Math 711, Fall 2006 Due: Monday, October 2 Problem Set #1

1. R is a ring and W is a multiplicative system in R.

(a) Suppose that $R \subseteq S$ is a ring extension. Let R' be the integral closure of R in S. Show that the integral closure of $W^{-1}R$ in $W^{-1}S$ is $W^{-1}R'$.

(b) Let I be an ideal of R. Show that $\overline{IW^{-1}R} = \overline{I}W^{-1}R$.

2. Let R be a reduced ring with finitely many minimal primes P_1, \ldots, P_n . For $1 \le i \le n$, let D_i be R/P_i , let L_i be the fraction field of D_i , and let D'_i be the integral closure of D_i in L_i . Show that the total quotient ring of R is isomorphic with $T = \prod_{i=1}^n L_i$ and that the integral closure of R in T is isomorphic with $\prod_{i=1}^n D'_i$. (Note that this always applies when R is a reduced Noetherian ring.)

3. Let $R = K[x_1, \ldots, x_n]$ be the polynomial ring in n variables over a field K. If $\underline{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$, let $\underline{x}^{\underline{a}}$ denote $x_1^{a_1} \cdots x_n^{a_n}$. The ideals I of R generated by monomials correspond bijectively to the subsets $H \subseteq \mathbb{N}^n$ with the property that if $\underline{a} \in H$ and $\underline{b} \geq \underline{a}$ in the sense that $b_i \geq a_i$ for all i, then $\underline{b} \in H$. Sets $H \subseteq \mathbb{N}^n$ with this property are called semigroup ideals of \mathbb{N}^n . Under the bijection, I is the K-vector space span of $\{\underline{x}^{\underline{a}} : \underline{a} \in H\}$, and H is the set $\{\underline{a} \in \mathbb{N} : \underline{x}^{\underline{a}} \in I\}$. (You may assume this bijection.) Show that the integral closure of the ideal corresponding to H is a monomial ideal, and corresponds to H', where H' is the intersection of \mathbb{N}^n with the convex hull of H over the rational numbers \mathbb{Q} .

4. Let K be a finite field with q elements, let T = K[[X, Y]], a formal power series ring in two variables over K, and let $f \in T$ have leading (i.e., *lowest* degree) form equal to $XY(X^{q-1} - Y^{q-1})$ (which is divisible by all forms of degree one in K[X, Y]). Let R = K[[X, Y]]/(f) = K[[x, y]]. Show that the analytic spread of the maximal ideal m of R is 1, but that m has no reduction with just one generator.

5. Let (R, m, K) be a local domain. Show that there is a DVR (V, m_V) such that $R \subseteq V$ and $m \subseteq m_V$. (Show that R embeds in $\widehat{R}/P = S$, where P is minimal, and this ring is module-finite over a complete regular local ring A. Solve the problem for A and complete the DVR to get, say, W. Normalize W[S].)

6. Let (R, m, K) be a local domain and let $I \subseteq m$ be an ideal.

Suppose that $x \in R$ is not in the integral closure of I.

(a) Consider the ring R[I/x] generated by all fractions with numerator in I and denominator x. Show that there is a maximal ideal Q of this ring containing m and all the elements of I/x, and let (T, n) be the localization of this ring at Q. Then m and all elements of $I/x = \{i/x : i \in I\}$ are in n.

(b) By #5. there is a DVR V with $T \subseteq V$ whose valuation v is nonnegative on T and positive on n. Show that v is positive on m but takes a smaller value on x than on any element of I.

Conclude from the statements above that the integral closure of I is an intersection of m-primary integrally closed ideals.