Math 711, Fall 2006 Due: Monday, November 6 Problem Set #3

1. Let $\mathfrak{G} \subseteq I \subseteq T$ be ideals of the ring T, let $F \in T$, and let X be an indeterminate. Show that the map $\frac{\mathfrak{G}_{T} I}{\mathfrak{G}} \rightarrow \frac{(\mathfrak{G}, X - F)T[X]_{T[X]}(I, (X - F))T[X]}{(\mathfrak{G}, X - F)T[X]}$ induced by the inclusion of numerator ideals is an isomorphism.¹ [Let X - F = Y. Reduce to the case $\mathfrak{G} = 0$.]

2. Let $T \to S$ and I be as in the construction of $W_{S/R}$, where T is finitely generated over R. Let $g_1, \ldots, g_n \in I$ be a special sequence. Let $F \in T$ map to $u \in S$. Map $T[X] \to S_u$ by sending $X \mapsto 1/u$. Show that the kernel J is (I, XF - 1)T, that $g_1, \ldots, g_n, XF - 1$ is a special sequence in J, and use this to prove that $W_{S_u/R} \cong (W_{S/R})_u$.

3. Let $R \subseteq S$ be a ring extension such that for every ideal I of R, $IS \cap R = I$. Prove that for every ideal I of R, $\overline{IS} \cap R = \overline{I}$. [It helps to use just the right characterization of when an element is in the integral closure of the ideal.]

4. If x_1, \ldots, x_d is a regular sequence in the ring R and on the R-module M, prove by induction on d that $\operatorname{Tor}_i(R/(x_1, \ldots, x_d)R, M) = 0$ for all $i \ge 1$ using the long exact sequence for Tor coming from the short exact sequence

 $0 \to R/(x_1, \ldots, x_{d-1}) R \xrightarrow{\cdot x_d} R/(x_1, \ldots, x_{d-1}) R \to R/(x_1, \ldots, x_d) R \to 0.$

5. Let (R, m, K) be a local ring. Call a reduction of I special if it has a minimal set of generators whose images in the degree 1 part of $K \otimes_R \operatorname{gr}_I(R)$, which is I/mI^2 , are linearly independent. Show that every reduction of I has a reduction that is special. Show that there is no infinite decreasing chain of special reductions. Show that every special reduction has a special reduction that has no proper reduction. (These are related to minimal vector subspaces of I/mI^2 that generate an ideal primary to the homogeneous maximal ideal of $K \otimes_R \operatorname{gr}_I(R)$.) Hence, every ideal I has a reduction I_0 that has no proper reduction. I_0 is then called a minimal reduction.

6. Let notation be as in Problem 5. Show that if the smallest number of generators of I is equal to an(I), then I has no proper reduction. Show that if K is infinite, then I has no proper reduction if and only if the least number of generators of I is an(I).

Bonus Let S be a finitely generated N-graded algebra with $S_0 = R$. If $d \ge 1$ is an integer, let $S\{d\} = \bigoplus_{n=0}^{\infty} S_{dn}$. Show that there is a choice of d such that $S\{d\}$ is generated over R by S_d .

¹With $\mathfrak{G} = (g_1, \ldots, g_n)T$, this completes an omitted step in the proof of independence of $W_{S/R}$ from the finite presentation of S over R.