
Math 711: Lecture of December 1, 2006

Recall the if R is a Noetherian ring of prime characteristic p > 0, R is called F-finite if
F : R → R makes R into a module-finite algebra over

F (R) = {rp : r ∈ R},

a subring of R that is also denoted Rp. When R is F -finite, the composition F e : R → R
also makes R into a finite module over

F e(R) = {rpe

: r ∈ R},

a subring of R that is alternatively denoted Rpe

.

If R is F-finite, it is trivial that every homomorphic image of R is F-finite. The same
holds for each localization W−1R, because inverting the elements in W p has the effect of
inverting the elements of W . If R is F-finite, so is R[x]: if r1, . . . , rh span R over F (R),
then the elements rixj , 1 ≤ i ≤ h, 0 ≤ j < p span R[x] over F (R[x]) = F (R)[xp]. By
induction, any finitely generated algebra over an F -finite ring is F-finite, and it is likewise
true that any algebra essentially of finite type over an F-finite ring is F-finite.

A perfect field is obviously F-finite, and so a field that is finitely generated as a field
over a perfect field is F-finite: it is a localization of a finitely generated algebra over a
perfect field. Thus, if K is perfect, each of the fields K(t1, . . . , tn) is F-finite, where
t1, t2, . . . , tn, . . . are indeterminates over K, but the field K(t1, . . . , tn, . . . ) where we
adjoin infinitely many indeterminates, is not. We note:

Proposition. A complete local ring (R, m, K) of prime characteristic p > 0 is F-finite if
and only if its residue class field K is F-finite.

Proof. Since K = R/m, if R is F-finite then K is. Suppose that K is F-finite, and let
c1, . . . , ch be a basis for K over F (K). Then R is a homomorphic image of a formal power
series ring S = K[[x1, . . . , xd]], and it suffices to show that S is F-finite. But the set of
elements

{cjx
a1
1 · · ·xad

d : 0 ≤ j ≤ h, 0 ≤ ai < p for 0 ≤ i ≤ d}

spans S over F (S) = F (K)[[xp
1, . . . , xp

d]]. �

This justifies the assertion in the Lecture Notes of November 29 that a complete local
ring with perfect residue class field is F-finite.

We next want to understand the behavior of the rank of eR when R is a complete local
domain with a perfect residue class field.

Note that when R is reduced of prime characteristic p > 0, the three maps F e : R → R,
Rpe ⊆ R, and R ⊆ R1/pe

are isomorphic. The isomorphism of F e : R → R with Rpe ⊆ R
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follows from the fact that, for a reduced ring R, F e is injective and F e(R) = Rpe

. To
understand the third map, we need to define the ring R1/pe

. When R is a domain, there
we may take this to be the subring of an algebraic closure of the fraction field of R that
consists of all the elements of the for r1/pe

for r ∈ R. In the general case, one can show
that there is an extension S of R, unique up to canonical isomorphism, such that the map
R = {spe

: s ∈ S}. In fact, since R ∼= Rpe

via the map r 7→ rpe

, we “think of” Rpe

as R,
and take S to be R.

This means that when R is reduced, we may think of eR as R1/pe

.

Theorem. Let (R, m, K) be a complete local ring of Krull dimension d such that K is
perfect. Then for every e ∈ N, the torsion-free rank of eR over R is pde.

Proof. By the structure theory of complete local rings, R is module finite over A =
K[[x1, . . . , xd]]. Let frac (R) = L and frac (A) = K. The torsion free rank of R1/pe

over R is the same as [L1/pe

: L]. We have that

[L1/pe

: K] = [L1/pe

: K1/pe

] [K1/pe

: K]

and also
[L1/pe

: K] = [L1/pe

: L] [L : K],

so that
(∗) [L1/pe

: K1/pe

] [K1/pe

: K] = [L1/pe

: L] [L : K].

The map u → u1/pe

gives an isomorphism of the inclusion K ⊆ L with the inclusion
K1/pe ⊆ L1/pe

, so that
[L1/pe

: K1/pe

] = [L : K].

But then (∗) implies that
[L1/pe

: L] = [K1/pe

: K],

and the latter is the same as the torsion-free rank over A of

B = A1/pe ∼= K[[x1/pe

1 , . . . , x
1/pe

d ]].

Let yi = x
1/pe

i , 1 ≤ i ≤ d. Then B is free over A on the basis consisting of all monomials
ya1
1 · · · yad

d with 0 ≤ ai < pe for 1 ≤ i ≤ d. This free basis has cardinality (pe)d = pde, as
required. �

We are now ready to prove the existence of Hilbert-Kunz multiplicities: the result is
stated on the first page of the Lecture Notes of November 29, but we repeat the statement.

Theorem (Monsky). Let M be a finitely generated module of dimension d over (R, m, K),
where R has prime characteristic p > 0, and let A ⊆ m be m-primary. Then the Hilbert-
Kunz multiplicity eHK(A, M) of M with respect to A exists, and is a positive real number.



3

Proof. By the results of the Lecture of November 29, it suffices to prove this when M =
(R, m, K) is a complete local domain with a perfect residue class field. Let

γn =
`(R/A[pn])

pnd
.

We shall prove that the sequence {γn}n is a Cauchy sequence. This will prove that the
sequence has a limit. The fact that the limit is positive then follows from the lower bound
in part (c) of the Lemma on p. 2 of the Lecture Notes of November 29.

The first key point is that 1R ∼= R1/p has torsion-free rank pd as an R-module. Thus,
1R and R⊕pd

become isomorphic after localization at a nonzero element of the domain R.
By part (b) of the Lemma on p. 4 of the Lecture Notes of November 29, there is a positive
real constant C such that

(∗) |FHK(A, R⊕pd

)(n)−FHK(A, 1R)(n)| ≤ C/p(d−1)n

for all n ∈ N. The leftmost term is pdFHK(A, R)(n). By the Proposition at the top of p.
4 of the Lecture Notes of November 29,

FHK(A, 1R)(n) = FHK(A, R)(n + 1).

Thus, (∗) becomes

(∗∗) |pdFHK(A, R)(n)−FHK(A, R)(n + 1)| ≤ Cp(d−1)n.

We may divide both sides by p(n+1)d to obtain

(∗ ∗ ∗) |γn − γn+1| ≤ C/pdn−n−dn−d =
Cp−d

pn
.

Hence, for all N ≥ n,

|γn − γN | ≤ |γn − γn+1|+ |γn+1 − γn+2|+ · · ·+ |γN−1 − γN |

≤ Cp−d

pn
(1 +

1
p

+
1
p2

+ · · · ) ≤ Cp−d(1− 1/p)−1

pn
,

which shows that {γn}n is a Cauchy sequence, as claimed. �

The proof of the Theorem of Monsky can be easily adapted to show more.

Theorem. Let (R, m, K) by a local ring of prime characteristic p > 0, let M be a finitely
generated R-module, and let A ⊆ m be an m-primary ideal. Then the Hilbert-Kunz multi-
plicity with respect to A is additive in the sense that if one has a finite filtration of M with
factors Ni, eHK(A, M) is the sum of the values of eHK(A, Ni) for those Ni of the same
dimension as M .
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Equivalently, if P is the set of (necessarily minimal) primes in the support of M such
that dim (R/P ) = dim (M), then

(∗) eHK(A, M) =
∑
P∈P

`RP
(MP )eHK(A, R/P ).

Proof. Additivity implies the formula (∗) because if one takes a prime cyclic filtration of
M , the only terms that contribute to the value of eHK(A, M) are those R/P with P ∈ P,
and the number of factors equal to R/P is the same as `RP

(MP ). On the other hand, it is
easy to see that if one has (∗), then additivity follows because for every P ∈ P, `RP

(NP )
is additive in N for modules N whose support is contained in Supp (M).

It will suffice to prove additivity after applying S ⊗R , where (S, n, L) is complete
local with L algebraically closed, R → S is flat local, and n = mS. Hence, we may assume
without loss of generality that R is complete local with algebraically closed residue class
field, and it suffices to prove that (∗) holds in this case.

We may replace M by M/N where N is a maximal submodule of smaller dimension
without affecting the issue. Thus, we may assume without loss of generality that M is of
pure dimension. We may replace R by R/AnnRM without affecting any relevant issue, so
that the minimal primes of the support of M are those of R.

