
Math 711: Lecture of September 5, 2007

Throughout these lecture notes all given rings are assumed commutative, associative,
with identity and modules are assumed unital. Homomorphisms are assumed to preserve
the identity. With a few exceptions that will be noted as they occur, given rings are
assumed to be Noetherian. However, we usually include this hypothesis, especially in
formal statements of theorems.

Our objective is to discuss tight closure closure theory and its connection with the
existence of big Cohen-Macaulay algebras, as well as the applications that each of these
have: they have many in common.

|
At certain points in these notes we will include material not covered in class that we

want to assume. We indicate where such digressions begin and end with double bars before
and after, just as we have done for these two paragraphs. On first perusal, the reader may
wish to read only the unfamiliar definitions and the statements of theorems given, and
come back to the proofs later.

In particular, the write-up of this first lecture is much longer than will be usual, since
a substantial amount of prerequisite material is explained, often in detail, in this manner.

|

By a quasilocal ring (R, m, K) we mean a ring with a unique maximal ideal m: in this
notation, K = R/m. A quasilocal ring is called local if it is Noetherian. A homomorphism
h : R → S from a quasilocal ring (R, m, K) to a quasilocal ring (S, mS ,KS) is called local
if h(m) ⊆ mS , and then h induces a map of residue fields K → KS .

If x1, . . . , xn ∈ R and M is an R-module, the sequence x1, . . . , xn is called a possibly
improper regular sequence on M if x1 is not a zerodivisor on M and for all i, 0 ≤ i ≤ n−1,
xi+1 is not a zerodivisor on M/(x1, . . . , xi)M . A possibly improper regular sequence is
called a regular sequence on M if, in addition, (∗) (x1, . . . , xn)M 6= M . When (∗) fails,
the regular sequence is called improper. When (∗) holds we may say that the regular
sequence is proper for emphasis, but this use of the word “proper” is not necessary.

Note that every sequence of elements is an improper regular sequence on the 0 module,
and that a sequence of any length consisting of the element 1 (or units of the ring) is an
improper regular sequence on every module.

If x1, . . . , xn ∈ m, the maximal ideal of a local ring (R, m, K), and M is a nonzero
finitely generated R-module, then it is automatic that if x1, . . . , xn is a possibly improper
regular sequence on M then x1, . . . , xn is a regular sequence on M : we know that mM 6=
M by Nakayama’s Lemma.
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If x1, . . . , xn ∈ R is a possibly improper regular sequence on M and and S is any flat
R-algebra, then the images of x1, . . . , xn in S form a possibly improper regular sequence
on S ⊗R M . By a straightforward induction on n, this reduces to the case where n = 1,
where it follows from the observation that if 0 → M → M is exact, where the map is given
by multiplication by x, this remains true when we apply S⊗R . In particular, this holds
when S is a localization of R.

If x1, . . . , xn is a regular sequence on M and S is flat over R, it remains a regular
sequence provided that S ⊗R

(
M/(x1, . . . , xn)M

)
6= 0, which is always the case when S

is faithfully flat over R.

|

Nakayama’s Lemma, including the homogeneous case

Recall that in Nakayama’s Lemma one has a finitely generated module M over a quasilo-
cal ring (R, m, K). The lemma states that if M = mM then M = 0. (In fact, if
u1, . . . , uh is a set of generators of M with h minimum, the fact that M = mM implies
that M = mu1 + · · ·muh. In particular, uh = f1u1 + · · · + fhuh, and so (1 − fh)uh =
f1u1+ · · ·+fh−1uh−1 (or 0 if h = 1). Since 1−fh is a unit, uh is not needed as a generator,
a contradiction unless h = 0.)

By applying this result to M/N , one can conclude that if M is finitely generated (or
finitely generated over N), and M = N + mM , then M = N . In particular, elements
of M whose images generate M/mM generate M : if N is the module they generate, we
have M = N + mM . Less familiar is the homogeneous form of the Lemma: it does not
need M to be finitely generated, although there can be only finitely many negative graded
components (the detailed statement is given below).

First recall that if H is an additive semigroup with 0 and R is an H-graded ring, we
also have the notion of an H-graded R-module M : M has a direct sum decomposition

M =
⊕
h∈H

Mh

as an abelian group such that for all h, k ∈ H, RhMk ⊆ Mh+k. Thus, every Mh is an
R0-module. A submodule N of M is called graded (or homogeneous) if

N =
⊕
h∈H

(N ∩Mh).

An equivalent statement is that the homogeneous components in M of every element of N
are in N , and another is that N is generated by forms of M .

Note that if we have a subsemigroup H ⊆ H ′, then any H-graded ring or module can
be viewed as an H ′-graded ring or module by letting the components corresponding to
elements of H ′ −H be zero.

