
Math 711, Fall 2006 Problem Set #3 Solutions

1. Work mod G and so assume G = 0. T [X] has a T -automorphism sending X to X − F .
Thus, X − F is simply an indeterminate over T . Change notation and write X instead of
X − F . The statement becomes that

0 :T I →
(
XT [X] :T [X] (I,X)T [X]

)
/XT [X]

is an isomorphsim. The numerator on the right is the same as XT [X] :T [X] I. But it
is immediate that IF ⊆ XT [X] if and only if I kills the constant term of F , so that
XT [X] :T [X] I = (0 :T I) + XT [X], and the result follows at once. �

2. Let G = (g1, . . . , g)T . Then XF − 1 is not a zerodivisor in T [X]/GT [X] ∼= (T/G)[X],
since its product with a nonzero element whose lowest nonzero degree term is w will have
nonzero lowest degree term w.
Then T [X]/(I, XF − 1)T [X] ∼= S[X]/(uX − 1) ∼= Su. Evidently, if G expands to I upon
localization at any minimal prime, we have that (G, FX − 1)T [X] expands to J upon
localization at any minimal prime. Now consider the image of

M =
(G, FX − 1)T [X] :T [X] (I, FX − 1)T [X]

(G, FX − 1)T [X]
=

(G, FX − 1)T [X] :T [X] I

(G, FX − 1)T [X]

in Lu, which will be WSu/R. Since the gj do not involve X, the new Jacobian matrix has
bottom row (0 0 . . . 0 F ). Therefore, the new Jacobian determinant has image γu, since
F maps to u. We claim that

(G, FX − 1)T [X] :T [X I = (G :T I)T [X] + (FX − 1)T [X].

For the purpose of proving this we may work modulo (FX − 1)T [X]. The equality is then
seen to be equivalent to the statement that in the ring TF we have

GTF :TF
ITF = (G :T I)TF .

This is a consequence of the fact that TF is flat over T and I is finitely generated (T is
Noetherian here.) It follows that the image of M in Lu is the Su-submodule generated by
the images of the gi. Each of these is the same as under the map

G :T I

G
→ L,

but multiplied by 1/u, since we are now dividing by γu instead of by γ. Since u is invertible
in Su, the image is (WS/R)u, as required �.

3. If r ∈ IS then with J = I + rR, for some k, (JS)k+1 = (IS)(JS)k, and Jk+1 ⊆
(IJk)S ∩ R = IJk. Since IJk ⊆ Jk+1 is obvious, we have that Jk+1 = IJk, and so
u ∈ I. �
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4. Let I = (x1, . . . , xd−1)R and J = (x1, . . . , xd)R. Consider the long exact sequence
· · · → TorR

i (R/I, M) → TorR
i (R/I,M) → TorR

i (R/J, M) → Tori−1(R/I, M) → · · · .
Then for i > 1 the vanishing of Tori(R/J, M) is a consequence of the fact that, by
the induction hypothesis, the two surrounding terms vanish. Moreover, for i = 1, we
have · · · → TorR

1 (R/I,M) → TorR
1 (R/J,M) → R/I → R/I → R/J → 0. The result

follows because TorR
1 (R/I, M) = 0 by the induction hypothesis and the map given by

multiplication by xd is injective on R/I. �

5. It was shown in class that J ⊆ I is a reduction if and only if the image of J in I/mI
generates an ideal primary to the homgeneous maximal ideal M in K ⊗ grIR. Given any
reduction J , we may choose a basis for the image of J in I/mI, and then choose elements
of J that map to this basis. These elements generate a special reduction contained in J .
If J1 ⊆ J2 are special reductions and their images in I/mI are the same, we claim that
J1 = J2. To see this, note that since J1 +mI = J2 +mI. we can extend a set S of minimal
generators for J1 to a set of generators of J2 using elements of J2 ∩ (mI). This gives a
minimal set T of generators of J2 each of which is in S or is an element of mI. T has the
same cardinality as the original set of minimal generators of J2. T cannot give an image in
I/mI of the correct dimension unless we have used all of the elements of S. Since T has the
same cardinality as the dimension of the image of J1, it follows that T = S, and J2 = J1.
Thus, if one has a strictly decreasing chain of special reductions, the images in I/mI also
decrease strictly, and so the chain cannot be infinite. Given any reduction J with image
V in I/mI, choose a subspace W ⊆ V such that no proper subspace of W generates an
M-primary ideal. Choose elements of J mapping to a basis for W . These will generate a
special reduction of I that does not properly contain any other special reduction. �

6. The first statement is immediate from 5., since a reduction with an(I) generators must
be special, with the image in I/mI spanned by a homogeneous system of linear parameters,
and cannot contain a proper reduction, since that would contain a special reduction, and
the image would be too small a vector space to span a M-primary ideal. The second
statement is clear, because when K is infinite, every reduction has a reduction such that
the least number of generators is an(I). �

BONUS Let the homogeneous generators be F1, . . . , Fn with respective degrees
d1, . . . , dn and let L be the least common multiple of d1, . . . , dn. Then every mono-
mial µ in the Fi of degree D ≥ nL is the product of a monomial of degree L and one of
degree D − L: the fact that µ = F a1 · · ·F ak

k has degree D implies that
∑n

i=1 diai ≥ nL,
and so at least one diai ≥ L. Then we can choose b ≤ ai such that dib = L, and F b

i has
degree L and is a factor of µ. If µ has degree nLh for h > 1 we can iterate this n(h − 1)
times to write µ as a product of the n(h− 1) forms of degree L and one of degree nL. The
former term can be written as a product of h− 1 forms of degree nL by grouping. Thus,
every monomial of degree nLh is a product of h monomials of degree nL, and we may take
d = nL. �


