
Math 711: Lecture of December 4, 2006

The next two results suggest that characteristic p techniques may be helpful in proving
the existence of linear maximal Cohen-Macaulay modules.

Let R be a ring of prime characteristic p > 0. The Frobenius closure IF of an ideal
I ⊆ R is

{r ∈ R : for some e ∈ N, rpe

∈ I [pe]}.

Note that once this holds for one value of e, it also holds for all larger values. Alternatively,
IF is the union of contractions of I to R under the maps F e : R → R as e varies: the
union is increasing. Note that I ⊆ IF. When R is Noetherian, the contractions of I under
the various F e are the same for all e � 0. Thus, if J = IF, we can choose e � 0 such
that J [pe] ⊆ I [pe]. But since I ⊆ J , the opposite inclusion is obvious. Hence, for all e � 0,
(IF)[p

e] = I [pe]. Notice that when r ∈ IF, we have that 1 · rpe ∈ I [pe] for all e � 0, so that
IF ⊆ I∗, the tight closure of I in R.

Theorem (D. Hanes). Let (R, m, K) be an F-finite Cohen-Macaulay local ring of prime
characterisitc p > 0. Suppose that there exists an ideal I ⊆ m generated by a system of
parameters such that IF = m. Then for all sufficiently large e, eR is a linear maximal
Cohen-Macaulay module over R.

Proof. Choose any e such that m[pe] = I [pe]. Since R is F -finite, eR is a finitely generated
module over R, and, obviously a maximal Cohen-Macaulay module: if x1, . . . , xd is a
system of parameters in R, they form an R-sequence on eR because xpe

1 , . . . , xpe

d is a
regular sequence on R. Note that under the identification of eR with R, I eR becomes I [pe]

and m eR becomes m[pe]. Since I [pe] = m[pe], we have that I eR = m eR, as required. �

Theorem. Let (R, m, K) be any F-finite Cohen-Macaulay ring of prime characteristic
p > 0. Then R has a free extension S such that R → S is local, the induced map of residue
class fields is an isomorphism, and S has a linear maximal Cohen-Macaulay module.

Proof. Let x1, . . . , xd be any system of parameters for R. Then for any sufficiently large
integer e ∈ N, we have that m[pe] ⊆ I. Let Z1, . . . , Zd be indeterminates over R, let
T = R[Z1, . . . , Zd], and let S = T/J , where J is generated by the elements Zpe

i − xi,
1 ≤ i ≤ d. Evidently, S is module-finite over R, and so its maximal ideals all lie over m.
But

S/mS ∼= T/(Zpe

i : 1 ≤ i ≤ d)T,

a zero-dimensional local ring with residue class field isomorphic with K. Thus, S is local
with residue class field K. Evidently, S is free over R on the basis consisting of the images
of all monomials Za1

1 · · ·Zad

d with 0 ≤ ai ≤ pe for 1 ≤ i ≤ d. Thus, S satisfies all of the
requirements of the Theorem, provided that we can show that it has a linear maximal
Cohen-Macaulay module.
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Let z1, . . . , zd be the images of Z1, . . . , Zd, respectively, in S. Clearly, z1, . . . , zd is a
system of parameters for S, since killing them produces R/(x1, . . . , xd)R. Since S is free
over the Cohen-Macaulay ring R, it is Cohen-Macaulay. It will therefore suffice to show
that it satisfies the hypothesis of the preceding Theorem. In fact, the maximal ideal n of
S is the Frobenious closure of (z1, . . . , zd)S. The ideal n is generated by m and the zi.
But

m[pe] ⊆ (x1, . . . , xd) ⊆ (z1, . . . , zd)[p
e]

since xi = zpe

i in S, while it is obvious that every zpe

i ∈ (z1, . . . , zd)[p
e]. �

We next want to discuss some results concerning the existence of linear maximal Cohen-
Macaulay modules over Veronese subrings of polynomial rings.

This problem may seem rather special, but the ideas used to solve the problem in
dimension three, for example, can be used to prove the existence of “approximately linear”
maximal Cohen-Macaulay modules for standard graded domains over a perfect field of
positive characteristic in dimension 3, and this circle of ideas has provided a substantial
body of results on Lech’s conjecture for standard graded algebras.

Let K be field and let S be a standard graded K-algebra. By the t th Veronese subring
S(t) of S we mean

∞⊕
i=0

Sit,

which may also be described as the K-algebra K[St] generated by St. Clearly, S is module-
finite over S(t), since for every homogeneous element F of S, F t ∈ S(t).

Both Segre products and Veronese subrings arise naturally in projective geometry. Let
Proj(R) denote the projective scheme associated with a standard graded K-algebra R.
(This scheme is covered by open affines of the form Spec

(
[RF ]0

)
, where F is a form of

positive degree in R. To get an open cover it suffices to use finitely many F : any set
of homgeneous generators Fj of an ideal primary to the homogeneous maximal ideal wil
provide such a cover, and we may take the Fj to be one-forms.) An important reason for
studying Segre products is that

Proj(R©s K S) ∼= Proj(R)× Proj(S).

The Veronese subrings of S have the property that

Proj(S(t)) = Proj(S)

for all t. A specific homogeneous coordinate ring S for a projective scheme X over K (which
means that X = Proj(S)) gives an embedding of X in Pn

K by taking a degree-preserving
mapping of a polynomial ring K[X0, . . . , Xn] onto R so as to give an isomorphism of
vector spaces in degree 1. The Veronese subrings of R turn out to give a family of different
embeddings of X into projective spaces. Although this is an important motivation for
studying Veronese subrings, we shall not need to take this point of view in the sequel.
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If M is any finitely generated Z-graded S-module (there will be only finitely many
nonzero negatively graded components), for every i ∈ Zt we define

Mi,t =
⊕

j≡i mod tZ
Mj .

We then have that every Mi,t is an S(t)-module, and that

M =
⊕
i∈Zt

Mi,t.

We may apply this notational convention to M = S itself, to obtain a splitting of S into t
modules over S(t). Then S0,t = S(t).

We now want to consider the case where S = K[X1, . . . , Xd] is a polynomial ring.
In this case S(t) is generated over K by all monomials of degree t in x1, . . . , xd. The
elements xt

1, . . . , xt
d form a system of parameters in S and, hence, in R = S(t). The other

generators of the the maximal ideal of R are integral over the ideal (xt
1, . . . , xt

d)S
(t), and

so this parameter ideal is a minimal reduction of the maximal ideal of S(t). Note that any
nonzero monomial of degree t− i, 0 ≤ i ≤ t− 1, multiplies Si,t into S0,t = S(t). Therefore,
every Si,t has rank one as an S(t)-module.

It follows that the rank of S over S(t) is t, since S is the direct sum of t modules over
S(t), each of which has torsion-free rank one.

Since xt
1, . . . , xt

d generates a minimal reduction of the maximal ideal of S(t) which
is a parameter ideal, we have that e(S(t)) is the torsion-free rank of S(t) over B =
K[xt

1, . . . , xt
d]. Clearly, the torsion-free rank of S over B is td, and we have just seen

that the torsion free-rank of S over R = S(t) is t. It follows that

e(R) = td/t = td−1.

(In the case of composite extensions of domains, torsion-free rank multiplies: one may
pass to the fraction fields, and then the torsion-free rank is the same as the degree of the
corresponding field extension.)

We next want to classify all the graded Cohen-Macaulay modules over S(t) when S is
the polynomial ring in two variables. We shall use this classification to show that there is
a unique graded linear maximal Cohen-Macaulay module that is indecomposable, i.e., not
a direct sum.

In the case of the polynomial ring in three variables, we shall, at least, exhibit a graded
module that is a linear maximal Cohen-Macaulay module.


