Math 711: Lecture of December 6, 2006

We can now analyze all graded maximal Cohen-Macaulay modules for a Veronese sub-
ring of the polynomial ring in two variables, and show, as a corollary, that there is a unique
indecomposable linear maximal Cohen-Macaulay module up to shifts in grading. Recall
that if M is a Z-graded module and h € Z, M (h) denotes the same module, graded so that
[M(h)]n = [M]p4n for all n. We also need:

Discussion: reflexive modules over normal domains of dimension 2. Let M and W be any
R-modules. Then there is a natural canonical map

M — HomR(HomR(M, W), W)

whose value on u € M is the map 6, defined by

Recall that an R-module M is reflexive if the natural map
M — HomR(HomR(M, R), R)

is an isomorphism.

Notice that if z, y € R form a regular sequence on W, they form a regular sequence on
V = Hompg(M, W) whenever V # 0. First note that if f € V, then zf = 0 if and only if
x kills all values of f, and this implies that f = 0, since z is not a zerodivisor W. Second,
if xf = yg then for all w in M, zf(u) = yg(u), and this implies that g(u) is, in a unique
way, a multiple of x, i.e., there exists a unique element of W, which we may denote h(u),
such that g(u) = xzh(u). It is easy to check that h is an R-linear map from M — W, and
so g = zh. We have shown that x, y is a regular sequence on Hompg(M, W).

This helps explain the following fact, which is a particular case of the Theorem on p. 2
of the Lecture Note from Math 615, March 29, 2004.

Theorem. A finitely generated module over a Noetherian normal domain of dimension
two 1s maximal Cohen-Macaulay if and only if it is reflexive.

We also note:

Lemma. Let M be a finitely generated Z-graded module over the polynomial ring S =
K([X1,...,X4|. Then M has depth d on the maximal ideal of S if and only if M is S-free.

Proof. This is a graded version of a special case of the Auslander-Buchsbaum theorem,
but we give an elementary proof. The “if’ part is obvious. Suppose that the depth is
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d. Let uy, ... ,up be forms of M whose images in M/(z1, ... ,xq)M form a K-basis for
M/(x1, ... ,xq)M. It will suffice to show that uq, ... ,uy is a free basis for M over S. The
case where d = 0 is obvious, and we use induction on d. The depth condition implies that
x1, ... ,xq is a regular sequence on M, and the induction hypothesis implies that M /xzi M
is free on the images of the u; over K|xg, ..., z4]. The homogeneous Nakayama Lemma
implies that uy, ... ,up span M. We must show that there is no nonzero relation on the
u;. If there is a relation

h
> Fju; =0
j=1

with some F}; # 0, by taking homogeneous components we may assume that deg F);4-deg u;
is constant, say 6, and we may choose ¢ as small as possible for a nonzero homogeneous
relation. Consider the relation modulo x1S. By the induction hypothesis, it must vanish,
so that every F; can be written x1G, and then we have

h

331(2 G]’U,j = 0)

j=1

Since x1 is not a zerodivisor on M, we have that

h
Z Gj’le = 0,
j=1

which gives a relation of lower degree, a contradiction. [J

Theorem. Let M be a graded mazimal Cohen-Macaulay module over R = S, where
S = KI[X, Y] is a polynomial ring in two variables over a field K. Then M is a finite
direct sum of modules S(h); ¢, each of which is a mazimal Cohen-Macaulay module.

Proof. Let M be any maximal Z-graded Cohen-Macaulay module over R. Since S is
Cohen-Macaulay, it is a maximal Cohen-Macaulay R-module, and, hence, each of the
modules Sj; is a maximal Cohen-Macaulay R-module.

Because R — S splits, we obtain an R-split embedding M — S ®r M as R-modules.
The Z;-indexed splitting of S as an R-module induces such a splitting on S ® p M, where
the degree 0 component is M. Then we have

HomR(HomR(M, R) R) — HomR(HomR(S ®@r M, R), R)

where the module on the right continues to have both a graded S-modoule structure and a
Zs-indexed splitting into R-modules. It has depth two as an R-module, since R does, and
so it has depth two as a graded S-module. Thus, by the Lemma, the module is a finite
direct sum of modules S(h,) with h, varying.



The module on the left is a split direct summand and is, in fact, the index 0 summand
of the module on the right in the splitting indexed by Z;. However, since M is maximal
Cohen-Macaulay and R is normal of dimension two, we have that

M — Hompg (Homg(M, R) R)
is an isomorphism. The stated conclusion follows at once. [J

Corollary. Let R = S®, where S = K[X, Y] is a polynomial ring in two variables over a
field K. Then a graded R-module M is a linear mazximal Cohen-Macaulay module over R if
and only if M is a direct sum of copies of modules S(h)¢—1+. Thus, M is an indecomposable
linear mazimal Cohen-Macaulay module if and only if it is, up to a shift in grading, S¢—1+.

Proof. A direct sum of modules is maximal Cohen-Macaulay if and only if each summand
is, and both v(_) and e(__) are additive over direct sums. It follows that a direct sum of
nonzero modules is a linear maximal Cohen-Macaulay module if and only if every summand
is a linear maximal Cohen-Macaulay module. Since all of the S;; are maximal Cohen-
Macaulay modules of torsion-free rank one, each of them has multiplicity ¢. The result
now follows because S;; is minimally generated by the monomials of degree j, namely

X7, X7y, ., XYITh Yy,

in X and Y, and so v(S;:) =j+1,0 < j <t—1. Obviously, S;; is a linear maximal
Cohen-Macaulay module if and only if j =t —1. 0O

We next want to show that when S = K[X, Y, Z], the polynomial ring in three variables
over the field K, one can construct linear maximal Cohen-Macaulay modules over R = S®)
for all t > 1. We first note:

Lemma. Let A be an v X s matriz over an arbitrary ring R and let QQ be the cokernel of
the map A : R® — R"; Q is also the quotient of R" by the column space of A. Then I.(A)
kills Q, i.e., I,(A)R" C Im(A).

Proof. Let D denote the determinant of an r X r minor of A. By permuting the columns,
we might as well assume that D corresponds to the first r columns of A. It suffices to
show that the product of D with every standard basis vector for R", written as a column,
is in the column space of A, and so it certainly suffices to prove that it is in the R-span of
the first » columns. Therefore, we might as well replace A by the submatrix formed from
its first 7 columns. We change notation, so that A is now an r x r matrix. Let B denote
the classical adjoint of A, which is the » x r matrix that is the transpose of the matrix
of cofactors of A. Then AB = DI,. Since each column of AB is the product of A with
a column of B, and since the columns of DI, are precisely the products of D with the
standard basis for R", the result follows. [J



We are now ready to construct a linear maximal Cohen-Macaulay module over R = S®*),
To this end, let A denote the t — 1 x t + 1 matrix

XY o 0 --- 0 0 0
o X vy 2 0 --- 0 0 O
0o 0o XYy 2 --- 0 0 O
o o o o o --- XY Z

where the ¢ th row has entries X, Y, and Z in the i th, 41 st, and 742 nd spots, respectively,
and 0 everywhere else, 1 <7 <t — 1. We have an exact sequence:

() 0— N — §(—1)%1 2, goi-1,

Theorem. Let notation be as above, so that S = K[X,Y, Z] is the polynomial ring in
three variables over o field K, R = S for a positive integer t, and N C S(—1)®**+1 s
the kernel of the matriz A defined above. Then the module M = N;_1; C N is a linear
maximal Cohen-Macaulay module over R of torsion-free rank 2, with minimal generators
all of the same degree.

Proof. Using the splitting indexed by Z;, the sequence (x) displayed above yields

A _
(o) 0 — M — SPF — S

where the map on the right is the restriction of the linear map with matrix A. By the
Lemma above, the image of A : §(—1)%+1 — §9=1 contains I,_1(A4)S® 1. By Problem
2. of Problem Set #B5,

I,_1(A) = (X,Y, Z)7!S.

But [(X, Y, Z)""1S);—1+ = Si_1.4, and it follows that the restricted map induced by A in
(xx) is surjective, i.e., that

A —
0—>M—>S§'f;f§—>5'§¥17t1—>0

is exact. Since the modules in the middle and on the right are maximal Cohen-Macaulay
modules, so is M. Since the rank of every S;; is one, the module in the middle has rank
t + 1, and the module on the right has rank ¢t — 1. It follows that M has rank 2, and so
e(M) =2e(R) = 2t%.

To complete the proof, it will suffice to show that v(M) = 2t? as well. If we think of
M C Sfﬂ: 1, the least degree (using degree in S for every component) in which there might
be nonzero elements of M is ¢t — 2. Now,

am 151, = ("),



and so the dimension of the piece of M that lies in St@_t;’ 1 s

(t+1)<;) —(t—l)(t+1> _ Dt —-1) (t—l)(t+1)t:O

2 2 2

The next possible degree in which M might be nonzero is t + ¢t — 2 = 2t — 2, and here we
get

t+ 1)(22t> - 1)<2t;— 1) _ e+ 1)@t —-1) (E-1)@2t+1)2t 02

2 2

Clearly, one needs 2¢? minimal generators in this degree, and these elements must gen-
erate, since v(M) < e(M) always.

We give an alternative argument. First note that if yq, ... ,yp is a regular sequence on
all of the modules in the short exact sequence

(#) 0—-M —->M — M"—0
then it is easy to see by induction on h that

(##) 0—=M/(y1, ... ;yn)M — M'/(y1, ... ,yn)M" — M"/(y1, ... ,yn)M" — 0

is exact, and since the short exact sequence (#) maps onto the short exact sequence (##)
the nine lemma implies that the sequence of kernels

0_) (y17 AR 7yh)M—> (y17 A ’yh)M/—> (y17 R 7yh)M//—>O

is exact as well.

We know, as in the first argument, know that there are no elements of M C Sg; tl in
degree t — 2. Every element of M, thought of a submodule of S®**1, has degree 2t — 2
or more. If m is the maximal ideal of R, which is generated by the monomials of degree
tin X, Y, Z, we have that all elements of mM have degree 3t — 2 or greater, and every
monomial of degree 3t — 2 or more in X, Y, Z must involve X* or Y or Z!*. Hence,
mM C (X', Y, Z")S®*1 and it follows that mM C (X', Y*, Z*)SP'}}. Since all three
of the modules M, St@_t; ¢, and Sfa_tl_’ + are maximal Cohen-Macaulay modules over the ring
R, we have that X!, Y, Z! € R is a regular sequence on all of them, and so we see that

0— (X' Yt ZHM — (Xt Y, Zt)sge_t;g — (X', VY, Z’f)St@_t;t1 -0

is exact. It follows that mM C (Xt Y, Z!)M, and so they are equal, which is what we
need for M to be linear. [