In particular, an N-graded ring is also Z-graded, and it makes sense to consider a Z-
graded module over an N-graded ring.
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Nakayama’s Lemma, homogeneous form. Let R be an N-graded ring and let M be
any Z-graded module such that M−n = 0 for all sufficiently large n (i.e., M has only
finitely many nonzero negative components). Let I be the ideal of R generated by elements
of positive degree. If M = IM , then M = 0. Hence, if N is a graded submodule such that
M = N + IM , then N = M , and a homogeneous set of generators for M/IM generates
M .

Proof. If M = IM and u ∈ M is nonzero homogeneous of smallest degree d, then u is a
sum of products itvt where each it ∈ I has positive degree, and every vt is homogeneous,
necessarily of degree ≥ d. Since every term itvt has degree strictly larger than d, this is a
contradiction. The final two statements follow exactly as in the case of the usual form of
Nakayama’s Lemma. �

|

In general, regular sequences are not permutable: in the polynomial ring R = K[x, y, z]
over the field K, x− 1, xy, xz is a regular sequence but xy, xz, x− 1 is not. However, if M
is a finitely generated nonzero module over a local ring (R, m, K), a regular sequence on
M is permutable. This is also true if R is N-graded, M is Z-graded but nonzero in only
finitely many negative degrees, and the elements of the regular sequence in R have positive
degree.

|
To see why, note that we get all permutations if we can transpose two consecutive

terms of a regular sequence. If we kill the ideal generated by the preceding terms times the
module, we come down to the case where we are transposing the first two terms. Since the
ideal generated by these two terms does not depend on their order, it suffices to consider
the case of regular sequences x, y of length 2. The key point is to prove that y is not a
zerodivisor on M . Let N ⊆ M by the annihilator of y. If u ∈ N , yu = 0 ∈ xM implies
that u ∈ xM , so that u = xv. Then y(xv) = 0, and x is not a zerodivsior on M , so that
yv = 0, and v ∈ N . This shows that N = xN , contradicting Nakayama’s Lemma (the
local version or the homogeneous version, whichever is appropriate).

The next part of the argument does not need the local or graded hypothesis: it works
quite generally. We need to show that x is a nonzerodivisor on M/yM . Suppose that
xu = yv. Since y is a nonzerodivisor on xM , we have that v = xw, and xu = yxw. Thus
x(u− yw) = 0. Since x is a nonzerodivisor on M , we have that u = yw, as required. �

|

The Krull dimension of a ring R may be characterized as the supremum of lengths of
chains of prime ideals of R, where the length of the strictly ascending chain

P0 ⊂ P1 ⊂ · · · ⊂ Pn

is n. The Krull dimension of the local ring (R, m, K) may also be characterized as
the least integer n such that there exists a sequence x1, . . . , xn ∈ m such that m =
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Rad
(
(x1, . . . , xn)R

)
(equivalently, such that R = R/(x1, . . . , xn)R is a zero-dimensional

local ring, which means that R is an Artinian local ring).

Such a sequence is called a system of parameters for R.

|
One can always construct a system of parameters for the local ring (R, m, K) as

follows. If dim (R) = 0 the system is empty. Otherwise, the maximal ideal cannot be
contained in the union of the minimal primes of R. Choose x1 ∈ m not in any minimal
prime of R. In fact, it suffices to choose x1 not in any minimal primes P such that
dim (R/P ) = dim (R). Once x1, . . . , xk have been chosen so that x1, . . . , xk is part of a
system of parameters (equivalently, such that dim

(
R/(x1, . . . , xk)R

)
= dim (R)− k) ), if

k < dim (R) the minimal primes of (x1, . . . , xk)R cannot cover m. It follows that we can
choose xk+1 not in any such minimal prime, and then x1, . . . , xk+1 is part of a system of
parameters. By induction, we eventually reach a system of parameters for R. Notices that
in choosing xk+1, it actually suffices to avoid only those minimal primes Q of (x1, . . . , xk)R
such that dim (R/Q) = dim

(
R/(x1, . . . , xk)R

)
(which is dim (R)− k).

|

A local ring is called Cohen-Macaulay if some (equivalently, every) system of parameters
is a regular sequence on R. These include regular local rings: if one has a minimal set
of generators of the maximal ideal, the quotient by each in turn is again regular and
so is a domain, and hence every element is a nonzerodivisor modulo the ideal generated
by its predecessors. Moreover, local complete intersections, i.e., local rings of the form
R/(f1, . . . , fh) where R is regular and f1, . . . , fh is part of a system of parameters for
R, are Cohen-Macaulay. It is quite easy to see that if R is Cohen-Macaulay, so is R/I
whenever I is generated by a regular sequence.

