
Math 711: Lecture of November 29, 2006

We aim to prove the following result of Paul Monsky, following his paper [P. Monsky,
The Hilbert-Kunz function, Mathematische Annalen 263 (1983) 43–49].

Theorem (Monsky). Let (R, m, K) be local where R has prime characteristic p > 0, let
A be an m-primary ideal, and let M be a finitely generated R-module of Krull dimension
d. Then

lim
n→∞

`(M/A[pn]M)
pnd

exists, and is a positive real number.

The function whose value on n is `(M/A[pn]M) is called the Hilbert-Kunz function of
M with respect to A and we denote its value on n by FHK(A, M)(n). If A = m, we may
simply write FHK(M)(n).

The limit, which we have not yet proved exists, is called the Hilbert-Kunz multiplicity of
M with respect to A. We denote it by eHK(A, M). If A = m, we write simply eHK(M).

Example. Let
R = K[[X, Y, Z]]/(XY − Zd) = K[[x, y, z]],

where K is a field and X, Y, Z are formal indeterminates. Here, m = (x, y, z)R. Note
that R is a normal hypersurface, and

R ∼= S = K[[Ud, V d, UV ]] ⊆ K[[U, V ]],

the formal power series ring in two variables. We shall show that eHK(R) = 2− 1
d
.

Every element of R can be written uniquely in the form xiyjzk where 0 ≤ k ≤ d−1. The
quotient ring R/(xq, yq)R, where q = pn, has a K-basis consisting of the elements xiyjzk,
0 ≤ i ≤ q − 1, 0 ≤ j ≤ q − 1, and 0 ≤ k ≤ d − 1. We can write q = pn = and + rn where
an ∈ N and 0 ≤ rn ≤ d− 1. Then zq = zandzrn = (xy)anzrn . As we multiply by z, z2, . . .
we obtain as multiples all the elements xanyanzs for 1 ≤ s ≤ d− 1. Multiplying by z one
more time yields xan+1yan+1. Of course, once we see that xiyjzk is 0 mod (xq, yq, zq),
this also follows for xi′yj′

zk′
whenever i′ ≥ i, j′ ≥ j, and k′ ≥ k. From this we see that a

K-basis for the quotient R/m[q] = R/(xq, yq, zq)R consists of all monomials xiyjzk such
that either

(1) 0 ≤ i ≤ an − 1, 0 ≤ j ≤ q − 1, and 0 ≤ k ≤ d− 1 or

(2) 0 ≤ i ≤ q − 1, 0 ≤ j ≤ an − 1, and 0 ≤ k ≤ d− 1 or

(3) i = j = an and 0 ≤ k < rn.
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The number monomials satisfying (1) or (2) is anqd+ qand while the number satisfying
both conditions is a2

nd. The number satisfying condition (3) is rn. Hence, `(R/m[q]) =
2ad

n− a2
nd + rn. Note that since an is the integer part of q/d, it lies between (q/d)− 1 and

q/d, and so an/q → 1/d as n →∞. Moreover, 0 ≤ rn < d shows that rn/q2 → 0 (for that
matter, rn/q → 0) as n →∞. Hence,

lim
n→infty

`(R/m[q])
q2

=
2d

d
− d

d2
+ 0 = 2− 1

d
.

We next make some elementary observations:

Lemma. Let (R, m, K) be local where R has prime characteristic p > 0, let A be an
m-primary ideal, and let M be a finitely generated R-module of dimension d.

(a) The values of the Hilbert Kunz function of M with respect to A are independent of
whether we regard the base ring as R, or as R/AnnRM . Hence, the question of whether
the Hilbert-Kunz multiplicity exists is independent of which ring is regarded as the base
ring.

(b) Let (R, m, K) → (S, n, L) be flat local such that n = mS. Then for all n,

FHK(A, M)(n) = FHK(A, S ⊗R M)(n),

and so the question of whether the Hilbert-Kunz multiplicity exists is not affected by
base change from R to S. In particular, we may make a base change from R to R̂.

(c) There exist positive real constants C and C ′ such that for all n,

Cpnd < FHK(A, M)(n) ≤ C ′pnd.

(d) If A is generated by part of a system of parameters for R/AnnRM , then eHK(A, M) =
eA(M).

(e) If A ⊆ B, then FHK(A, M)(n) ≥ FHK(B, M)(n) for all n, Hence, eHK(A, M) ≥
eHK(B, M) whenever they exist.

(f) Whenever it exists, eHK(A, M) ≤ eA(M).

Proof. Part (a) is obvvious. Part (b) follows from the fact that for any fnite length module
N over R, `S(S ⊗K N) = `R(N) (if N has a finite filtration whose factors are h copies of
K = R/m, then S ⊗K N has a filtration whose factors are h copies of S ⊗R K = S/mS =
S/n = L). One may apply this to each N = M/A[q]M , noting that

S ⊗N ∼= (S ⊗R M)/(AS)[q](S ⊗R M).
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For part (c), note that if A has k generators then Akq ⊆ A[q] ⊆ Aq, since a monomial
in k elements of degree kq must have at least one individual exponent that is at least q.
Hence,

(∗) `(M/(Ak)qM) ≥ `(M/A[q]M) ≥ `(M/AqM).

The Hilbert polynomial of M with respect to A has leading coefficient cnd for a suitable
positive real constant c. It follows that the upper bound in (∗) is asymptotic to c(kq)d =
ckq(qd), while the lower bound is asymptotic cqd, and the result follows.

Part (d) is immediate from the definition and Lech’s formula for multiplicities with
respect to parameter ideals.

Part (e) is obvious from the definition.

For part (f), first note that we can replace R by R(t) as in part (b), and so assume that
the residue class field is infinite. Second, we replace R by R/AnnRM as in part (a). Let
x1, . . . , xd by a system of parameters generating an ideal I that is a reduction of A. Then

eA(M) = eI(M) = eHK(I, M) ≥ eHK(A, M)

by part (e). �

From part (b) of this Lemma, the problem of proving the existence of Hilbert-Kunz
multiplicities reduces to the case where the local ring is complete. By the Proposition near
the bottom of p. 1 of the Lecture Notes of November 1, we know that there is a flat local
map from the complete ring (R, m, K) to a local ring (S, n, L) such that n = mS and L
is algebraically closed. Therefore, we may also assume without loss of generality that K
is algebraically closed. We shall see that this implies that F : R → R is module-finite.

Given e ∈ N and an R-module M we write eM for M viewed as an R-module via
restriction of scalars via the map F e : R → R. Thus, with u ∈ eM , r · u = rpe

u. When
F : R → R is module-finite, so are its iterations F e, and it follows that if M is finitely
generated as an R-module, so is eM . Moreover, M 7→ eM is an exact functor from R-
modules to R-modules: neither the underlying abelian groups nor the maps change when
we apply this functor.

When K is perfect and N is a finite length R-module, eN is also a finite length R-module
and, in fact, `(eN) = `(N). To see this, suppose that N has a filtration by h copies of K.
Then eN has a filtration by h copies of eK, by the exactness of restriction of scalars. The
action of m on eK is 0, and, although the action of K on eK is via the iterated Frobenius
endomorphism F e, F e : K → K is an isomorphism, and so eK is a one-dimensional vector
space over K, i.e., it is isomorphic with K. Note also that if B is any ideal of R, then
B(eM), under the abelian group identification of eM with M , becomes B[pe]M . Thus,

eM/(BeM) = e(M/B[pe]M).

From these remarks we obtain:
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Proposition. Let (R, m, K) be local of prime characteristic p > 0 such that F : R → R
is module-finite. Suppose also that K is pefect. Let A ⊆ m be any m-primary ideal. Let
M be a finitely generated R-module of dimension d. Then for every nonnegative integer n,
FHK(A, eM)(n) = FHK(A, M)(n+e), and so if eHK(A, eM) exists, so does eHK(A, M),
and eHK(A, eM) = pedeHK(A, M).

Proof. We have that

FHK(A, eM)(n) = `
(
eM/(A[pn])eM

)
= `(M/(A[pn])[p

e]M)

= `(M/A[pn+e]M) = FHK(A, M)(n + e)

for all n, and so

eHK(A, M) = lim
n→∞

FHK(A, M)(n + e)
p(n+e)d

=
1

ped
lim

n→∞

FHK(A, eM)(n)
pnd

=
1

ped
eHK(A, eM),

as required. �

We also have:

Lemma. Let (R, m, K) be local of prime characteristic p > 0, let M be a finitely generated
R-module of dimension d, and let A ⊆ M be m-primary.

(a) If N ⊆ M is such that dim (N) < dim (M), then for all n ≥ 0

FHK(A, M/N)(n) ≤ FHK(A, M)(n) ≤ FHK(A, M/N)(n) + Cp(d−1)n.

Hence,
|FHK(A, M)(n)−FHK(A, M/N)(n)| ≤ Cp(d−1)n,

and so eHK(A, M/N) and eHK(A, M) exist or not alike, and, if they exist, are equal.

(b) Let M ′ be another finitely generated R-module of dimension d, and let W be a mul-
tiplicative system in R consisting of nonzerodivisors on M and on M ′. If W−1M =
W−1M ′, then there exists a positivive constant C such that for all n ≥ 0,

|FHK(A, M)(n)−FHK(A, M ′)(n)| ≤ Cp(d−1)n.

Hence, eHK(A, M ′) and eHK(A, M) exist or not alike, and, if they exist, are equal.

Proof. For part (a), note that for every q = pn we have, with M = M/N , the exact
sequence

N/A[q]N → M/A[q]M → M/A[q]M → 0,

and while the first map need not be injective, we still have that the length of the module
in the middle is at most the sum of the lengths of the other two modules. The inequality
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on the right is exactly this statement, while the inequality on the left is immediate from
the surjectivity of the map on the right. The bound on the absolute value of the difference
follows at once, and so does the final statement once we divide by qd.

To prove part (b), note that we have a map M ↪→ W−1M ′ that becomes an isomorphism
when we localize at W . Choose w ∈ W to be the product of the denominators of the
images of a finite set of generators for M . Then the injection maps wM ↪→ M ′, and since
M ∼= wM we have an injection M ↪→ M ′ whose cokernel Q is killed by an element of W ,
which implies that dim (Q) ≤ dim (M). The short exact sequences

M/A[q]M → M/A[q]M ′ → Q/A[q]Q → 0

yield inequalities
FHK(A, M ′)(n) ≤ FHK(A, M)(n) + C1p

nd

for some real constant C1 and for all n, using part (a). In an exactly similar way, there is
a short exact sequence

0 → M ′ → M → Q′ → 0

with dim (Q′) < d, and we obtain

FHK(A, M)(n) ≤ FHK(A, M ′)(n) + C2p
nd

for all n. The inequality we need now follows with C = max{C1, C2}, and the final
statement is obvious. �

Discussion: the existence of Hilbert-Kunz multiplicities reduces to the case of complete
local domains with perfect residue class field. We have already seen that the existence
of Hilbert-Kunz multiplicities reduces to the case where the ring is complete local with
algebraically closed residue class field. In particular, the residue class field may be assumed
to be perfect. By part (a) of the Lemma above, we may reduce to the case where M has
pure dimension. We may replace R by R/AnnRM and therefore suppose that M is faithful,
and so that M and R have the same minimal primes, which are also the associated primes
of M .

Let W be the multiplicative system of elements not in any minimal prime of R, which
consists of nonzerodivisors on M . Then W−1M is a module over W−1R, which is a
semilocal Artin ring, and so is the product of its localizations at the various minimal
primes Pi, 1 ≤ i ≤ h, of R. Hence,

W−1M ∼=
h∏

i=1

MPi
=

h⊕
i=1

MPi
.

Choose a power of Pi that kills MPi
, say PNi

i , and let Mi = AnnMPNi
i . Every element of

MPi
can be multiplied into the image of M by an element of R − Pi, and, if we multiply

further by an element of R−Pi, we obtain a multiple in Mi. Thus, (Mi)Pi = MPi . The Mi
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are mutually disjoint, however: a nonzero element of M cannot be killed by both a power
of Pi and a power of Pj for i 6= j, or else M will have an associated prime containing both
Pi and Pj . Thus,

M1 ⊕M2 ⊕ · · · ⊕Mh ⊆ M

and the two become equal when we localize at W . Therefore, to show that the Hilbert-
Kunz multiplicity of M exists, it suffices to show this for every Mi.

We can therefore reduce to the case where Ass (M) contains a unique associated prime
P . Replacing R by R/AnnRM , we may also assume that R has a unique minimal prime P .
Choose e so large that P [pe] = 0. To show that the Hilbert-Kunz multiplicity of M exists,
it suffices to prove this for eM instead. But P kills eM , which is consequently a module
over R/P . We have therefore reduced to the case where R is a complete local domain
with perfect residue class field and dim (M) = dim (R). Moreover, M has no nonzero
submodule of smaller dimension, which implies that M is torsion-free over R. Now choose
Rρ ⊆ M such that ρ is the torsion-free rank of M over R. Then M/Rρ is torsion, and so
we have reduced to considering the case where M = Rρ. But then we have reduced to the
case where M = R, as required. �

It remains to prove the case where M = R is a complete local domain with perfect
residue class field. This is the most interesting part of the argument.