Let W be the multiplicative system that is the complement of the union of the minimal
primes of R. Exactly as in the argument on pages 5 and 6 of the Lecture Notes of November
29, we have M1 ⊕ · · · ⊕Mh ⊆ M such that each Mi has a unique minimal prime Pi ∈ P
in its support and localization at W induces an isomorphism. We then have that

`RPi
(MPi) = `RPi

(
(Mi)Pi

)
for every i while (Mi)Pj = 0 if j 6= i. We then have that

eHK(A, M) = eHK(A, M1 ⊕ · · · ⊕Mh) =
h∑

i=1

eHK(A, Mi),

and the formula (∗) will follow if we can show that it holds for all of the Mi. We have thus
reduced to the case where M has a unique minimal prime P in its support.

If we repalce M by eM , the Hilbert-Kunz multiplicity with respect to A is multiplied by
pde, by the Proposition on p. 4 of the Lecture Notes of November 29. The same is true for
`RP

(M): if MP has a filtration by k copies of κ = RP /PRP , (eM)P has a filtration by k
copies of eκ, and the dimension of eκ over κ is the same as the torsion-free rank of e(R/P )
over R/P , which is pde, as required, by the first Theorem on p. 2 of today’s Lecture Notes.

Thus, we may replace M by eM for e � 0, and so reduce to the case where R/AnnRM
is a domain. Hence, we can reduce to the case where R is a domain and M is torsion-free
over R. If M has torsion-free rank ρ over R, we have already seen that eHK(A, M) =
ρ eHK(A, R), which is just what we need. �
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Example. To illustrate how complicated the behavior of Hilbert-Kunz multiplicities can
be in relatively simple examples, we consider

R = Z5[[X1, X2, X3, X4]](X4
1 + X4

2 + X4
3 + X4

4 ]].

It is proved in [C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, that

FHK(R)(n) =
168
61

(5n)3 − 107
61

3n.

In particular, eHK(R) =
168
61

.

Discussion. Hilbert-Kunz multiplicities can be used to characterize tight closure in com-
plete local domains. This characterizes tight closure many instances. If R is essentially of
finite type over an excellent local ring, r ∈ R is in the tight closure of the ideal I if and
only if for every complete local domain D to which R maps, the image of r is in the tight
closure of ID. See Theorem (2.1) of [M. Hochster, Tight closure in equal characteristic,
big Cohen-Macaulay algebras, and solid closure, in Commutative Algebra: Syzygies, Mul-
tiplicities and Birational Algebra, Contemp. Math. 159, Amer. Math. Soc., Providence, R.
I., 1994, 173–196], which gives a summary of many properties of tight closure. Moreover,
in an excellent local ring (R, m, K), r ∈ R is in the tight closure of I if and only if it is in
the tight closure of every m-primary ideal containing I.1

Therefore, much of the theory can be developed from a criterion for when an element
r ∈ R is in the tight closure of an m-primary ideal I in a complete local domain R. In this
situation, one such criterion is the following: for a proof see Theorem (8.17) of [M. Hochster
and C. Huneke, Tight closure, invariant theory, and the generic perfection of determinantal
loci, Journal of the Amer. Math. Soc. 3 (1990) 31–116].

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0, let I
be an m-primary ideal of R, let r ∈ m, and let J = I + rR. Then r is in the tight closure
of I in R if and only eHK(I, R) = eHK(J, R).

Time permitting, we still aim to prove two results of Lech: one is that his conjecture
holds when the base ring has dimension 2, and the other is that it holds in equal char-
acteristic when the closed fiber S/mS of the map (R, m, K) → (S, n, L) is a complete
intersection. Cf. [C. Lech, Note on multiplicities of ideals, Arkiv for Mathemtik 4 (1960)
63–86].

However, we shall first focus on some results of D. Hanes in positive characteristic,
including the fact that Lech’s conjecture holds for graded rings of dimension 3 with a
perfect residue class field, which is proved by means of the construction of “approximately”
linear maximal Cohen-Macaulay modules.

1Necessity is obvious. For sufficiency, one may pass to the reduced case and then R has a test element

c (see Theorem (6.1) of [M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change,

Trans. Amer. Math. Soc. 346 (1994) 1–62]). If cuq /∈ I[q], we can choose N so large that cuq /∈ I[q] + mN .

Then cuq /∈ (I + mN )[q], and so u is not in the tight closure of I + mN . �


