Math 711: Lecture of December 1, 2006

Recall the if R is a Noetherian ring of prime characteristic p > 0, R is called F-finite if
F : R — R makes R into a module-finite algebra over

F(R)={r?:r € R},

a subring of R that is also denoted RP. When R is F-finite, the composition F°: R — R
also makes R into a finite module over

F¢(R) = {r?" :r € R},

a subring of R that is alternatively denoted RP".

If R is F-finite, it is trivial that every homomorphic image of R is F-finite. The same
holds for each localization W~ R, because inverting the elements in W? has the effect of
inverting the elements of W. If R is F-finite, so is R[z|: if r1, ... ,r, span R over F(R),
then the elements rz;, 1 < i < h, 0 < j < p span R[z] over F(R[z]) = F(R)[z"]. By
induction, any finitely generated algebra over an F-finite ring is F-finite, and it is likewise
true that any algebra essentially of finite type over an F-finite ring is F-finite.

A perfect field is obviously F-finite, and so a field that is finitely generated as a field
over a perfect field is F-finite: it is a localization of a finitely generated algebra over a
perfect field. Thus, if K is perfect, each of the fields K(¢y, ... ,t,) is F-finite, where
t1, to, ..., tn, ... are indeterminates over K, but the field K(t1, ... ,tn, ...) where we
adjoin infinitely many indeterminates, is not. We note:

Proposition. A complete local ring (R, m, K) of prime characteristic p > 0 is F-finite if
and only if its residue class field K is F-finite.

Proof. Since K = R/m, if R is F-finite then K is. Suppose that K is F-finite, and let

1, ... ,cp be a basis for K over F(K). Then R is a homomorphic image of a formal power
series ring S = K[[z1, ... ,2z4]], and it suffices to show that S is F-finite. But the set of
elements

{cjaft a3 :0<j<h, 0<a; <pfor0<i<d}
spans S over F(S) = F(K)[[z}, ..., 28]]. O
This justifies the assertion in the Lecture Notes of November 29 that a complete local
ring with perfect residue class field is F-finite.

We next want to understand the behavior of the rank of *R when R is a complete local
domain with a perfect residue class field.

Note that when R is reduced of prime characteristic p > 0, the three maps F°: R — R,
RP" C R, and R C RY?" are isomorphic. The isomorphism of F¢ : R — R with R?° C R
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follows from the fact that, for a reduced ring R, F° is injective and F¢(R) = RP". To
understand the third map, we need to define the ring R'/?°. When R is a domain, there
we may take this to be the subring of an algebraic closure of the fraction field of R that
consists of all the elements of the for #'/?° for r € R. In the general case, one can show
that there is an extension S of R, unique up to canonical isomorphism, such that the map
R = {s?" : s € S}. In fact, since R = RP" via the map r — rP°, we “think of” RP" as R,
and take S to be R.

This means that when R is reduced, we may think of ¢R as R/?".

Theorem. Let (R, m, K) be a complete local ring of Krull dimension d such that K is
perfect. Then for every e € N, the torsion-free rank of °R over R is p%°.

Proof. By the structure theory of complete local rings, R is module finite over A =
K[[x1, ... ,24]]. Let frac(R) = £ and frac(A) = K. The torsion free rank of R/

over R is the same as [£'/P" : £]. We have that
[LYP" LK) = [£MP L cYPT CMP K
and also
£V K = [£YP L)L K,

so that
() [CYPT MY K = (2P L)L K.

The map v — u'/P° gives an isomorphism of the inclusion X C £ with the inclusion
KL/r® C £1/pe, so that
[cY/P" L VP = (L K.

But then () implies that
[cY" . L] = [KVP L K,

and the latter is the same as the torsion-free rank over A of
B =AY = K[z, ..., 2"

Let y; = le /p e, 1 <7 <d. Then B is free over A on the basis consisting of all monomials
Yoty with 0 < a; < p® for 1 <i < d. This free basis has cardinality (p°)? = p?°, as
required. [

We are now ready to prove the existence of Hilbert-Kunz multiplicities: the result is
stated on the first page of the Lecture Notes of November 29, but we repeat the statement.

Theorem (Monsky). Let M be a finitely generated module of dimension d over (R, m, K),
where R has prime characteristic p > 0, and let A C m be m-primary. Then the Hilbert-
Kunz multiplicity e (A, M) of M with respect to 2 exists, and is a positive real number.
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Proof. By the results of the Lecture of November 29, it suffices to prove this when M =
(R, m, K) is a complete local domain with a perfect residue class field. Let

g(R/Q[[p”})
Tn = pT'

We shall prove that the sequence {v,}, is a Cauchy sequence. This will prove that the
sequence has a limit. The fact that the limit is positive then follows from the lower bound
in part (c) of the Lemma on p. 2 of the Lecture Notes of November 29.

The first key point is that 'R = RY/? has torsion-free rank p? as an R-module. Thus,
1R and R®P" become isomorphic after localization at a nonzero element of the domain R.
By part (b) of the Lemma on p. 4 of the Lecture Notes of November 29, there is a positive
real constant C' such that

() 1 Fuc (@ RO )(n) = Fyc (@, T R)(n)| < C/pl=D"

for all n € N. The leftmost term is p? Frx (A, R)(n). By the Proposition at the top of p.
4 of the Lecture Notes of November 29,

Fax @, 'R)(n) = Fur (A, R)(n+1).
Thus, (%) becomes
(ex) [P Fri (A, R)(n) — Fux (A, R)(n+1)| < Cpla=bm.
We may divide both sides by p("*1¢ to obtain

medn—a_ Cp7?
(k% %) |y — Yng1| < C/pdn nodn=d p—n
Hence, for all N > n,

Yn = AN < v = Ynt1] + Vg1 — Vg2 + - F [yv—1 — V]

Cp—d 1 1 Cp=4(1—1/p)~t
<Py L ( - /)
P D D D

which shows that {+,}, is a Cauchy sequence, as claimed. O

The proof of the Theorem of Monsky can be easily adapted to show more.

Theorem. Let (R, m, K) by a local ring of prime characteristic p > 0, let M be a finitely
generated R-module, and let A C m be an m-primary ideal. Then the Hilbert-Kunz multi-
plicity with respect to A is additive in the sense that if one has a finite filtration of M with

factors N;, egi (A, M) is the sum of the values of ey (U, N;) for those N; of the same
dimension as M.



Equivalently, if P is the set of (necessarily minimal) primes in the support of M such
that dim (R/P) = dim (M), then

(*) eHK(Q[, M) = Z ERP(MP)GHK(Q[; R/P)
pPeP

Proof. Additivity implies the formula (x) because if one takes a prime cyclic filtration of
M, the only terms that contribute to the value of ey i (2, M) are those R/P with P € P,
and the number of factors equal to R/ P is the same as ¢, (Mp). On the other hand, it is
easy to see that if one has (x), then additivity follows because for every P € P, {r,.(Np)
is additive in N for modules N whose support is contained in Supp (M).

It will suffice to prove additivity after applying S ® g _, where (S, n, L) is complete
local with L algebraically closed, R — S is flat local, and n = m.\S. Hence, we may assume
without loss of generality that R is complete local with algebraically closed residue class
field, and it suffices to prove that (*) holds in this case.

We may replace M by M/N where N is a maximal submodule of smaller dimension
without affecting the issue. Thus, we may assume without loss of generality that M is of
pure dimension. We may replace R by R/Anng M without affecting any relevant issue, so
that the minimal primes of the support of M are those of R.

Let W be the multiplicative system that is the complement of the union of the minimal
primes of R. Exactly as in the argument on pages 5 and 6 of the Lecture Notes of November
29, we have M1 & --- @& My C M such that each M; has a unique minimal prime P; € P
in its support and localization at W induces an isomorphism. We then have that

fRPi (MPZ-) = ERPZ. (<M1>P1>

for every i while (M;)p, = 0 if j # i. We then have that

h
eHK(Ql, M) = eHK(Ql, M1 DD Mh) = ZGHK@L Mi),

=1

and the formula (x) will follow if we can show that it holds for all of the M;. We have thus
reduced to the case where M has a unique minimal prime P in its support.

If we repalce M by M, the Hilbert-Kunz multiplicity with respect to 2l is multiplied by
p?e, by the Proposition on p. 4 of the Lecture Notes of November 29. The same is true for
lr,(M): if Mp has a filtration by k copies of Kk = Rp/PRp, (°M)p has a filtration by k
copies of °k, and the dimension of k over k is the same as the torsion-free rank of ¢(R/P)
over R/P, which is p®, as required, by the first Theorem on p. 2 of today’s Lecture Notes.

Thus, we may replace M by ¢M for e > 0, and so reduce to the case where R/Anng M
is a domain. Hence, we can reduce to the case where R is a domain and M is torsion-free
over R. If M has torsion-free rank p over R, we have already seen that epgx (U, M) =
pernr (A, R), which is just what we need. [



Ezxzample. To illustrate how complicated the behavior of Hilbert-Kunz multiplicities can
be in relatively simple examples, we consider

R = Zs[[X1, Xa, X3, Xa]J(X{ + X3 + X5 + X{]].
It is proved in [C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, that

Fuic(R)(n) = o (5") — 13"

In particular, ek (R) = 166—18
Discussion. Hilbert-Kunz multiplicities can be used to characterize tight closure in com-
plete local domains. This characterizes tight closure many instances. If R is essentially of
finite type over an excellent local ring, r € R is in the tight closure of the ideal I if and
only if for every complete local domain D to which R maps, the image of r is in the tight
closure of ID. See Theorem (2.1) of [M. Hochster, Tight closure in equal characteristic,
big Cohen-Macaulay algebras, and solid closure, in Commutative Algebra: Syzygies, Mul-
tiplicities and Birational Algebra, Contemp. Math. 159, Amer. Math. Soc., Providence, R.
I., 1994, 173-196], which gives a summary of many properties of tight closure. Moreover,
in an excellent local ring (R, m, K), r € R is in the tight closure of I if and only if it is in
the tight closure of every m-primary ideal containing I.!

Therefore, much of the theory can be developed from a criterion for when an element
r € R is in the tight closure of an m-primary ideal I in a complete local domain R. In this
situation, one such criterion is the following: for a proof see Theorem (8.17) of [M. Hochster
and C. Huneke, Tight closure, invariant theory, and the generic perfection of determinantal
loci, Journal of the Amer. Math. Soc. 3 (1990) 31-116].

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0, let I
be an m-primary ideal of R, let r € m, and let J =1+ rR. Then r is in the tight closure
of I in R if and only ey (I, R) = ek (J, R).

Time permitting, we still aim to prove two results of Lech: one is that his conjecture
holds when the base ring has dimension 2, and the other is that it holds in equal char-
acteristic when the closed fiber S/mS of the map (R, m, K) — (S, n, L) is a complete
intersection. Cf. [C. Lech, Note on multiplicities of ideals, Arkiv for Mathemtik 4 (1960)
63-86].

However, we shall first focus on some results of D. Hanes in positive characteristic,
including the fact that Lech’s conjecture holds for graded rings of dimension 3 with a
perfect residue class field, which is proved by means of the construction of “approximately”
linear maximal Cohen-Macaulay modules.

INecessity is obvious. For sufficiency, one may pass to the reduced case and then R has a test element
¢ (see Theorem (6.1) of [M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change,
Trans. Amer. Math. Soc. 346 (1994) 1-62]). If cu? ¢ 14!, we can choose N so large that cu? ¢ Il9 4+ m?N.
Then cud ¢ (I +m™N)l4 and so u is not in the tight closure of I +m?N. [