If R is a Cohen-Macaulay local ring, the localization of R at any prime ideal is Cohen-
Macaulay. We define an arbitrary Noetherian ring to be Cohen-Macaulay if all of its local
rings at maximal ideals (equivalently, at prime ideals) are Cohen-Macaulay.

|

Cohen-Macaulay rings in the graded and local cases

We want to put special emphasis on the graded case for several reasons. One is its
importance in projective geometry. Beyond that, there are many theorems about the
graded case that make it easier both to understand and to do calculations. Moreover,
many of the most important examples of Cohen-Macaulay rings are graded.

We first note:

Proposition. Let M be an N-graded or Z-graded module over an N-graded or Z-graded
Noetherian ring S. Then every associated prime of M is homogeneous. Hence, every
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minimal prime of the support of M is homogeneous and, in particular the associated (hence,
the minimal) primes of S are homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u of M , and then
every nonzero multiple of u 6= 0 can be thought of as a nonzero element of S/P ∼= Su ⊆ M ,
and so has annihilator P as well. If ui is a nonzero homogeneous component of u of degree
i, its annihilator Ji is easily seen to be a homogeneous ideal of S. If Jh 6= Ji we can
choose a form F in one and not the other, and then Fu is nonzero with fewer homgeneous
components then u. Thus, the homogeneous ideals Ji are all equal to, say, J , and clearly
J ⊆ P . Suppose that s ∈ P −J and subtract off all components of S that are in J , so that
no nonzero component is in J . Let sa /∈ J be the lowest degree component of s and ub be
the lowest degree component in u. Then sa ub is the only term of degree a + b occurring
in su = 0, and so must be 0. But then sa ∈ AnnS ub = Jb = J , a contradiction. �

Corollary. Let K be a field and let R be a finitely generated N-graded K-algebra with
R0 = K. Let M =

⊕∞
d=1 Rj be the homogeneous maximal ideal of R. Then dim (R) =

height (M) = dim (RM).

Proof. The dimension of R will be equal to the dimension of R/P for one of the minimal
primes P of R. Since P is minimal, it is an associated prime and therefore is homogenous.
Hence, P ⊆M. The domain R/P is finitely generated over K, and therefore its dimension
is equal to the height of every maximal ideal including, in particular, M/P . Thus,

dim (R) = dim (R/P ) = dim
(
(R/P )M

)
≤ dim RM ≤ dim (R),

and so equality holds throughout, as required. �

Proposition (homogeneous prime avoidance). Let R be an N-graded algebra, and
let I be a homogeneous ideal of R whose homogeneous elements have positive degree. Let
P1, . . . , Pk be prime ideals of R. Suppose that every homogeneous element f ∈ I is in⋃k

i=1 Pi. Then I ⊆ Pj for some j, 1 ≤ j ≤ k.

Proof. We have that the set H of homogeneous elements of I is contained in
⋃k

i=1 Pk. If
k = 1 we can conclude that I ⊆ P1. We use induction on k. Without loss of generality,
we may assume that H is not contained in the union of any k − 1 if the Pj . Hence, for
every i there is a homogeous element gi ∈ I that is not in any of the Pj for j 6= i, and
so it must be in Pi. We shall show that if k > 1 we have a contradiction. By raising the
gi to suitable positive powers we may assume that they all have the same degree. Then
gk−1
1 + g2 · · · gk ∈ I is a homogeneous element of I that is not in any of the Pj : g1 is not

in Pj for j > 1 but is in P1, and g2 · · · gk is in each of P2, . . . , Pk but is not in P1. �

Now suppose that R is a finitely generated N-graded algebra over R0 = K, where K is
a field. By a homogenous system of parameters for R we mean a sequence of homogeneous
elements F1, . . . , Fn of positive degree in R such that n = dim (R) and R/F1, . . . , Fn) has
Krull dimension 0. When R is a such a graded ring, a homogeneous system of parameters
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always exists. By homogeneous prime avoidance, there is a form F1 that is not in the union
of the minimal primes of R. Then dim (R/F1) = dim (R)−1. For the inductive step, choose
forms of positive degree F2, . . . , Fn whose images in R/F1R are a homogeneous system
of parameters for R/F1R. Then F1, . . . , Fn is a homogeneous system of parameters for
R. �

Moreover, we have:

Theorem. Let R be a finitely generated N-graded K-algebra with R0 = K such that
dim (R) = n. A homogeneous system of parameters F1, . . . , Fn for R always exists. More-
over, if F1, . . . , Fn is a sequence of homogeneous elements of positive degree, then the
following statements are equivalent.

(1) F1, . . . , Fn is a homogeneous system of parameters.

(2) m is nilpotent modulo (F1, . . . , Fn)R.

(3) R/(F1, . . . , Fn)R is finite-dimensional as a K-vector space.

(4) R is module-finite over the subring K[F1, . . . , Fn].

Moreover, when these conditions hold, F1, . . . , Fn are algebraically independent over K,
so that K[F1, . . . , Fn] is a polynomial ring.

Proof. We have already shown existence.

