Math 711: Lecture of December 6, 2006

We can now analyze all graded maximal Cohen-Macaulay modules for a Veronese subring of the polynomial ring in two variables, and show, as a corollary, that there is a unique indecomposable linear maximal Cohen-Macaulay module up to shifts in grading. Recall that if M is a \mathbb{Z}-graded module and $h \in \mathbb{Z}, M(h)$ denotes the same module, graded so that $[M(h)]_{n}=[M]_{h+n}$ for all n. We also need:

Discussion: reflexive modules over normal domains of dimension 2. Let M and W be any R-modules. Then there is a natural canonical map

$$
M \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(M, W), W\right)
$$

whose value on $u \in M$ is the map θ_{u} defined by

$$
\theta_{u}(f)=f(u)
$$

Recall that an R-module M is reflexive if the natural map

$$
M \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(M, R), R\right)
$$

is an isomorphism.
Notice that if $x, y \in R$ form a regular sequence on W, they form a regular sequence on $V=\operatorname{Hom}_{R}(M, W)$ whenever $V \neq 0$. First note that if $f \in V$, then $x f=0$ if and only if x kills all values of f, and this implies that $f=0$, since x is not a zerodivisor W. Second, if $x f=y g$ then for all u in $M, x f(u)=y g(u)$, and this implies that $g(u)$ is, in a unique way, a multiple of x, i.e., there exists a unique element of W, which we may denote $h(u)$, such that $g(u)=x h(u)$. It is easy to check that h is an R-linear map from $M \rightarrow W$, and so $g=x h$. We have shown that x, y is a regular sequence on $\operatorname{Hom}_{R}(M, W)$.

This helps explain the following fact, which is a particular case of the Theorem on p. 2 of the Lecture Note from Math 615, March 29, 2004.

Theorem. A finitely generated module over a Noetherian normal domain of dimension two is maximal Cohen-Macaulay if and only if it is reflexive.

We also note:
Lemma. Let M be a finitely generated \mathbb{Z}-graded module over the polynomial ring $S=$ $K\left[X_{1}, \ldots, X_{d}\right]$. Then M has depth d on the maximal ideal of S if and only if M is S-free.

Proof. This is a graded version of a special case of the Auslander-Buchsbaum theorem, but we give an elementary proof. The "if" part is obvious. Suppose that the depth is
d. Let u_{1}, \ldots, u_{h} be forms of M whose images in $M /\left(x_{1}, \ldots, x_{d}\right) M$ form a K-basis for $M /\left(x_{1}, \ldots, x_{d}\right) M$. It will suffice to show that u_{1}, \ldots, u_{h} is a free basis for M over S. The case where $d=0$ is obvious, and we use induction on d. The depth condition implies that x_{1}, \ldots, x_{d} is a regular sequence on M, and the induction hypothesis implies that $M / x_{1} M$ is free on the images of the u_{j} over $K\left[x_{2}, \ldots, x_{d}\right]$. The homogeneous Nakayama Lemma implies that u_{1}, \ldots, u_{h} span M. We must show that there is no nonzero relation on the u_{j}. If there is a relation

$$
\sum_{j=1}^{h} F_{j} u_{j}=0
$$

with some $F_{j} \neq 0$, by taking homogeneous components we may assume that $\operatorname{deg} F_{j}+\operatorname{deg} u_{j}$ is constant, say δ, and we may choose δ as small as possible for a nonzero homogeneous relation. Consider the relation modulo $x_{1} S$. By the induction hypothesis, it must vanish, so that every F_{j} can be written $x_{1} G_{j}$, and then we have

$$
x_{1}\left(\sum_{j=1}^{h} G_{j} u_{j}=0\right)
$$

Since x_{1} is not a zerodivisor on M, we have that

$$
\sum_{j=1}^{h} G_{j} u_{j}=0
$$

which gives a relation of lower degree, a contradiction.

Theorem. Let M be a graded maximal Cohen-Macaulay module over $R=S^{(t)}$, where $S=K[X, Y]$ is a polynomial ring in two variables over a field K. Then M is a finite direct sum of modules $S(h)_{j, t}$, each of which is a maximal Cohen-Macaulay module.

Proof. Let M be any maximal \mathbb{Z}-graded Cohen-Macaulay module over R. Since S is Cohen-Macaulay, it is a maximal Cohen-Macaulay R-module, and, hence, each of the modules $S_{j, t}$ is a maximal Cohen-Macaulay R-module.

Because $R \rightarrow S$ splits, we obtain an R-split embedding $M \hookrightarrow S \otimes_{R} M$ as R-modules. The \mathbb{Z}_{t}-indexed splitting of S as an R-module induces such a splitting on $S \otimes_{R} M$, where the degree 0 component is M. Then we have

$$
\operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(M, R) R\right) \hookrightarrow \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}\left(S \otimes_{R} M, R\right), R\right)
$$

where the module on the right continues to have both a graded S-modoule structure and a \mathbb{Z}_{t}-indexed splitting into R-modules. It has depth two as an R-module, since R does, and so it has depth two as a graded S-module. Thus, by the Lemma, the module is a finite direct sum of modules $S\left(h_{\nu}\right)$ with h_{ν} varying.

The module on the left is a split direct summand and is, in fact, the index 0 summand of the module on the right in the splitting indexed by \mathbb{Z}_{t}. However, since M is maximal Cohen-Macaulay and R is normal of dimension two, we have that

$$
M \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(M, R) R\right)
$$

is an isomorphism. The stated conclusion follows at once.
Corollary. Let $R=S^{(t)}$, where $S=K[X, Y]$ is a polynomial ring in two variables over a field K. Then a graded R-module M is a linear maximal Cohen-Macaulay module over R if and only if M is a direct sum of copies of modules $S(h)_{t-1, t}$. Thus, M is an indecomposable linear maximal Cohen-Macaulay module if and only if it is, up to a shift in grading, $S_{t-1, t}$.

Proof. A direct sum of modules is maximal Cohen-Macaulay if and only if each summand is, and both $\nu\left(__{-}\right)$and $e\left(__{-}\right)$are additive over direct sums. It follows that a direct sum of nonzero modules is a linear maximal Cohen-Macaulay module if and only if every summand is a linear maximal Cohen-Macaulay module. Since all of the $S_{j, t}$ are maximal CohenMacaulay modules of torsion-free rank one, each of them has multiplicity t. The result now follows because $S_{j, t}$ is minimally generated by the monomials of degree j, namely

$$
X^{j}, X^{j-1} Y,, \ldots, X Y^{j-1}, Y^{j}
$$

in X and Y, and so $\nu\left(S_{j, t}\right)=j+1,0 \leq j \leq t-1$. Obviously, $S_{j, t}$ is a linear maximal Cohen-Macaulay module if and only if $j=t-1$.

We next want to show that when $S=K[X, Y, Z]$, the polynomial ring in three variables over the field K, one can construct linear maximal Cohen-Macaulay modules over $R=S^{(t)}$ for all $t \geq 1$. We first note:

Lemma. Let A be an $r \times s$ matrix over an arbitrary $\operatorname{ring} R$ and let Q be the cokernel of the map $A: R^{s} \rightarrow R^{r} ; Q$ is also the quotient of R^{r} by the column space of A. Then $I_{r}(A)$ kills Q, i.e., $I_{r}(A) R^{r} \subseteq \operatorname{Im}(A)$.

Proof. Let D denote the determinant of an $r \times r$ minor of A. By permuting the columns, we might as well assume that D corresponds to the first r columns of A. It suffices to show that the product of D with every standard basis vector for R^{r}, written as a column, is in the column space of A, and so it certainly suffices to prove that it is in the R-span of the first r columns. Therefore, we might as well replace A by the submatrix formed from its first r columns. We change notation, so that A is now an $r \times r$ matrix. Let B denote the classical adjoint of A, which is the $r \times r$ matrix that is the transpose of the matrix of cofactors of A. Then $A B=D \boldsymbol{I}_{r}$. Since each column of $A B$ is the product of A with a column of B, and since the columns of $D \boldsymbol{I}_{r}$ are precisely the products of D with the standard basis for R^{r}, the result follows.

We are now ready to construct a linear maximal Cohen-Macaulay module over $R=S^{(t)}$. To this end, let A denote the $t-1 \times t+1$ matrix

$$
\left(\begin{array}{ccccccccc}
X & Y & Z & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & X & Y & Z & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & X & Y & Z & \cdots & 0 & 0 & 0 \\
& & & & \cdots & & & & \\
& & & & \cdots & & & & \\
0 & 0 & 0 & 0 & 0 & \cdots & X & Y & Z
\end{array}\right)
$$

where the i th row has entries X, Y, and Z in the i th, $i+1$ st, and $i+2$ nd spots, respectively, and 0 everywhere else, $1 \leq i \leq t-1$. We have an exact sequence:

$$
(*) \quad 0 \rightarrow N \rightarrow S(-1)^{\oplus t+1} \xrightarrow{A} S^{\oplus t-1}
$$

Theorem. Let notation be as above, so that $S=K[X, Y, Z]$ is the polynomial ring in three variables over a field $K, R=S^{(t)}$ for a positive integer t, and $N \subseteq S(-1)^{\oplus t+1}$ is the kernel of the matrix A defined above. Then the module $M=N_{t-1, t} \subseteq N$ is a linear maximal Cohen-Macaulay module over R of torsion-free rank 2, with minimal generators all of the same degree.

Proof. Using the splitting indexed by \mathbb{Z}_{t}, the sequence $(*)$ displayed above yields

$$
(* *) \quad 0 \rightarrow M \rightarrow S_{t-2, t}^{\oplus t+1} \xrightarrow{A} S_{t-1, t}^{\oplus t-1}
$$

where the map on the right is the restriction of the linear map with matrix A. By the Lemma above, the image of $A: S(-1)^{\oplus t+1} \rightarrow S^{\oplus t-1}$ contains $I_{r-1}(A) S^{\oplus t-1}$. By Problem 2. of Problem Set $\# 5$,

$$
I_{r-1}(A)=(X, Y, Z)^{t-1} S
$$

But $\left[(X, Y, Z)^{t-1} S\right]_{t-1, t}=S_{t-1, t}$, and it follows that the restricted map induced by A in $(* *)$ is surjective, i.e., that

$$
0 \rightarrow M \rightarrow S_{t-2, t}^{\oplus t+1} \xrightarrow{A} S_{t-1, t}^{\oplus t-1} \rightarrow 0
$$

is exact. Since the modules in the middle and on the right are maximal Cohen-Macaulay modules, so is M. Since the rank of every $S_{j, t}$ is one, the module in the middle has rank $t+1$, and the module on the right has rank $t-1$. It follows that M has rank 2 , and so $e(M)=2 e(R)=2 t^{2}$.

To complete the proof, it will suffice to show that $\nu(M)=2 t^{2}$ as well. If we think of $M \subseteq S_{t-2, t}^{\oplus t+1}$, the least degree (using degree in S for every component) in which there might be nonzero elements of M is $t-2$. Now,

$$
\operatorname{dim}\left([S]_{n}=\binom{n+2}{2}\right.
$$

and so the dimension of the piece of M that lies in $S_{t-2, t}^{\oplus t+1}$ is

$$
(t+1)\binom{t}{2}-(t-1)\binom{t+1}{2}=\frac{(t+1) t(t-1)}{2}-\frac{(t-1)(t+1) t}{2}=0
$$

The next possible degree in which M might be nonzero is $t+t-2=2 t-2$, and here we get

$$
(t+1)\binom{2 t}{2}-(t-1)\binom{2 t+1}{2}=\frac{(t+1)(2 t)(2 t-1)}{2}-\frac{(t-1)(2 t+1) 2 t}{2}=2 t^{2}
$$

Clearly, one needs $2 t^{2}$ minimal generators in this degree, and these elements must generate, since $\nu(M) \leq e(M)$ always.

We give an alternative argument. First note that if y_{1}, \ldots, y_{h} is a regular sequence on all of the modules in the short exact sequence

$$
(\#) \quad 0 \rightarrow M \rightarrow M^{\prime} \rightarrow M^{\prime \prime} \rightarrow 0
$$

then it is easy to see by induction on h that

$$
(\# \#) \quad 0 \rightarrow M /\left(y_{1}, \ldots, y_{h}\right) M \rightarrow M^{\prime} /\left(y_{1}, \ldots, y_{h}\right) M^{\prime} \rightarrow M^{\prime \prime} /\left(y_{1}, \ldots, y_{h}\right) M^{\prime \prime} \rightarrow 0
$$

is exact, and since the short exact sequence (\#) maps onto the short exact sequence (\#\#) the nine lemma implies that the sequence of kernels

$$
0 \rightarrow\left(y_{1}, \ldots, y_{h}\right) M \rightarrow\left(y_{1}, \ldots, y_{h}\right) M^{\prime} \rightarrow\left(y_{1}, \ldots, y_{h}\right) M^{\prime \prime} \rightarrow 0
$$

is exact as well.
We know, as in the first argument, know that there are no elements of $M \subseteq S_{t-2, t}^{\oplus t+1}$ in degree $t-2$. Every element of M, thought of a submodule of $S^{\oplus t+1}$, has degree $2 t-2$ or more. If m is the maximal ideal of R, which is generated by the monomials of degree t in X, Y, Z, we have that all elements of $m M$ have degree $3 t-2$ or greater, and every monomial of degree $3 t-2$ or more in X, Y, Z must involve X^{t} or Y^{t} or Z^{t}. Hence, $m M \subseteq\left(X^{t}, Y^{t}, Z^{t}\right) S^{\oplus t+1}$, and it follows that $m M \subseteq\left(X^{t}, Y^{t}, Z^{t}\right) S_{t-2, t}^{\oplus t+1}$. Since all three of the modules $M, S_{t-2, t}^{\oplus t+1}$, and $S_{t-1, t}^{\oplus t-1}$ are maximal Cohen-Macaulay modules over the ring R, we have that $X^{t}, Y^{t}, Z^{t} \in R$ is a regular sequence on all of them, and so we see that

$$
0 \rightarrow\left(X^{t}, Y^{t}, Z^{t}\right) M \rightarrow\left(X^{t}, Y^{t}, Z^{t}\right) S_{t-2, t}^{\oplus t+1} \rightarrow\left(X^{t}, Y^{t}, Z^{t}\right) S_{t-1, t}^{\oplus t-1} \rightarrow 0
$$

is exact. It follows that $m M \subseteq\left(X^{t}, Y^{t}, Z^{t}\right) M$, and so they are equal, which is what we need for M to be linear.

