0 = A \, \textcircled{S}_K B \subseteq R \, \textcircled{S}_K S,$$

it is finitely generated over $R \otimes_S S$. For $s > \delta > -r$ it is maximal Cohen-Macaulay over $R \otimes_K S$, since $R \otimes_K S$ is module-finite over $A \otimes_K B$, and we know that it is maximal Cohen-Macaulay over $A \otimes_K B$.

To complete the proof, we shall show that $W = (M \otimes_K N)_{s-1}$ is a linear maximal Cohen-Macaulay module over $R \otimes_K S$. It is maximal Cohen-Macaulay and generated by elements of equal degree. To complete the argument, we shall prove that

$$\nu(W) = cd \binom{r+s-2}{r-1} = e(W).$$

Include Y_1, \ldots, Y_r in a set of one-forms F_1, \ldots, F_h that generate m, and include Z_1, \ldots, Z_s in a set of one-forms G_1, \ldots, G_k that generate \mathfrak{n} . Let \mathcal{M} be the maximal

ideal of $R \bigotimes_K S$, which is generated by the products $F_i G_j$. Let \mathcal{Q} be the maximal ideal of $A \bigotimes_K B$, which is generated by the products $Y_i Z_j$. Then for every integer $n \ge 0$,

$$\mathcal{M}^{n}(M \otimes_{K} N) = (F_{i}G_{j} : 1 \leq i \leq h, 1 \leq j \leq k)^{n}(M \otimes_{K} N) =$$

$$(F_{i} : 1 \leq i \leq r)^{n}(G_{j} : 1 \leq j \leq s)^{n}(M \otimes_{K} N) =$$

$$((F_{i} : 1 \leq i \leq h)^{n}M) \otimes_{K} ((G_{j} : 1 \leq j \leq k)^{n}N) =$$

$$m^{n}M \otimes_{K} \mathfrak{n}^{n}N = ((Y_{i} : 1 \leq i \leq r)^{n}M) \otimes_{K} ((Z_{j} : 1 \leq j \leq s)^{n}N) =$$

$$((Y_{i} : 1 \leq i \leq r)(Z_{j} : 1 \leq j \leq s))^{n}(M \otimes_{K} N) = \mathcal{Q}^{n}(M \otimes_{K} N).$$

Since $M \otimes_K N$ splits into

$$\bigoplus_{\delta \in \mathbb{Z}} \ (M \otimes_K N)_{\delta}$$

as $R \, \textcircled{S}_K S\text{-modules},$ we also have that

$$\mathcal{M}^n(M\otimes_K N)_{\delta} = \mathcal{Q}^n(M\otimes_K N)_{\delta}$$

for every δ . In particular, $\mathcal{M}^n W = \mathcal{Q}^n W$ for all n. Consequently, we have that $\nu(W) = \ell(W/\mathcal{M}W) = \ell(W/\mathcal{Q}W)$, which is the number of generators of W as a module over $A \otimes_K B$. Since W is the direct sum of cd copies of $(A \otimes_K B)_{s-1}$, this is $cd \binom{s+r-2}{r-1}$, as required. Similarly,

$$\dim_{K}(\mathcal{M}^{n}W/\mathcal{M}^{n+1}W) = \dim_{K}(\mathcal{Q}^{n}W/\mathcal{Q}^{n+1}W),$$

and this is cd times the Hilbert function of $(A \otimes_K B)_{s-1}$ with respect to Q. The multiplicity is therefore

$$cd e_{\mathcal{Q}}((A \otimes_K B)_{s-1}) = cd \binom{r+s-2}{r-1}.$$