(1) ⇒ (2). If F1, . . . , Fn is a homogeneous system of parameters, we have that

dim
(
R/F1, . . . , Fn)

)
= 0.

We then know that all prime ideals are maximal. But we know as well that the maximal
ideals are also minimal primes, and so must be homogeneous. Since there is only one
homogenous maximal ideal, it must be m/(F1, . . . , Fn)R, and it follows that m is nilpotent
on (F1, . . . , Fn)R.

(2) ⇒ (3). If m is nilpotent modulo (F1, . . . , Fn)R, then the homogeneous maximal
ideal of R = R/(F1, . . . , Fn)R is nilpotent, and it follows that [R]d = 0 for all d � 0.
Since each Rd is a finite dimensional vector space over K, it follows that R itself is finite-
dimensional as a K-vector space.

(3) ⇒ (4). This is immediate from the homogeneous form of Nakayama’s Lemma: a
finite set of homogeneous elements of R whose images in R are a K-vector space basis
will span R over K[F1, . . . , Fn], since the homogenous maximal ideal of K[F1, . . . , Fn] is
generated by F1, . . . , Fn.

(4)⇒ (1). If R is module-finite over K[F1, . . . , Fn], this is preserved mod (F1, . . . , Fn),
so that R/(F1, . . . , Fn) is module-finite over K, and therefore zero-dimensional as a ring.

Finally, when R is a module-finite extension of K[F1, . . . , Fn], the two rings have the
same dimension. Since K[F1, . . . , Fn] has dimension n, the elements F1, . . . , Fn must be
algebraically independent. �
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The technique described in the discussion that follows is very useful both in the local
and graded cases.

Discussion: making a transition from one system of parameters to another. Let R be a
Noetherian ring of Krull dimension n, and assume that one of the two situations described
below holds.

(1) (R, m, K) is local and f1, . . . , fn and g1, . . . , gn are two systems of parameters.

(2) R is finitely generated N-graded over R0 = K, a field, m is the homogeneous maximal
ideal, and f1, . . . , fn and g1, . . . , gn are two homogeneous systems of parameters for
R.

We want to observe that in this situation there is a finite sequence of systems of parame-
ters (respectively, homogeneous systems of parameters in case (2)) starting with f1, . . . , fn

and ending with g1, . . . , gn such that any two consecutive elements of the sequence agree
in all but one element (i.e., after reordering, only the i th terms are possibly different for a
single value of i, 1 ≤ i ≤ n). We can see this by induction on n. If n = 1 there is nothing
to prove. If n > 1, first note that we can choose h (homogeneous of positive degree in the
graded case) so as to avoid all minimal primes of (f2, . . . , fn)R and all minimal primes of
(g2, . . . , gn)R. Then it suffices to get a sequence from h, f2, . . . , fn to h, g2, . . . , gn, since
the former differs from f1, . . . , fn in only one term and the latter differs from g1, . . . , gn in
only one term. But this problem can be solved by working in R/hR and getting a sequence
from the images of f2, . . . , fn to the images of g2, . . . , gn, which we can do by the induc-
tion hypothesis. We lift all of the systems of parameters back to R by taking, for each one,
h and inverse images of the elements in the sequence in R (taking a homogeneous inverse
image in the graded case), and always taking the same inverse image for each element of
R/hR that occurs. �

The following result now justifies several assertions about Cohen-Macaulay rings made
without proof earlier.

Note that a regular sequence in the maximal ideal of a local ring (R, m, K) is always
part of a system of parameters: each element is not in any associated prime of the ideal
generated by its predecessors, and so cannot be any minimal primes of that ideal. It follows
that as we kill successive elements of the sequence, the dimension of the quotient drops by
one at every step.

Corollary. Let (R, m, K) be a local ring. There exists a system of parameters that is a
regular sequence if and only if every system of parameters is a regular sequence. In this
case, for every prime ideal I of R of height k, there is a regular sequence of length k in I.

Moreover, for every prime ideal P of R, RP also has the property that every system of
parameters is a regular sequence.

Proof. For the first statement, we can choose a chain as in the comparison statement just
above. Thus, we can reduce to the case where the two systems of parameters differ in only
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one element. Because systems of parameters are permutable and regular sequences are
permutable in the local case, we may assume that the two systems agree except possibly
for the last element. We may therefore kill the first dim (R) − 1 elements, and so reduce
to the case where x and y are one element systems of parameters in a local ring R of
dimension 1. Then x has a power that is a multiple of y, say xh = uy, and y has a power
that is a multiple of x. If x is not a zerodivisor, neither is xh, and it follows that y is not
a zerodivisor. The converse is exactly similar.

Now suppose that I is any ideal of height h. Choose a maximal sequence of elements
(it might be empty) of I that is part of a system of parameters, say x1, . . . , xk. If k < h,
then I cannot be contained in the union of the minimal primes of (x1, . . . , xk): otherwise,
it will be contained in one of them, say Q, and the height of Q is bounded by k. Chose
xk+1 ∈ I not in any minimal prime of (x1, . . . , xk)R. Then x1, . . . , xk+1 is part of a
system of parameters for R, contradicting the maximality of the sequence x1, . . . , xk.

Finally, consider the case where I = P is prime. Then P contains a regular sequence
x1, . . . , xk, which must also be regular in RP , and, hence, part of a system of parameters.
Since dim (RP ) = k, it must be a system of parameters. �

Lemma. Let K be a field and assume either that

(1) R is a regular local ring of dimension n and x1, . . . , xn is a system of parameters

or

(2) R = K[x1, . . . , xn] is a graded polynomial ring over K in which each of the xi is a
form of positive degree.

Let M be a nonzero finitely generated R-module which is Z-graded in case (2). Then M
is free if and only if x1, . . . , xn is a regular sequence on M .

Proof. The “only if” part is clear, since x1, . . . , xn is a regular sequence on R and M
is a direct sum of copies of R. Let m = (x1, . . . , xn)R. Then V = M/mM is a finite-
dimensional K-vector space that is graded in case (2). Choose a K-vector space basis for
V consisting of homogeneous elements in case (2), and let u1, . . . , uh ∈ M be elements
of M that lift these basis elements and are homogeneous in case (2). Then the uj span
M by the relevant form of Nakayama’s Lemma, and it suffices to prove that they have no
nonzero relations over R. We use induction on n. The result is clear if n = 0.

Assume n > 0 and let N = {(r1, . . . , rh) ∈ Rh : r1u1+· · ·+rhuh = 0}. By the induction
hypothesis, the images of the uj in M/x1M are a free basis for M/x1M . It follow that if
ρ = (r1, . . . , rh) ∈ N , then every rj is 0 in R/x1R, i.e., that we can write rj = x1sj for all
j. Then x1(s1u1 + · · ·+ shuh) = 0, and since x1 is not a zerodivisor on M , we have that
s1u1 + · · ·+ shuh = 0, i.e., that σ = (s1, . . . , sh) ∈ N . Then ρ = x1σ ∈ x1N , which shows
that N = x1N . Thus, N = 0 by the appropriate form of Nakayama’s Lemma. �

We next observe:
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Theorem. Let R be a finitely generated graded algebra of dimension n over R0 = K, a
field. Let m denote the homogeneous maximal ideal of R. The following conditions are
equivalent.

(1) Some homogeneous system of parameters is a regular sequence.

(2) Every homogeneous system of parameters is a regular sequence.

(3) For some homogeneous system of parameters F1, . . . , Fn, R is a free-module over
K[F1, . . . , Fn].

(4) For every homogeneous system of parameters F1, . . . , Fn, R is a free-module over
K[F1, . . . , Fn].

(5) Rm is Cohen-Macaulay.

(6) R is Cohen-Macaulay.

Proof. The proof of the equivalence of (1) and (2) is the same as for the local case, already
given above.

The preceding Lemma yields the equivalence of (1) and (3), as well as the equivalence
of (2) and (4). Thus, (1) through (4) are equivalent.

It is clear that (6) ⇒ (5). To see that (5) ⇒ (2) consider a homogeneous system of
parameters in R. It generates an ideal whose radical is m, and so it is also a system
of parameters for Rm. Thus, the sequence is a regular sequence in Rm. We claim that
it is also a regular sequence in R. If not, xk+1 is contained in an associated prime of
(x1, . . . , xk) for some k, 0 ≤ k ≤ n − 1. Since the associated primes of a homogeneous
ideal are homogeneous, this situation is preserved when we localize at m, which gives a
contradiction.

To complete the proof, it will suffice to show that (1) ⇒ (6). Let F1, . . . , Fn be a ho-
mogeneous system of parameters for R. Then R is a free module over A = K[F1, . . . , Fn],
a polynomial ring. Let Q be any maximal ideal of R and let P denote its contraction to
A, which will be maximal. These both have height n. Then AP → RQ is faithfully flat.
Since A is regular, AP is Cohen-Macaulay. Choose a system of parameters for AP . These
form a regular sequence in AP , and, hence, in the faithfully flat extension RQ. It follows
that RQ is Cohen-Macaulay. �

|

From part (2) of the Lemma on p. 8 we also have:

Theorem. Let R be a module-finite local extension of a regular local ring A. Then R is
Cohen-Macaulay if and only if R is A-free.

It it is not always the case that a local ring (R, m, K) is module-finite over a regular
local ring in this way. But it does happen frequently in the complete case. Notice that the
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property of being a regular sequence is preserved by completion, since the completion R̂ of
a local ring is faithfully flat over R, and so is the property of being a system of parameters.
Hence, R is Cohen-Macaulay if and only if R̂ is Cohen-Macaulay.

If R is complete and contains a field, then there is a coefficient field for R, i.e., a field
K ⊆ R that maps isomorphically onto the residue class field K of R. Then, if x1, . . . , xn

is a system of parameters, R turns out to be module-finite over the formal power series
ring K[[x1, . . . , xn]] in a natural way. Thus, in the complete equicharacteristic local case,
we can always find a regular ring A ⊆ R such that R is module-finite over A, and think of
the Cohen-Macaulay property as in the Theorem above.

The structure theory of complete local rings is discussed in detail in the Lecture Notes
from Math 615, Winter 2007: see the Lectures of March 21, 23, 26, 28, and 30 as well as
the Lectures of April 2 and April 4.

|

Cohen-Macaulay modules

All of what we have said about Cohen-Macaulay rings generalizes to a theory of Cohen-
Macaulay modules. We give a few of the basic definitions and results here: the proofs are
very similar to the ring case, and are left to the reader.

If M is a module over a ring R, the Krull dimension of M is the Krull dimension of
R/AnnR(I). If (R, m, K) is local and M 6= 0 is finitely generated of Krull dimension
d, a system of parameters for M is a sequence of elements x1, . . . , xd ∈ m such that,
equivalently:

(1) dim
(
M/(x1, . . . , xd)M

)
= 0.

(2) The images of x1, . . . , xd form a system of parameters in R/AnnRM .

In this local situation, M is Cohen-Macaulay if one (equivalently, every) system of
parameters for M is a regular sequence on M . If J is an ideal of R/AnnRM of height h,
then it contains part of a system of parameters for R/AnnRM of height h, and this will
be a regular sequence on M . It follows that the Cohen-Macaulay property for M passes
to MP for every prime P in the support of M . The arguments are all essentially the same
as in the ring case.

If R is any Noetherian ring M 6= 0 is any finitely generated R-module, M is called
Cohen-Macaulay if all of its localizations at maximal (equivalently, at prime) ideals in its
support are Cohen-Macaulay.

|

The Cohen-Macaulay condition is increasingly restrictive as the Krull dimension in-
creases. In dimension 0, every local ring is Cohen-Macaulay. In dimension one, it is
sufficient, but not necessary, that the ring be reduced: the precise characterization in di-
mension one is that the maximal ideal not be an embbeded prime ideal of (0). Note that
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K[[x, y]]/(x2) is Cohen-Macaulay, while K[[x, y]]/(x2, xy) is not. Also observe that all
one-dimensional domains are Cohen-Macaulay.

In dimension 2, it suffices, but is not necessary, that the ring R be normal, i.e., integrally
closed in its ring of fractions. Note that a normal Noetherian ring is a finite product of
normal domains. If (R, m, K) is local and normal, then it is a doman. The associated
primes of a principal ideal are minimal if R is normal. Hence, if x, y is a system of
parameters, y is not in any associated prime of xR, i.e., it is not in any associated prime
of the module R/xR, and so y is not a zerodivisor modulo xR.

The two dimensional domains K[[x2, x2, y, xy]] and K[x4, x3y, xy3, y4]] (one may also
use single brackets) are not Cohen-Macaulay: as an exercise, the reader may try to see
that y is a zerodivisor mod x2 in the first, and that y4 is a zerodivisor mod x4 in the
second. On the other hand, while K[[x2, x3, y2, y3]] is not normal, it is Cohen-Macaulay.

|

Direct summands of rings

Let R ⊆ S be rings. We want to discuss the consequences of the hypothesis that the
inclusion R ↪→ S splits as a map of R-modules. When this occurs, we shall simply say
that R is a direct summand of S. When we have such a splitting, we have an R-linear map
ρ : S → R that is the identity on R. Here are some facts.

Proposition. Let R be a direct summand of S. Then:

(a) For every ideal I of R, IS ∩R = I.

(b) If S is Noetherian, then R is Noetherian.

(c) If R is an N-graded ring with R0 = A and S is Noetherian , then R is finitely generated
over A.

(d) If S is a normal domain, then R is normal.

Proof. Let ρ be a splitting.

(a) If r ∈ R is such that r =
∑h

i=1 fisi with the fi ∈ I and the si ∈ S, so that r is
a typical element of IS ∩ R, then r = ρ(r) =

∑n
i=1 fiρ(si), since the fi ∈ R. Since each

ρ(si) ∈ R, we have that r ∈ I.

(b) If {In}n is a nondecreasing chain of ideals of R, we have that the chain {InS}n is
stable from some point on, say ItS = INS for all t ≥ N . We may then apply (a) to obtain
that It = ItS ∩R = INS ∩R = IN for all t ≥ N .

(c) From part (b), R is Noetherian, and so the ideal J spanned by all forms of
positive degree is finitely generated, say by forms F1, . . . , Fn of positive degree. Then
R = A[F1, . . . , Fn]: otherwise, choose a form G of least degree that is in R and not in
A[F1, . . . , Fn]. Then G ∈ J , and so we can write G as a sum of terms HjFj where every
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Hj is a nonzero form such that deg(Hj) + deg(Fj) = deg(G). Since deg(Hj) < deg(G),
every Hj ∈ A[F1, . . . , Fn], and the result follows.

(d) Let a, b ∈ R with b 6= 0 such that a/b is integral over R. Then a/b is an element
of frac (S) integral over S as well, and so a/b ∈ S. Thus, a ∈ bS ∩ R = bR by part (a).
and so a = br with r ∈ R. This shows that r = a/b ∈ R. �

|

|

Segre products

Let R and S be finitely generated N-graded K-algebras with R0 = S0 = K. We define
the Segre product R©s K S of R and S over K to be the ring

∞⊕
n=1

Rn ⊗K Sn,

which is a subring of R ⊗K S. In fact, R ⊗K S has a grading by N × N whose (m,n)
component is Rm ⊗K Sn. (There is no completely standard notation for Segre products:
the one used here is only one possbility.) The vector space⊕

m6=n

Rm ⊗K Sn ⊆ R⊗K S

is an R©s K S-submodule of R ⊗K S that is an R©s K S-module complement for R©s K S.
That is, R©s K S is a direct summand of R⊗K S when the latter is regarded as an R©s K S-
module. It follows that R©s K S is Noetherian and, hence, finitely generated over K.
Moreover, if R⊗K S is normal then so is R©s K S. In particular, if R is normal and S is a
polynomial ring over K then R©s K S is normal.

|

Let S = K[X, Y, Z]/(X3 +Y 3 +Z3) = K[x, y, z], where K is a field of characteristic
different from 3: this is a homogeneous coordinate ring of an elliptic curve C, and is often
referred to as a cubical cone. Let T = K[s, t], a polynomial ring, which is a homogeneous
coordinate ring for the projective line P1 = P1

K . The Segre product of these two rings
is R = K[xs, ys, zs, xt, yt, zt] ⊆ S[s, t], which is a homogeneous coordinate ring for the
smooth projective variety C×P1. This ring is a normal domain with an isolated singularity
at the origin: that is, its localization at any prime ideal except the homogeneous maximal
ideal m is regular. R and Rm are normal but not Cohen-Macaulay.
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|
We give a proof that R is not Cohen-Macaulay. The equations

(zs)3 +
(
(xs)3 + (ys)3

)
= 0 and (zt)3 +

(
(xt)3 + (yt)3

)
= 0

show that zs and zt are both integral over D = K[xs, ys, xt, zt] ⊆ R. The elements
x, y, s, and t are algebraically independent, and the fraction field of D is K(xs, ys, t/s),
so that dim (D) = 3, and

D ∼= K[X11, X12, X21, X22]/(X11X22 −X12X21)

with X11, X12, X21, X22 mapping to xs, ys, xt, yt respectively.

It is then easy to see that ys, xt, xs− yt is a homogeneous system of parameters for
D, and, consequently, for R as well. The relation

(zs)(zt)(xs− yt) = (zs)2(xt)− (zt)2(ys)

now shows that R is not Cohen-Macaulay, for (zs)(zt) /∈ (xt, ys)R. To see this, suppose
otherwise. The map

K[x, y, z, s, t] → K[x, y, z]

that fixes K[x, y, z] while sending s 7→ 1 and t 7→ 1 restricts to give a K-algebra map

K[xs, ys, zs, xt, yt, zt] → K[x, y, z].

If (zs)(zt) ∈ (xt, ys)R, applying this map gives z2 ∈ (x, y)K[x, y, z], which is false — in
fact, K[x, y, z]/(x, y) ∼= K[z]/(z3). �

|

Cohen-Macaulay rings are wonderfully well-behaved in many ways: we shall discuss
this at considerable length later. Of course, regular rings are even better.

One of the main objectives in these lectures is to discuss two ways of dealing with rings
in which the Cohen-Macaulay property fails. One is the development of a tight closure
theory. The other is to prove the existence of “lots” of big Cohen-Macaulay algebras.
These two methods are closely related, and we shall explore that relationship. In any case,
one conclusion that one may reach is that rings that do not have the Cohen-Macaulay
property nonetheless have better behavior than one might at first expect.

The situation right now is that there are relatively satisfactory results for both of these
techniques for Noetherian rings containing a field. There are also results for local rings of
mixed characteristic in dimension at most 3. (For a mixed characteristic local domain, the
characteristic of the residue class field is a positive prime p while the characteristic of the
fraction field is 0. The p-adic integers give an example, as well as module-finite extensions
of formal power series rings over the p-adic integers.)
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|

The integral closure of an ideal

The Briançon-Skoda theorem discussed in (2) below refers to the integral closure I of
an ideal I. We make the following comments: for proofs, see the Lecture Notes from Math
711, Fall 2006, September 13 and September 15 (those notes also give a detailed treatment
of the Lipman-Sathaye proof of the Briançon-Skoda theorem). If I ⊆ R and u ∈ R then
u ∈ I precisely if for some n, u satisfies a monic polynomial

xn + r1x
n−1 + · · ·+ rn = 0

with rj ∈ Ij , 1 ≤ j ≤ n.

Alternatively, if one forms the Rees ring

R[It] = R + It + I2t2 + I3t3 + · · ·+ Intn + · · · ⊆ R[t],

where t is an indeterminate, the integral closure of R[It] in R[t] has the form

R + J1t + J2t
2 + J3t

3 + · · ·+ Jntn + · · ·

where every Jn ⊆ R is an ideal. It turns out that J1 = I, and, in fact, Jn = In for all
n ≥ 1.

It turns out as well that for u ∈ R, one has that u ∈ I if and only if u ∈ IV for every
map from R to a valuation domain V . When R is Noetherian, it suffices to consider maps
to Noetherian discrete valuation domains (we refer to such a domain as a DVR: this is
the same as a regular local ring of Krull dimension 1) such that the kernel of the map is
a minimal prime of R. In particular, if R is a Noetherian domain, it suffices to consider
injective maps of R into a DVR.

If R is a Noetherian domain, yet another characterization of I is as follows: u ∈ I if
and only if there is an element c ∈ R − {0} such that cun ∈ In for all n ∈ N (it suffices if
cun ∈ In for infinitely many values of n ∈ N).

|

Here are some of the results that can be proved using tight closure theory, which we
shall present even though we have not yet discussed what tight closure is.

(1) If R ⊆ T are rings such that T is regular and R is a direct summand of T as an R-
module, then R is Cohen-Macaulay. (This is known in the equal characteristic case:
it is an open question in general.)

(2) If I = (f1, . . . , fn) is an ideal of a regular ring R, then In ⊆ I. (The case where R is
regular is known even in mixed characteristic. In the case where R is equicharacteristic,
it is known that In is contained in the tight closure of I, with no restriction on the
Noetherian ring R.)
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(3) If I ⊆ R is an ideal and S is module-finite extension of R, then IS ∩ R is contained
in the tight closure of I in equal characteristic. (That is, tight closure “controls” how
large the contracted expansion of an ideal to a module-finite extension ring can be.)

(4) Tight closure can be used to prove that if R is regular, then R is a direct summand
of every module-finite extension ring. More generally, in equal characteristic, every
ring such that every ideal is tightly closed is a direct summand of every module-finite
extension ring. Whether the converse holds is an open question.

Whether every regular ring is a direct summand of every module-finite extension
remains an important open question in mixed characteristic, where it is known in
dimension at most 3. The proof in dimension 3, due to Ray Heitmann, is very difficult.
We shall discuss Heitmann’s work further.

(5) Tight closure can be used to prove theorems controlling the behavior of symbolic
powers of prime ideals in regular rings. (We shall give more details about this in the
next lecture.)

(6) Tight closure can be used in the proof of several subtle statements about homologi-
cal properties of local rings. These statements are known as “the local homological
conjectures.” Some are now theorems in equal characteristc but open in mixed charac-
teristic. Others are now known in general. Some remain open in every characteristic.
We shall discuss these in more detail later.

By a big Cohen-Macaulay module for a local ring (R, m, K) we mean a not necessarily
finitely generated R-module M such that every system of parameters of R is a regular
sequence on M . It is not sufficient for one system of parameters to be a regular sequence,
but if one system of parameters is a regular sequence then the m-adic completion of M has
the property that every system of parameters is a regular sequence. Some authors use the
term “big Cohen-Macaulay module” when one system of parameters is a regular sequence,
and call the big Cohen-Macaulay module “balanced” if every system of parameters is a
regular sequence.

An R-algebra S is called a big Cohen-Macaulay algebra over R if it is a big Cohen-
Macaulay module as well as an R-algebra.

The existence of big Cohen-Macaulay algebras is known if the local ring R contains a
field. The proof in equal characteristic 0 depends on reduction to characteristic p > 0. In
mixed characteristic, it is easy in dimension at most 2 and follows from difficult results of
Heitmann in dimension 3. We shall discuss all this at considerable length later.

Big Cohen-Macaulay algebras can be used to prove results like those mentioned in
(1), (4), and (6) for tight closure. I conjecture that the existence of a tight closure theory
with sufficiently good properties in mixed characteristic is equivalent to the existence of
sufficiently many big Cohen-Macaulay algebras in mixed characteristic. This is a somewhat
vague statement, in that I am not being precise about the meaning of the word “sufficiently”
in either half, but it is a point of view that forms one of the themes of these lectures, and
will be developed further.


