
Math 711, Fall 2006 Problem Set #2 Solutions

1. If u ∈ S−M has degree 0 component u0 that is a unit of R/I = S0, and g ∈ S−{0} has
lowest degree nonzero component gj , then ug 6= 0: in degree j it is ugj 6= 0. Thus, S −M
consists of nonzerodivisors, so that S ⊆ SM, and if SM is an integral domain, so is S. In
this case, let r, r′ ∈ R−{0}. Choose j such that r ∈ Ij−Ij+1 (

⋂
N mN = 0 ⇒

⋂
N IN = 0)

and choose k such that r′ ∈ Ik − Ik+1. Then r represents an element vj = r + Ij+1 ∈
Ij/Ij+1 = Sj that is not 0, and r′ represents an element wk = r′ + Ik+1 ∈ Ik/Ik+1 = Sk

that is not 0, but vjwk ∈ Sj+k is represented by rr′ and is not 0. We must have that
rr′ ∈ Ij+k − Ij+k+1. Thus, R is an integral domain. �

2. (a) The italicized sentence (next to last) in the solution of 1. shows that v(rr′) =
v(r)+ v(r′). If r ∈ Ij − Ij+1 and r′ ∈ Ik− Ik+1, then r′′ = r + r′ ∈ Ij if j ≤ k and r′′ ∈ Ik

if k ≤ j. If say, j < k, then r′′ /∈ Ij+1 or else r = r′′ − r′ ∈ Ij+1 + Ik ⊆ Ij+1. Similarly,
r′′ /∈ Ik+1 if k < j. �

(b) With I 6= 0, we can choose u ∈ I−I2. Then v(u) = 1, and so IV must be the maximal
ideal of V . Clearly, In ⊆ InV . But u ∈ InV iff v(u) ≥ n and this holds for u ∈ R iff
u ∈ In. Since In is the contraction of the principal ideal InV , which, since V is normal, is
integrally closed, it follows that In is integrally closed.

3. (a) This is immediate from the bonus problem in Problem Set #3.

(b) First consider the local case. Let I = P (k) be chosen as in part (a). Let x ∈ m − P .
Then x is not a zerodivisor on any power of I, since each power of I is a symbolic power
of P and so is P -primary. Then x = x + I ∈ R/I is not a zerodivisor in grI(R), which we
know has dimension 2. Killing m kills the nonzerodivisor x, and so dim

(
K ⊗R grI(R)

)
≤

grI(R) − 1 = 2 − 1 = 1. Thus, an(I) ≤ 1. But I has height 1, and an(I) = 1. Since
K is infinite, I is integral over a principal ideal. Since R is normal, principal ideals are
integrally closed. Thus I is principal. In the graded case, simply observe that the least
number of generators of I is the K-vector space dimension of I/mI by the homgeneous
version of Nakayama’s lemma, and (I/mI)m

∼= I/mI, since elements of R−m already act
invertibly on I/mI. But the K-vector space dimension of (I/mI)m

∼= IRm/mIRm is also
the least number of generators of IRm, by the usual form of Nakayama’s lemma, and we
know that IRm is principal. �

4. (a) The condition is clearly necessary. To see that is sufficient, recall that R is normal
if and only if every localization at a height one prime is a DVR and principal ideals are
unmixed. If the first condition fails, because Rb is normal it can only fail at a height
one prime containing b, which will necessarily be an associated prime of b. If the second
condition fails, there will be a principal ideal cR with an associated prime Q of height at
least 2. Again, since Rb is normal, Q must contain b. Since Q is an associated prime of
cR, it has depth one. But then, since it contains b, it is an associated prime of b.

(b) Consider any prime Q of R. Then RQ satisfies the same hypothesis as R, and so is
normal iff its localization at every associated prime of b is normal. But these correspond
to those associated primes of b in R that are contained in Q, and the condition follows.
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(c) Consider any module-finite extension T of R within its fraction field K. Since Rb is
normal, it must contain T , and so is equal to Tb. It follows that the non-normal locus YT in
Spec (T ) is closed. The image XT of YT in Spec (R) is closed (YT is a finite union of sets of
the form V (Q). The image of V (Q) is V (P ), where P = Q ∩R, by the going-up theorem.
If we take module finite extensions R ⊆ T1 ⊆ T2, then YT2 maps into YT1 (if Q2 in T2 lies
over Q1 in T1 such that (T1)Q1 is normal, then (T2)Q1 = (T1)Q1 , and so (T2)Q2 must be
normal.) Since closed sets have DCC (ideals have ACC), we can choose T so that XT is
minimal. We prove XT = ∅. This means that T is normal, and so it is the normalization
of R in K. If XT 6= ∅, choose P ∈ XT . The integral closure S of RP is module-finte over
RP , since this is true for Rm for any maximal ideal m ⊇ P . Choose finitely many integral
fractions that span S over RP . After we multiply by a suitable element of R − P , these
will be integral fractions of R, and we may enlarge T by adjoining them: call the new ring
W . Then WP is normal, and so the localization of W at any prime lying over P is normal.
This shows that XW ⊆ XT − {P}, a contradiction. �

5. We know that the integral closure of a complete local domain in module-finite over it (see
the second Theorem on p. 3 of the Lecture Notes of September 11), and the reduced case
follows from the domain case by Problem 2 of Problem Set #1. R[[It]] ⊆ R[[t]] is complete
because a Cauchy sequence of elements fn =

∑∞
j=1 injt

j with evey inj ∈ Ij converges: for
fixed j, {inj}n is a Cauchy sequence of elements in Ij , and so converges to an element
ij ∈ Ij , and the sequence {fn}n then converges to

∑∞
j=1 ijt

j . The quotient of R[It] by
Ah,k = (mh + Itk) and the quotient R[[It]]/Ah,kR[[It]] are isomorphic. These quotients
are local, and are therefore also isomorphic with R[It]M/Ae

h,k, where Be indicates the
expansion of the ideal B. Since the ideals AN,N are cofinal with the powers MN of M,
the completion of R[It]M is R[[It]], as claimed. To prove the required result, we may
replace R by its normalization, and we may assume that R is a complete local normal
domain, by the results sighted above in the first sentence. We may also assume I 6= 0.
Then R[It] has the same fraction field as R[t]. R[t] is normal, and so the integral closure
S of R[It] in its fraction field is the same as its integral closure in R[t]. Thus, S is graded.
If S is not module-finite over R, by successively adjoining homogeneous integral elements
we get a strictly increasing chain of graded module-finite extensions of R[It] within S, say
S1 ⊂ S2 ⊂ · · · ⊂ Sj ⊂ · · · . For each j, Nj = Sj+1/Sj 6= 0 is a graded module, and so is
supported on a set defined by a homogeneous ideal. Hence, (Nj)M 6= 0. Once we have
localized, we have that completion is faithfully flat, and so applying R[[It]]⊗R[It]M yields
an infinite strictly ascending chain of integral extensions of R[[It]] by integral fractions.
This is a contradiction, since the normalization of R[[It]] is module-finite over R[[It]]. �

6. If A → B is a map of domains that splits as a map of A-modules and B is normal, then
so is A: if f ∈ A, g ∈ A− {0}, and f/g is integral over A, then it is integral over B and,
hence, in B, and f = gb. Applying the splitting φ, we have f = gφ(b) with φ(b) = a in A.
Let R = R[It]ft. C = R0 = R[I/f ], and Rd = IdCtd or (C/fd)t−d, according as d ≥ 0 or
d < 0. Now, C = R[I/f ] = [R[It]ft]0 ∈ [Sft]0 = A and A splits from B = Sft over A, so A
contains the normalization of C = R[I/f ]. It suffices to show that A is module-finite over
C. Let Sft be generated by forms θ1, . . . , θh in degrees d1, . . . , dh. The A is

∑
j=1R−dj θj

and since each Rj is a finitely generated C-module, we are done. �


