
Math 711: Lecture of September 12, 2007

In our treatment of tight closure for modules it will be convenient to use the Frobenius
functors, which we view as special cases of base change. We first review some basic facts
about base change.

Base change

If f : R → S is an ring homomorphism, there is a base change functor S ⊗R from
R-modules to S-modules. It takes the R-module M to the R-module S⊗R M and the map
h : M → N to the unique S-linear map S ⊗R M → S ⊗R N that sends s⊗ u 7→ s⊗ h(u)
for all s ∈ S and u ∈ M . This map may be denoted 1S ⊗R h or S ⊗R h. Evidently, base
change from R to S is a covariant functor. We shall temporarily denote this functor as
BR→S . It also has the following properties.

(1) Base change takes R to S.

(2) Base change commutes with arbitrary direct sums and with arbitrary direct limits.

(3) Base change takes Rn to Sn and free modules to free modules.

(4) Base change takes projective R-modules to projective S-modules.

(5) Base change takes flat R-modules to flat S-modules.

(6) Base change is right exact: if

M ′ → M → M ′′ → 0

is exact, then so is

S ⊗R M ′ → S ⊗R M → S ⊗R M ′′ → 0.

(7) Base change takes finitely generated modules to finitely generated modules: the num-
ber of generators does not increase.

(8) Base change takes the cokernel of the matrix
(
rij

)
to the cokernel of the matrix(

f(rij)
)
.

(9) Base change takes R/I to S/IS.

(10) For every R-module M there is a natural R-lineaar map M → S ⊗ M that sends
u 7→ 1⊗ u. More precisely, R-linearity means that ru 7→ g(r)(1⊗ u) = g(r)⊗ u for all
r ∈ R and u ∈ M .

(11) Given homomorphisms R → S and S → T , the base change functor BR→T for the
composite homomorphism R → T is the composition BS→T ◦ BR→S .
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Part (1) is immediate from the definition. Part (2) holds because tensor product com-
mutes with arbitrary direct sums and arbitrary direct limits. Part (3) is immediate from
parts (1) and (2). If P is a projective R-module, one can choose Q such that P ⊕Q is free.
Then (S⊗R P )⊕(S⊗R Q) is free over S, and it follows that both direct summands are pro-
jective over S. Part (5) follows because if M is an R-module, the functor (S ⊗R M)⊗S

on S-modules may be identified with the functor M ⊗R on S-modules. We have

(S ⊗R M)⊗S U ∼= (M ⊗R S)⊗S U ∼= M ⊗R M,

by the associativity of tensor. Part (6) follows from the corresponding general fact for
tensor products. Part (7) is immediate, for if M is finitely generated by n elements, we
have a surjection Rn � M , and this yields Sn � S ⊗R M . Part (8) is immediate from
part (6), and part (9) is a consequence of (6) as well. (10) is completely straightforward,
and (11) follows at once from the associativity of tensor products.

The Frobenius functors

Let R be a ring of prime characteristic p > 0. The Frobenius or Peskine-Szpiro functor
FR from R-modules to R-modules is simply the base change functor for f : R → S when
S = R and the homomorphism f : R → S is the Frobenius endomorphism F : R → R,
i.e, F (r) = rp for all r ∈ R. We may take the e-fold iterated composition of this functor
with itself, which we denote Fe

R. This is the same as the base change functor for the
homomorphism F e : R → R, where F e(r) = rpe

for all r ∈ R, by the iterated application
of (11) above. When the ring is clear from context, the subscript R is omitted, and we
simply write F or Fe.

We then have, from the corresponding facts above:

(1) Fe(R) = R.

(2) Fe commutes with arbitrary direct sums and with arbitrary direct limits.

(3) Fe(Rn) = Rn and Fe takes free modules to free modules.

(4) Fe takes projective R-modules to projective R-modules.

(5) Fe takes flat R-modules to flat R-modules.

(6) Fe is right exact: if
M ′ → M → M ′′ → 0

is exact, then so is
Fe(M ′) → Fe(M) → Fe(M ′′) → 0.

(7) Fe takes finitely generated modules to finitely generated modules: the number of
generators does not increase.

(8) Fe takes the cokernel of the matrix
(
rij

)
to the cokernel of the matrix

(
rpe

ij

)
.
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(9) Fe takes R/I to R/I [q]R.

By part (10) in the list of properties of base change, for every R-module M there is a
natural map M → Fe(M). We shall use uq to denote the image of u under this map, which
agrees with usual the usual notation when M = R. R-linearity then takes the following
form:

(10) For every R-module M the natural map M → Fe(M) is such that for all r ∈ R and
all u ∈ M , (ru)q = rquq.

We also note the following: given a homomorphism g : R → S of rings of prime
characteristic p > 0, we always have that g ◦ F e

R = F e
S ◦ g. In fact, all this says is that

g(rq) = g(r)q for all r ∈ R. This yields a corresponding isomorphism of compositions of
base change functors:

(11) Let R → S be a homomorphism of rings of prime characteristic p > 0. Then for every
R-module M , there is an identification S ⊗R Fe

R(M) ∼= Fe
S(S ⊗R M) that is natural

in the R-module M .

When N ⊆ M the map Fe(N) → Fe(M) need not be injective. We denote that image
of this map by N [q] or, more precisely, by N

[q]
M . However, one should keep in mind that

N [q] is a submodule of Fe(M), not of M itself. It is very easy to see that N [q] is the
R-span of the elements of Fe(M) of the form uq for u ∈ N . The module N [q] is also the
R-span of the elements uq

λ as uλ runs through any set of generators for N .

A very important special case is when M = R and N = I, an ideal of R. In this
situation, I

[q]
R is the same as I [q] as defined earlier. What happens here is atypical, because

F e(R) = R for all e.

Tight closure for modules

Let R be a Noetherian ring of prime characteristic p > 0. If N ⊆ M , we define the tight
closure N∗

M of N in M to consist of all elements u ∈ M such that for some c ∈ R◦,

cuq ∈ N
[q]
M ⊆ Fe(M)

for all q � 0. Evidently, this agrees with our definition of tight closure for an ideal I,
which is the case where M = R and N = I. If M is clear from context, the subscript M

is omitted, and we write N∗ for N∗
M . Notice that we have not assumed that M or N is

finitely generated. The theory of tight closure in Artinian modules is of very great interest.
Note that c may depend on M , N , and even u. However, c is not permitted to depend on
q. Here are some properties of tight closure:

Proposition. Let R be a Noetherian ring of prime characteristic p > 0, and let N, M ,
and Q be R-modules.

(a) N∗
M is an R-module.
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(b) If N ⊆ M ⊆ Q are R-modules, then N∗
Q ⊆ M∗

Q and N∗
M ⊆ N∗

Q.

(c) If Nλ ⊆ Mλ is any family of inclusions, and N =
⊕

λ Nλ ⊆
⊕

λ Mλ = M , then
N∗

M =
⊕

λ(N∗
λ)Mλ

.

(d) If R is a finite product of rings R1 × · · · × Rn, Ni ⊆ Mi are Ri-modules, 1 ≤ i ≤ n,
M is the R-module M1 × · · · ×Mn, and N ⊆ M is N1 × · · · ×Nn, then N∗

M may be
identify with (N1)∗M1

× · · · × (Nn)∗Mn
.

(e) If I is an ideal of R, I∗N∗
M ⊆ (IN)∗M .

(f) If N ⊆ M and V ⊆ W are R-modules and h : M → W is an R-linear map such that
h(N) ⊆ V , then h(N∗

M ) ⊆ V ∗
W .

Proof. (a) Let c, c′ ∈ R◦. If cuq ∈ N [q] for q ≥ q0, then c(ru)q ∈ N [q] for q ≥ q0. If
c′vq ∈ Nq for q ≥ q1 then (cc′)(u + v)q ∈ N [q] for q ≥ max{q0, q1}.

(b) The first statment holds because we have that N
[q]
Q ⊆ M

[q]
Q for all q, and the second

because the map F e(M) → F e(Q) carries N
[q]
M into N

[q]
Q .

(c) is a straightforward application of the fact that tensor product commutes with
direct sum and the definition of tight closure. Keep in mind that every element of the
direct sum has nonzero components from only finitely many of the modules.

(d) is clear: note that (R1 × · · · ×Rn)◦ = R◦
1 × · · · ×R◦

n.

(e) If c, c′ ∈ R◦, cfq ∈ I [q] for q � 0, and c′u[q] ∈ N [q] for q � 0, then (cc′)(fu)q =
(cfq)(c′uq) ∈ I [q]N [q] for q � 0, and I [q]N [q] = (IN)[q] for every q.

(f) This argument is left as an exercise. �

Let R and S be Noetherian rings of prime characteristic p > 0. We will frequently be
in the situation where we want to study the effect of base change on tight closure. For this
purpose, when N ⊆ M are R-modules, it will be convenient to use the notation 〈S ⊗R N〉
for the image of S ⊗R N in S ⊗R M . Of course, one must know what the map N ↪→ M is,
not just what N is, to be able to interpret this notation. Therefore, we may also use the
more informative notation 〈S ⊗R N〉M in cases where it is not clear what M is. Note that
in the case where M = R and N = I ⊆ R, 〈S ⊗R I〉 = IS, the expansion of I to S. More
generally, if N ⊆ G, where G is free, we may write NS for 〈S ⊗R N〉G ⊆ S ⊗G, and refer
to NS as the expansion of N , by analogy with the ideal case.

Proposition. Let R → S be a homomorphism of Noetherian rings of prime characteristic
p > 0 such that R◦ maps into S◦. In particular, this hypothesis holds (1) if R ⊆ S are
domains, (2) if R → S is flat, or if (3) S = R/P where P is a minimal prime of S. Then
for all modules N ⊆ M , 〈S ⊗R N∗

M 〉M ⊆ (〈S ⊗R N〉M )∗S⊗RM .

Proof. It suffices to show that if u ∈ N∗ then 1⊗ u ∈ 〈S ⊗R N〉∗. Since the image of c is
in S◦, this follows because c(1⊗ uq) = 1⊗ cuq ∈ 〈S ⊗R N [q]〉 = 〈S ⊗R N〉[q].
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The statement about when the hypothesis holds is easily checked: the only case that
is not immediate from the definition is when R → S is flat. This can be checked by proving
that every minimal prime Q of S lies over a minimal prime P of R. But the induced map
of localizations RP → SQ is faithfully flat, and so injective, and QSQ is nilpotent, which
shows that PRP is nilpotent. �

Tight closure, like integral closure, can be checked modulo every minimal prime of R.

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Let P1, . . . , Pn be
the minimal primes of R. Let Di = R/Pi. Let N ⊆ M be R-modules, and let u ∈ M . Let
Mi = Di ⊗R M = M/PiM , and let Ni = 〈Di ⊗R N〉. Let ui be the image of u in Mi.
Then u ∈ N∗

M over R if and only if for all i, 1 ≤ i ≤ n, ui ∈ (Ni)∗Mi
over Di.

If M = R and N = I, we have that u ∈ I∗ if and only if the image of u in Di is in
(IDi)∗ in Di, working over Di, for all i, 1 ≤ i ≤ n.

Proof. The final statement is just a special case of the Theorem. The “only if” part follows
from the preceding Proposition. It remains to prove that if u is in the tight closure modulo
every Pi, then it is in the tight closure. This means that for every i there exists ci ∈ R−Pi

such that for all q � 0, ciu
q ∈ N [q] + PiF

e(M), since Fe(M/PiM) working over Di may
be identified with Fe(M)/PiFe(M). Choose di so that it is in all the Pj except Pi. Let
J be the intersection of the Pi, which is the ideal of all nilpotents. Then for all i and all
q � 0,

(∗i) diciu
q ∈ N [q] + JF e(M),

since every diPi ⊆ J .

Then c =
∑n

i=1 dici cannot be contained in the union of Pi, since for all i the i th
term in the sum is contained in all of the Pj except Pi. Adding the equations (∗i) yields

cuq ∈ N [q] + JF e(M)

for all q � 0, say for all q ≥ q0. Choose q1 such that J [q1] = 0. Then cq1uqq1 ∈ N [qq1] for
all q ≥ q0, which implies that cquq ∈ N [q] for all q ≥ q1q0. �

Let R have minimal primes P1, . . . , Pn, and let J = P!∩· · ·∩Pn, the ideal of nilpotent
elements of R, so that Rred = R/J . The minimal primes of R/J are the ideals Pi/J , and
for every i, Rred/(Pi/J) ∼= R/Pi. Hence:

Corollary. Let R be a Noetherian ring of prime characteristic p > 0, and let J be the ideal
of all nilpotent elements of R. Let N ⊆ M be R-modules, and let u ∈ M . Then u ∈ N∗

M

if and only if the image of u in M/JM is in 〈N/J〉∗M/JM working over Rred = R/J .

We should point out that it is easy to prove the result of the Corollary directly without
using the preceding Theorem.

We also note the following easy fact:
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Proposition. Let R be a Noetherian ring of prime characteristic p > 0. Let N ⊆ M be
R-modules. If u ∈ N∗

M , then for all q0 = pe0 , uq0 ∈ (N [q0])∗Fe0 (M).

Proof. This is immediate from the fact that (N [q0])[q] ⊆ Fe
(
Fe0(M)

)
, if we identify the

latter with Fe0+e(M), is the same as N [q0q]. �

We next want to consider what happens when we iterate the tight closure operation.
When M is finitely generated, and quite a bit more generally, we do not get anything new.
Later we shall develop a theory of test elements for tight closure that will enable us to
prove corresponding results for a large class of rings without any finiteness conditions on
the modules.

Theorem. Let R be a Noetherian ring of prime characteristic p > 0, and let N ⊆ M be
R-modules. Consider the condtion :

(#) there exist an element c ∈ R◦ and q0 = pe0 such that for all u ∈ N∗, cuq ∈ N [q] for
all q ≥ q0,

which holds whenever N∗/N is a finitely generated R-module. If (#) holds, then (N∗
M )∗M =

N∗
M .

Proof. We first check that (#) holds when N∗/N is finitely generated. Let u1, . . . , un be
elements of N∗ whose images generate N∗/N . Then for every i we can choose ci ∈ R◦ and
qi such that for all q ≥ qi, we have that ciu

q ∈ N [q] for all q ≥ qi. Let c = c1 · · · cn and let
q0 = max{q1, . . . , qn}. Then for all q ≥ q0, cuq

i ∈ N [q], and if u ∈ N , the same condition
obviously holds. Since every element of N∗ has the form r1u1 + · · ·+ rnun + u where the
ri ∈ R and u ∈ N , it follows that (#) holds.

Now assume # and let v ∈ (N∗)∗. Then there exists d ∈ R◦ and q′ such that for all
q ≥ q′, dvq ∈ (N∗)[q], and so dvq is in the span of elements wq for w ∈ N∗. If q ≥ q0, we
know that every cwq ∈ N [q]. Hence, for all q ≥ max{q′, q0}, we have that (cd)vq ∈ N [q],
and it follows that v ∈ N∗. �

Of course, if M is Noetherian, then so is N∗, and condition (#) holds. Thus:

Corollary. Let R be a Noetherian ring of prime characteristic p > 0, and let N ⊆ M be
finitely generated R-modules. Then (N∗

M )∗M = N∗
M . �


