Math 711, Fall 2006 Problem Set #2 Solutions

1. If u € S— M has degree 0 component ug that is a unit of R/I = Sy, and g € S—{0} has
lowest degree nonzero component g;, then ug # 0: in degree j it is ug; # 0. Thus, S — M
consists of nonzerodivisors, so that S C Sy, and if Sy is an integral domain, so is S. In
this case, let r,7" € R—{0}. Choose j such that r € [ — /Tt (Nym™N =0= Ny IV =0)
and choose k such that 7' € I®¥ — I**1. Then r represents an element v; = r + I'T! €
I’/ = S; that is not 0, and 7’ represents an element wy, = r’ + I**1 ¢ [k /[k+1 = G,
that is not 0, but vjw, € Sj4k is represented by rr’ and is not 0. We must have that
rr! € Itk — [J+k+1 Thus, R is an integral domain. [0

2. (a) The italicized sentence (next to last) in the solution of 1. shows that v(rr’) =
v(r)+v(r). Ifr € I — P+ and o/ € IF — I*+! then v’ =r+7' € IV if j < k and v € I*
if k <j. Ifsay, j <k, thenr” ¢ ["*' orelse r = v/ — ¢’ € JT1 4 [k C [7+1, Similarly,
¢ I ik < g O

(b) With I # 0, we can choose u € I —I%. Then v(u) = 1, and so IV must be the maximal
ideal of V. Clearly, I"™ C I"V. But u € I"V iff v(u) > n and this holds for v € R iff
u € I™. Since I" is the contraction of the principal ideal I™V', which, since V' is normal, is
integrally closed, it follows that I™ is integrally closed.

3. (a) This is immediate from the bonus problem in Problem Set #3.

(b) First consider the local case. Let I = P(®) be chosen as in part (a). Let 2 € m — P.
Then x is not a zerodivisor on any power of I, since each power of I is a symbolic power
of P and so is P-primary. Then T =z + I € R/I is not a zerodivisor in gr;(R), which we
know has dimension 2. Killing m kills the nonzerodivisor Z, and so dim (K @R gr I(R)) <
gr;(R) —1=2—-1=1. Thus, an(I) < 1. But I has height 1, and an(/) = 1. Since
K is infinite, I is integral over a principal ideal. Since R is normal, principal ideals are
integrally closed. Thus [ is principal. In the graded case, simply observe that the least
number of generators of I is the K-vector space dimension of I/ml by the homgeneous
version of Nakayama’s lemma, and (I/mlI),, = I/ml, since elements of R —m already act
invertibly on I/mI. But the K-vector space dimension of (I/mlI),, = IR,,/mIR,, is also
the least number of generators of I R,,, by the usual form of Nakayama’s lemma, and we
know that I R,, is principal. [

4. (a) The condition is clearly necessary. To see that is sufficient, recall that R is normal
if and only if every localization at a height one prime is a DVR and principal ideals are
unmixed. If the first condition fails, because R; is normal it can only fail at a height
one prime containing b, which will necessarily be an associated prime of b. If the second
condition fails, there will be a principal ideal cR with an associated prime @) of height at
least 2. Again, since R; is normal, () must contain b. Since () is an associated prime of
cR, it has depth one. But then, since it contains b, it is an associated prime of b.

(b) Consider any prime @ of R. Then R satisfies the same hypothesis as R, and so is
normal iff its localization at every associated prime of b is normal. But these correspond
to those associated primes of b in R that are contained in (), and the condition follows.
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(¢) Consider any module-finite extension 7' of R within its fraction field . Since R is
normal, it must contain 7', and so is equal to Tj,. It follows that the non-normal locus Y7 in
Spec (T) is closed. The image X7 of Y7 in Spec (R) is closed (Y7 is a finite union of sets of
the form V(Q). The image of V(Q) is V(P), where P = Q N R, by the going-up theorem.
If we take module finite extensions R C T} C Ty, then Y7, maps into Yp, (if Q2 in T3 lies
over ()1 in 77 such that (71)q, is normal, then (7%)g, = (11)q,, and so (13)g, must be
normal.) Since closed sets have DCC (ideals have ACC), we can choose T so that X is
minimal. We prove X7 = (). This means that T is normal, and so it is the normalization
of Rin K. If X7 # (), choose P € Xp. The integral closure S of Rp is module-finte over
Rp, since this is true for R,, for any maximal ideal m O P. Choose finitely many integral
fractions that span S over Rp. After we multiply by a suitable element of R — P, these
will be integral fractions of R, and we may enlarge T" by adjoining them: call the new ring
W. Then Wp is normal, and so the localization of W at any prime lying over P is normal.
This shows that Xy C Xp — {P}, a contradiction. [

5. We know that the integral closure of a complete local domain in module-finite over it (see
the second Theorem on p. 3 of the Lecture Notes of September 11), and the reduced case
follows from the domain case by Problem 2 of Problem Set #1. R[[It]] C R][t]] is complete
because a Cauchy sequence of elements f,, = Z;’;l injt? with evey in; € I/ converges: for
fixed j, {inj}n is a Cauchy sequence of elements in I/, and so converges to an element
ij € I7, and the sequence {f,}, then converges to >°°°,4;t/. The quotient of R[It] by
Apx = (m" + ItF) and the quotient R[[It]]/A ,R[[It]] are isomorphic. These quotients
are local, and are therefore also isomorphic with R[It]r/245 , where B¢ indicates the
expansion of the ideal $B. Since the ideals 2l y are cofinal with the powers MY of M,
the completion of R[It|xq is R][[It]], as claimed. To prove the required result, we may
replace R by its normalization, and we may assume that R is a complete local normal
domain, by the results sighted above in the first sentence. We may also assume I # 0.
Then R[It] has the same fraction field as R[t]. R]t] is normal, and so the integral closure
S of R[It] in its fraction field is the same as its integral closure in R[t]. Thus, S is graded.
If S is not module-finite over R, by successively adjoining homogeneous integral elements
we get a strictly increasing chain of graded module-finite extensions of R[It] within S, say
S1 CSyC---CS; C---. Foreach j, Nj = Sj41/S; # 0 is a graded module, and so is
supported on a set defined by a homogeneous ideal. Hence, (N;)a # 0. Once we have
localized, we have that completion is faithfully flat, and so applying R[[It]]®g(r4,, _ yields
an infinite strictly ascending chain of integral extensions of R[[It]] by integral fractions.
This is a contradiction, since the normalization of R[[It]] is module-finite over R[[It]]. O

6. If A — B is a map of domains that splits as a map of A-modules and B is normal, then
sois A: if f € A, g€ A— {0}, and f/g is integral over A, then it is integral over B and,
hence, in B, and f = gb. Applying the splitting ¢, we have f = g¢(b) with ¢(b) = a in A.
Let R = R[It];. C = Ro = R[I/f], and Ry = I?Ct? or (C/f4)t~%, according as d > 0 or
d < 0. Now, C = R[I/f] = [R[It]s]o € [Sftlo = A and A splits from B = Sy, over A, so A
contains the normalization of C'= R[I/f]. It suffices to show that A is module-finite over
C. Let Sy, be generated by forms 61, ... , 0}, in degrees d, ... ,dj. The Ais ijl R_q,0;
and since each R; is a finitely generated C-module, we are done. [



