
Math 711: Lecture of November 27, 2006

Before giving a second proof of the existence of linear maximal Cohen-Macaulay modules
for K[X]/I2(X) and the extension of this result to the case of more general Segre products,
we want to note that the Segre product of two Cohen-Macaulay rings need not be Cohen-
Macaulay, even when one of them is a normal hypersurface and the other is a polynomial
ring.

In fact, let K be any field whose characteristic is different from 3, and let

R = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z]

and S = K[s, t] where X, Y, Z, s, and t are indeterminates over K. We shall show that
T = R©s K S is a three-dimensional domain that is not Cohen-Macaulay.

We have that
T = K[xs, ys, zs, xt, yt, zt] ⊆ K[x, y, z, s, t].

The equations

(zs)3 +
(
(xs)3 + (ys)3

)
= 0 and (zt)3 +

(
(xt)3 + (yt)3

)
= 0

show that zs and zt are both integral over D = K[xs, ys, xt, zt] ⊆ T . The elements
x, y, s, and t are algebraically independent, and the fraction field of D is K[xs, ys, t/s],
so that dim (D) = 3, and

D ∼= K[X11, X12, X21, X22]/(X11X22 −X12X21)

with X11, X12, X21, X22 mapping to xs, ys, xt, yt respectively.

It is then easy to see that ys, xt, xs− yt is a homogeneous system of parameters for D,
and, consequently, for T as well. The relation

(zs)(zt)(xs− yt) = (zs)2(xt)− (zt)2(ys)

now shows that T is not Cohen-Macaulay, for (zs)(zt) /∈ (xt, ys)T . To see this, suppose
otherwise. The map

K[x, y, z, s, t]→ K[x, y, z]

that fixes K[x, y, z] while sending s 7→ 1 and t 7→ 1 restricts to give a K-algebra map

K[xs, ys, zs, xt, yt, zt]→ K[x, y, z].

If (zs)(zt) ∈ (xt, ys)T , applying this map gives z2 ∈ (x, y)K[x, y, z], which is false — in
fact, K[x, y, z]/(x, y) ∼= K[z]/(z3). �
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Segre products do have good properties that are important. It was already noted that
R©s K S is a direct summand of R ⊗K S. This implies that every ideal of R©s K S is
contracted from R ⊗K S. In particular, R©s K S is Noetherian and, since it is N-graded,
finitely generated over K. This is quite obvious when R and S are standard, since it is then
generated by the products of elements in a basis for R1 with elements in a basis for S1.
When R⊗K S is normal, so is R©s K S. In particular, this is true of the ring in the example
above. R = K[X, Y, Z]/(X3 + Y 3 + Z3) is normal, since it is Cohen-Macaulay and the
singular locus is the origin (the partial derivatives of X3 + Y 3 + Z3 vanish simultaneously
only at the origin), and R⊗K S = R[s, t].

Discussion: the dimension of the Segre product. For any finitely generated N -graded K-
algebras R and S with R0 = K = S0, we have that

dim (R©s K S) = dim (R) + dim (S)− 1.

Each of R and S has a homogeneous system of parameters. After raising the elments
to powers, we find that R is module-finite over A = K[F1, . . . , Fr], where F1, . . . , Fr

form a homogeneous system of parameters of degree k, and S is module-finite over B =
K[G1, . . . , Gs] where G1, . . . , Gs is a homogeneous system of parameters of degree k as
well. If K is infinite and R and S are standard, we may even assume that k = 1 here.
Then A©s K B ∼= K[X]/I2(X) where X is an r × s matrix of indeterminates over K, and
so has dimension r + s− 1. The result now follows because R©s K S is module-finite over
A©s K B. To see this, choose h � 0 so that homogenous generators for R over A and for
S over B have degree ≤ h. Let Vk be a K-basis for Rk for k ≤ h and let Wk be a K-basis
for Sk for k ≤ h. Then the finite set S of elements of the form v ⊗ w, where v ∈ Vk and
W ∈ wk for some k ≤ h, generate R©s K S as a module over A©s K B. To see this, let
F ∈ Rt and G ∈ St be given. Then F is an A-linear combination of elements in a fixed Vk

with coefficients in At−k, and G is a B-linear combination of elements in a fixed Wk with
coefficients in Bt−k. Here, if t ≤ h one may take k = t, and if t ≥ h, one may take k = h.
It follows that every element of the form F ⊗ G is in the A©s K B-span of S, as claimed,
and elements of this form span R©s K S over K. �

Our next objective is to give a different proof that R = K[X]/I2(X) has a linear
maximal Cohen-Macaulay module. Again, we consider the isomorphism

K[X]/I2(X) ∼= S = K[Y1, . . . , Yr]©s K K[Z1, . . . , Zs] ⊆ KY1, . . . , Yr, Z1, . . . , Zs] = T.

For every δ ∈ Z, let Tδ denote the K-span of the monomials µ ∈ T such that

degY (µ)− degZ(µ) = δ,

where degY (µ) denotes the total degree of µ in the variables Y1, . . . , Yr and degZ µ denotes
the total degree of µ in the variables Z1, . . . , Zs. Then Tδ is obviously an S-module, and
T =

⊕
δ∈Z Tδ.

The following result is proved in [S. Goto and K.-i. Watanabe, On graded rings, I,
Journal of the Mathematical Society of Japan 30 (1978) 179–213].
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Theorem. With the above notation, Tδ is a maximal Cohen-Macaulay module of torsion-
free rank one over the Segre product

K[Y1, . . . , Yr]©s K K[Z1, . . . , Zs] = S ∼= R = K[X]/I2(X)

for s > δ > −r.

Proof. The case where δ = 0 is the statement that T0 = S is Cohen-Macaulay, which we
are assuming here. We assume that δ ≥ 0 and proceed by induction on s. The case where
0 ≥ δ > −r then follows by interchanging the roles of Y1, . . . , Yr and Z1, . . . , Zs.

The case where s = 1 is obvious. Note that Tδ
∼= Zδ

1Tδ, and that Zδ
1Tδ is the ideal

generated by the monomials of degree δ in Y1Z1, . . . , YrZ1, which is P δ, where P =
(Y1Z1, . . . , YrZ1). P corresponds to the prime ideal of R generated by the variables in the
first column. The quotient is K[X−]/I2(X−), where X− is the r× (s−1) matrix obtained
by omitting the first column of X: this ring has dimension r +(s−1)−1 = r + s−2, from
which it follows that P is a height one prime of S. To complete the proof, it will suffice to
show that for 1 ≤ δ < s, S/P δ is Cohen-Macaulay: the short exact sequence

0→ P δ → S → S/pδ → 0

then shows that
depthmP δ = depthm(S/P δ) + 1 = dim (S).

We filter S/P δ by the modules P k/P k+1, 0 ≤ k < δ. Each of these is a module over S/P ,
and it suffices to show that each is a maximal Cohen-Macaulay module over S/P . We
already know this when k = 0, and so we may assume that 1 ≤ k < δ.

We make use of the fact for every k ∈ N, P k = Zk
1 T ∩ S. This gives an injection of

P k/P k+1 ↪→ Zk
1 T/Zk+1

1 T ∼= T/Z1T ∼= K[Y1, . . . , Yr, Z2, . . . , Zs] = T−.

If we identify P k/P k+1 as a submodule of T− in this way, the action of S/P is obtained
by identifying S/P ∼= K[Y1, . . . , Yr]©s K K[Z2, . . . , Zs] ⊆ T−. The generators of P k map
to the monomials of degree k in Y1, . . . , Yr. Thus, we may identify P k/P k+1 with T−k .
Since s has been decreased by 1 and k < δ ≤ s − 1, the result follows from the induction
hypothesis. �

Corollary. With notation as in the Theorem above, Ts−1 is a linear maximal Cohen-
Macaulay module over S ∼= R.

Proof. The generators of Ts−1 have the same degree, and since Ts−1 is rank one,

e(Ts−1) = e(T0) =
(

r + s− 2
r − 1

)
,

which is the same as the number of monomials of degree s− 1 in Y1, . . . , Yr. �

We can now prove:
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Theorem (D. Hanes). Let K be an infinite field. Let R and S be standard graded K-
algebras that possess linear maximal Cohen-Macaulay modules in the graded sense. Then
so does R©s K S.

Proof. We may assume that M and N are the linear maximal Cohen-Macaulay modules
over R and S respectively and that they are generated in degree 0. Let Y1, . . . , Yr be a
homogeneous linear system of parameters for R, where r = dim (R), and let Z1, . . . , Zs

be a homogenous linear system of parameters for S, where s = dim (S). Let m and n be
the respective homogeneous maximal ideals in R and S.

Then R is module-finite over A = K[Y1, . . . , Yr], and S is module-finite over B =
K[Z1, . . . , Zs]. Moreover, R⊗K S is module-finite over A⊗K B, and R©s K S is module-
finite over A©s K B, by the Discussion on the dimension of Segre products. Since M
is Cohen-Macaulay it is A-free, and its rank c = e(M). Similarly, N is B-free of rank
d = e(N). Note that mM = (Y1, . . . , Yr)M and that nN = (Z1, . . . , Zs)N .

The action of any degree one form F of R on M ∼= Ac is an A-linear map and can be
thought of as being given by a c × c matrix over A. Since multiplication by F increases
degrees by one, the entries of each such matrix must be degree one forms of A. Similarly,
the action of any degree one form G ∈ S on N is given by a d × d matrix of linear forms
over B.

Consider the R⊗K S module M ⊗K N . We can consider it as

Ac ⊗K Bd ∼= T cd,

where
T = K[Y1, . . . , Yr]⊗K K[Z1, . . . , Zs].

For δ ∈ Z, we can define (M⊗K N)δ as (Tδ)cd. Because the action of forms of R and forms
of S preserves the bigrading on T cd coming from the Y -grading and the Z-grading on T ,
every (M ⊗K N)δ is a module over R©s K S. Since (M ⊗K N)δ is finitely generated even
as a module over

T0 = A©s K B ⊆ R©s K S,

it is finitely generated over R©s S . For s > δ > −r it is maximal Cohen-Macaulay over
R©s K S, since R©s K S is module-finite over A©s K B, and we know that it is maximal
Cohen-Macaulay over A©s K B.

To complete the proof, we shall show that W = (M ⊗K N)s−1 is a linear maximal
Cohen-Macaulay module over R©s K S. It is maximal Cohen-Macaulay and generated by
elements of equal degree. To complete the argument, we shall prove that

ν(W ) = cd

(
r + s− 2

r − 1

)
= e(W ).

Include Y1, . . . , Yr in a set of one-forms F1, . . . , Fh that generate m, and include
Z1, . . . , Zs in a set of one-forms G1, . . . , Gk that generate n. Let M be the maximal
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ideal of R©s K S, which is generated by the products FiGj . Let Q be the maximal ideal of
A©s K B, which is generated by the products YiZj . Then for every integer n ≥ 0,

Mn(M ⊗K N) = (FiGj : 1 ≤ i ≤ h, 1 ≤ j ≤ k)n(M ⊗K N) =

(Fi : 1 ≤ i ≤ r)n(Gj : 1 ≤ j ≤ s)n(M ⊗K N) =(
(Fi : 1 ≤ i ≤ h)nM

)
⊗K

(
(Gj : 1 ≤ j ≤ k)nN

)
=

mnM ⊗K nnN =
(
(Yi : 1 ≤ i ≤ r)nM

)
⊗K

(
(Zj : 1 ≤ j ≤ s)nN

)
=(

(Yi : 1 ≤ i ≤ r)(Zj : 1 ≤ j ≤ s)
)n(M ⊗K N

)
= Qn(M ⊗K N).

Since M ⊗K N splits into ⊕
δ∈Z

(M ⊗K N)δ

as R©s K S-modules, we also have that

Mn(M ⊗K N)δ = Qn(M ⊗K N)δ

for every δ. In particular, MnW = QnW for all n. Consequently, we have that ν(W ) =
`(W/MW ) = `(W/QW ), which is the number of generators of W as a module over

A©s K B. Since W is the direct sum of cd copies of (A©s K B)s−1, this is cd

(
s + r − 2

r − 1

)
,

as required. Similarly,

dim K(MnW/Mn+1W ) = dim K(QnW/Qn+1W ),

and this is cd times the Hilbert function of (A©s K B)s−1 with respect to Q. The multi-
plicity is therefore

cd eQ
(
(A©s K B)s−1

)
= cd

(
r + s− 2

r − 1

)
. �


