Math 711, Fall 2006

Problem Set #3 Solutions

1. Work mod \mathfrak{G} and so assume $\mathfrak{G} = 0$. T[X] has a *T*-automorphism sending *X* to X - F. Thus, X - F is simply an indeterminate over *T*. Change notation and write *X* instead of X - F. The statement becomes that

$$0:_T I \to \left(XT[X]:_{T[X]} (I,X)T[X]\right)/XT[X]$$

is an isomorphism. The numerator on the right is the same as $XT[X] :_{T[X]} I$. But it is immediate that $IF \subseteq XT[X]$ if and only if I kills the constant term of F, so that $XT[X] :_{T[X]} I = (0:_T I) + XT[X]$, and the result follows at once. \Box

2. Let $\mathfrak{G} = (g_1, \ldots, g_)T$. Then XF - 1 is not a zerodivisor in $T[X]/\mathfrak{G}T[X] \cong (T/\mathfrak{G})[X]$, since its product with a nonzero element whose lowest nonzero degree term is w will have nonzero lowest degree term w.

Then $T[X]/(I, XF - 1)T[X] \cong S[X]/(uX - 1) \cong S_u$. Evidently, if \mathfrak{G} expands to I upon localization at any minimal prime, we have that $(\mathfrak{G}, FX - 1)T[X]$ expands to J upon localization at any minimal prime. Now consider the image of

$$M = \frac{(\mathfrak{G}, FX - 1)T[X] :_{T[X]} (I, FX - 1)T[X]}{(\mathfrak{G}, FX - 1)T[X]} = \frac{(\mathfrak{G}, FX - 1)T[X] :_{T[X]} I}{(\mathfrak{G}, FX - 1)T[X]}$$

in \mathcal{L}_u , which will be $W_{S_u/R}$. Since the g_j do not involve X, the new Jacobian matrix has bottom row $(0 \ 0 \ \dots \ 0 \ F)$. Therefore, the new Jacobian determinant has image γu , since F maps to u. We claim that

$$(\mathfrak{G}, FX - 1)T[X] :_{T[X]} I = (\mathfrak{G} :_T I)T[X] + (FX - 1)T[X].$$

For the purpose of proving this we may work modulo (FX - 1)T[X]. The equality is then seen to be equivalent to the statement that in the ring T_F we have

$$\mathfrak{G}T_F:_{T_F}IT_F=(\mathfrak{G}:_TI)T_F.$$

This is a consequence of the fact that T_F is flat over T and I is finitely generated (T is Noetherian here.) It follows that the image of M in \mathcal{L}_u is the S_u -submodule generated by the images of the g_i . Each of these is the same as under the map

$$\frac{\mathfrak{G}:_T I}{\mathfrak{G}} \to \mathcal{L},$$

but multiplied by 1/u, since we are now dividing by γu instead of by γ . Since u is invertible in S_u , the image is $(W_{S/R})_u$, as required \Box .

3. If $r \in \overline{IS}$ then with J = I + rR, for some k, $(JS)^{k+1} = (IS)(JS)^k$, and $J^{k+1} \subseteq (IJ^k)S \cap R = IJ^k$. Since $IJ^k \subseteq J^{k+1}$ is obvious, we have that $J^{k+1} = IJ^k$, and so $u \in \overline{I}$. \Box

4. Let $I = (x_1, \ldots, x_{d-1})R$ and $J = (x_1, \ldots, x_d)R$. Consider the long exact sequence $\cdots \to \operatorname{Tor}_i^R(R/I, M) \to \operatorname{Tor}_i^R(R/I, M) \to \operatorname{Tor}_i^R(R/J, M) \to \operatorname{Tor}_{i-1}(R/I, M) \to \cdots$. Then for i > 1 the vanishing of $\operatorname{Tor}_i(R/J, M)$ is a consequence of the fact that, by the induction hypothesis, the two surrounding terms vanish. Moreover, for i = 1, we have $\cdots \to \operatorname{Tor}_1^R(R/I, M) \to \operatorname{Tor}_1^R(R/J, M) \to R/I \to R/I \to R/J \to 0$. The result follows because $\operatorname{Tor}_1^R(R/I, M) = 0$ by the induction hypothesis and the map given by multiplication by x_d is injective on R/I. \Box

5. It was shown in class that $J \subseteq I$ is a reduction if and only if the image of J in I/mIgenerates an ideal primary to the homogeneous maximal ideal \mathcal{M} in $K \otimes \operatorname{gr}_I R$. Given any reduction J, we may choose a basis for the image of J in I/mI, and then choose elements of J that map to this basis. These elements generate a special reduction contained in J. If $J_1 \subseteq J_2$ are special reductions and their images in I/mI are the same, we claim that $J_1 = J_2$. To see this, note that since $J_1 + mI = J_2 + mI$. we can extend a set S of minimal generators for J_1 to a set of generators of J_2 using elements of $J_2 \cap (mI)$. This gives a minimal set \mathcal{T} of generators of J_2 each of which is in \mathcal{S} or is an element of mI. \mathcal{T} has the same cardinality as the original set of minimal generators of J_2 . \mathcal{T} cannot give an image in I/mI of the correct dimension unless we have used all of the elements of S. Since T has the same cardinality as the dimension of the image of J_1 , it follows that $\mathcal{T} = \mathcal{S}$, and $J_2 = J_1$. Thus, if one has a strictly decreasing chain of special reductions, the images in I/mI also decrease strictly, and so the chain cannot be infinite. Given any reduction J with image V in I/mI, choose a subspace $W \subseteq V$ such that no proper subspace of W generates an \mathcal{M} -primary ideal. Choose elements of J mapping to a basis for W. These will generate a special reduction of I that does not properly contain any other special reduction. \Box

6. The first statement is immediate from 5., since a reduction with $\operatorname{an}(I)$ generators must be special, with the image in I/mI spanned by a homogeneous system of linear parameters, and cannot contain a proper reduction, since that would contain a special reduction, and the image would be too small a vector space to span a \mathcal{M} -primary ideal. The second statement is clear, because when K is infinite, every reduction has a reduction such that the least number of generators is $\operatorname{an}(I)$. \Box

BONUS Let the homogeneous generators be F_1, \ldots, F_n with respective degrees d_1, \ldots, d_n and let L be the least common multiple of d_1, \ldots, d_n . Then every monomial μ in the F_i of degree $D \ge nL$ is the product of a monomial of degree L and one of degree D - L: the fact that $\mu = F^{a_1} \cdots F_k^{a_k}$ has degree D implies that $\sum_{i=1}^n d_i a_i \ge nL$, and so at least one $d_i a_i \ge L$. Then we can choose $b \le a_i$ such that $d_i b = L$, and F_i^b has degree L and is a factor of μ . If μ has degree nLh for h > 1 we can iterate this n(h-1) times to write μ as a product of the n(h-1) forms of degree nL by grouping. Thus, every monomial of degree nLh is a product of h monomials of degree nL, and we may take d = nL. \Box