
Math 711: Lecture of September 17, 2007

Definition. Let R be a Noetherian ring of prime characteristic p > 0. R is called weakly
F-regular if every ideal is tightly closed. R is called F-regular if all of its localizations are
weakly F-regular.

It is an open question whether, under mild conditions, e.g., excellence, weakly F-regular
implies F-regular.

We shall show eventually that over a weakly F-regular ring, every submodule of every
finitely generated module is tightly closed.

Since we have already proved that every regular ring of prime characteristic p > 0 is
weakly F-regular and since the class of regular rings is closed under localization, it follows
that every regular ring is F-regular.

|
We note the following fact.

Lemma. Let R be any Noetherian ring, let M be a finitely generated module, and let
u ∈ M . Suppose that N ⊆ M is maximal with respect to the condition that u /∈ N . Then
M/N has finite length, and it has a unique associated prime, which is a maximal ideal m
with a power that kills M . In this case u spans the socle AnnMNm of M/N .

Proof. The maximality of N implies that the image of u is in every nonzero submodule
of M/N . We change notation: we may replace M by M/N , u by its image in M/N , and
N by 0. Thus, we may assume that u is in every nonzero submodule of M , and we want
to show that M has a unique associated prime. We also want to show that this prime is
maximal. If v ∈ M and w ∈ M have distinct prime annihilators P and Q, we have that
Rv ∼= R/P and Rw ∼= R/Q. Any nonzero element of Rv ∩Rw has annihilator P (thinking
in R/P ) and also has annihilator Q. It follows that P = Q after all.

Thus, Ass (M) consists of a single prime ideal P . If P is not maximal, we have an
embedding R/P ↪→ M . Then u is in the image of R/P , and is in every nonzero ideal of
R/P . If R/P = D has dimension one or more, then it has a prime ideal P ′ other than 0.
Then u must be in every power of P ′, and so u is in every power of the maximal ideal of the
local ring DP ′ , a contradiction. It follows that Ass (M) consists of a single maximal ideal
m. This implies that M has a finite filtration by copies of R/m, and is therefore killed by
a power of m. Then u must be in the socle AnnMm, which must be a one-dimensional
vector space over K = R/m, or else it will have a subspace that does not contain u. �

Proposition (prime avoidance for cosets). Let S be any commutative ring, x ∈ S,
I ⊆ S an ideal and P1, . . . , Pk prime ideals of S. Suppose that the coset x+ I is contained
in

⋃k
i=1 Pi. Then there exists j such that Sx + I ⊆ Pj.

1



2

Proof. If k = 1 the result is clear. Choose k ≥ 2 minimum giving a counterexample. Then
no two Pi are comparable, and x + I is not contained in the union of any k − 1 of the Pi.
Now x = x + 0 ∈ x + I, and so x is in at least one of the Pj : say x ∈ Pk. If I ⊆ Pk, then
Sx + I ⊆ Pk and we are done. If not, choose i0 ∈ I − Pk. We can also choose i ∈ I such
that x + i /∈

⋃k−1
j=1 Pi. Choose uj ∈ Pj − Pk for j < k, and let u be the product of the uj .

Then ui0 ∈ I − Pk, but is in Pj for j < k. It follows that x + (i + ui0) ∈ x + I, but is not
in any Pj , 1 ≤ j ≤ k, a contradiction. �

Proposition. Let R be a Noetherian ring and let W be a multiplicative system. Then
every element of (W−1R)◦ has the form c/w where c ∈ R◦ and w ∈ W .

Proof. Suppose that c/w ∈ (W−1R)◦ where c ∈ R and w ∈ W . Let p1, . . . , pk be the
minimal primes of R that do not meet W , so that the ideals pjW

−1R for 1 ≤ j ≤ k are all
of the minimal primes of W−1R. It follows that the image of p1 ∩ · · · ∩ pk is nilpotent in
W−1R, and so we can choose an integer N > 0 such that I = (p1 ∩ · · · ∩ pk)N has image
0 in W−1R. If c + I is contained in the union of the minimal primes of R, then by the
coset form of prime avoidance above, it follows that cR + I ⊆ p for some minimal prime
p of R. Since I ⊆ p, we have that p1 ∩ · · · ∩ pk ⊆ p, and it follows that pj = p for some
j, where 1 ≤ j ≤ k. But then c ∈ pj , a contradiction, since c/w and, hence, c/1, is not
in any minimal prime of R◦. Thus, we can choose g ∈ I such that c + g is in R◦, and we
have that c/w = (c + g)/w since g ∈ I. �

Lemma. Let R be a Noetherian ring of prime characteristic p > 0. Let A be an ideal of
R primary to a maximal ideal m of R. Then A is tightly closed in R if and only if ARm

is tightly closed in Rm.

Proof. Note that R/A is already a local ring whose only maximal ideal is m/A. It follows
that (∗) R/A ∼= (R/A)m = Rm/ARm. If u ∈ R − A but u ∈ A∗, this is evidently
preserved when we localize at m. Hence, if ARm is tightly closed in Rm, then A is tightly
closed in R. Now suppose (ARm)∗ in Rm contains an element not in ARm. Without loss
of generality, we may assume that this element has the form f/1 where f ∈ R. Suppose
that c1 ∈ R◦

m has the property that c1f
q ∈ A[q]Rm = (ARm)[q] for all q � 0. By the

preceding Proposition, c1 has the form c/w where c ∈ R◦ and w ∈ R−m. We may replace
c1 by wc1, since w is a unit, and therefore assume that c1 = c/1 is the image of c ∈ R◦.
Then cfq/1 ∈ A[q]Rm for all q � 0. It follows from (∗) above that cfq ∈ A[q] for all q � 0,
and so f ∈ A∗

R, as required. �

We have the following consequence:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Then the following
conditions are equivalent:

(a) R is weakly F-regular.

(b) Rm is weakly F-regular for every maximal ideal m of R.

(c) Every ideal of R primary to a maximal ideal of R is tightly closed.
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Proof. It is clear that (a) ⇒ (c). To see that (c) ⇒ (a), assume (c) and suppose, to the
contrary, that u ∈ I∗ − I in R. Let A be maximal in R with respect to the property of
containing I but not u. By the Lemma on p. 1, R/A is killed by a power of a maximal
ideal m, so that A is m-primary. We still have u ∈ A∗ − A, a contradiction. Then (b)
holds if and only if all ideals primary to the maximal ideal of some Rm are tightly closed,
and the equivalence with (c) follows from the preceding Lemma. �

|

We next make the following elementary observations about tight closure.

Proposition. Let R be a Noetherian ring of prime characteristic p > 0.

(a) The tight closure of 0 in R is the ideal J of all nilpotent elements of R.

(b) For every ideal I ⊆ R, I∗ ⊆ I ⊆ Rad (I).

(c) Prime ideals, radical ideals, and integrally closed ideals are tightly closed in R.

Proof. (a) If cuq = 0 and c is not in any minimal prime, then uq is in every minimal prime,
and, hence, so is u. This shows that 0∗ ⊆ J . On the other hand, if u is nilpotent, uq0 = 0
for sufficiently large q0, and then 1 · uq = 0 for all q ≥ q0.

(b) Suppose u ∈ I∗. To show that u ∈ I, it suffices to verify this modulo every minimal
prime P of R. When we pass to R/P , we still have that the image of u is in the tight
closure of I(R/P ). Hence, we may assume that R is a domain. We then have c 6= 0 such
that cuq ∈ I [q] ⊆ Iq for all sufficiently large q, and, in particular, for infinitely many q.
This is sufficient for u ∈ I. If u ∈ I, u satisfies a monic polynomial

un + f1u
n−1 + · · ·+ fn = 0

with fj ∈ IJ for j ≥ 1. Thus, all terms but the first are in I, and so un ∈ I, which implies
that u ∈ Rad (I).

(c) It is immediate from part (b) that integrally closed ideals are tightly closed in R,
and that radical ideals are integrally closed. Of course, prime ideals are radical. �

We next give a tight closure version of the Briançon-Skoda theorem. This result was
proved by Briançon and Skoda [J. Briançon and H. Skoda, Sur la clôture intégrale d’un
idéal de germes de fonctions holomorphes en un point de Cn, C.R. Acad. Sci. Paris Sér. A
278 (1974) 949–951] for finitely generated C-algebras and analytic regular local rings using
a criterion of Skoda [H. Skoda, Applications des techniques L2 a la théorie des idéaux d’une
algébre de fonctions holomorphes avec poids, Ann. Scient. Ec. Norm. Sup. 4éme série, t.
5 (1972) 545–579] for when an analytic function is in an ideal in terms of the finiteness
of a certain integral. Lipman and Teissier [J. Lipman and B. Teissier, Pseudo-rational
local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan
Math. J. 28 (1981) 97–116] gave an algebraic proof for certain cases, and Lipman and
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Sathaye [J. Lipman and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda,
Michigan Math. J. 28 (1981) 199–222] proved the result in general for regular rings. A
detailed treatment of the Lipman-Sathaye argument is given in the Lecture Notes from
Math 711, Fall 2006: see particularly the Lectures of September 25, 27, and 29, as well as
the Lectures of October 2, 4, 6, 9, 11, and 13.

Tight closure gives an unbelievably simple proof of the theorem that is more general
than these results in the equicharacteristic case, but the Lipman-Sathaye argument is the
only one that is valid in mixed characteristic. Notice that in the tight closure version
of the Theorem just below, the first statement is valid for any Noetherian ring of prime
characteristic p > 0.

Theorem (Briançon-Skoda). Let R be a Noetherian ring of prime characteristic p > 0.
Let I be an ideal of R that is generated by n elements. Then In ⊆ I∗. Hence, if R is regular
(or weakly F-regular) then In ⊆ I.

Proof. We may work modulo each minimal prime in turn, and so assume that R is a
domain. If u ∈ In there exists c 6= 0 such that for all k � 0, cuk ∈ (In)k = Ink. In
particular, this is true when k = q = pe. The ideal Inq = (f1, . . . , fn)nq is generated by
the monomials fa1

1 · · · fan
n of degree nq in the fj . But when a1 + · · · + aq = nq, at least

one of the ai is ≥ q: if all are ≤ q− 1, their sum is ≤ n(q− 1) < nq. Thus, Inq ⊆ I [q], and
we have that cuq ∈ I [q] for all q � 0. This shows that u ∈ I∗. The final statement holds
because all ideals of a regular ring are tightly closed, �

|
The Briançon-Skoda Theorem is often stated in a stronger but more technical form.

The hypothesis is the same: I is an ideal generated by n elements. The conclusion is
that In+m−1 ⊆ (Im)∗ for all integers m ≥ 1. The version we stated first is the case
where m = 1. The argument for the strengthened version is very similar, but slightly
more technical. Again, we may assume that R is a domain and that cuq ⊆ (In+m−1)q

for all q � 0. Consider a monomial fa1
1 · · · fan

n where the sum of the ai is (n + m − 1)q.
We can write each ai = biq + ri, where 0 ≤ ri ≤ q − 1. It will suffice to show that
the sum of the bi is at least m, for then the monomial is in (Im)[q], and we have that
u ∈ (Im)∗. But if the sum of the bi is at most m − 1, then the sum of the ai is bounded
by (m− 1)q + n(q − 1) = (n + m− 1)q − n < (n + m− 1)q, a contradiction. �

|

The equal characteristic 0 form of the Theorem can be deduced from the characteristic
p form by standard methods of reduction to characteristic p.

The basic tight closure form of the Briançon-Skoda theorem is of interest even in the
case where n = 1, which has the following consequence.

Proposition. Let R be a Noetherian ring of prime characteristic p > 0. The tight closure
of the principal ideal I = fR is the same as its integral closure.
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Proof. By the Briançon-Skoda theorem when n = 1, we have that I ⊆ I∗, while the other
inclusion always holds. �

We next observe:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. If the ideal (0)
and the principal ideals generated by nonzerodivisors are tightly closed, then R is normal.
Thus, if every principal ideal of R is tightly closed, then R is normal. Consequently, weakly
F-regular rings are normal.

Proof. The hypothesis that (0) is tightly closed is equivalent to the assumption that R is
reduced. Henceforth, we assume that R is reduced.

If R is a product S × T then the hypothesis on R holds in both factors. E.g., if s is a
nonzerodivisor in s, then (s, 1) is a nonzerodivisor in T : it generates the ideal sS×T , and
its tight closure in S × T is (sS)∗S × T . But this is the same as sS × T if and only if sS is
tightly closed in S.

Therefore, we may assume that R is not a product, i.e., that Spec (R) is connected.
We first want to show that R is a domain in this case. If not, there are minimal primes
P1, . . . , Pn, n ≥ 2, and we can choose an element ui in Pi−

⋃
j 6=i Pj for every i. Let u = u1,

which is in P1 and no other minimal prime, and v = u2 · · ·un, which is in P2∩· · ·∩Pn and
not in P1. Then uv is in every minimal prime, and so is 0, while f = u + v is a not in any
minimal prime, and so is not a zerodivisor. We claim that u ∈ (fR)∗. It suffices to check
this modulo every Pi. But mod P1, u ≡ 0 = 0 · f , and mod Pj for j > 1, u ≡ f = 1 · f .
Since (fR)∗ = fR, we can write u = e(u + v) for some element e ∈ R. This means that
(1− e)u = ev. Mod P1, u ≡ 0 while v 6≡ 0, and so e ≡ 0 mod P1. Mod Pj for j > 1, u 6≡ 0
while v ≡ 0, and so e ≡ 1 mod Pj . It follows that e2− e is in every minimal prime, and so
is 0. Since whether its value mod Pi is 0 or 1 depends on i, e is a non-trivial idempotent
in R, a contradiction.

Thus, we may assume that R is a domain. Now suppose that f, g ∈ R with g 6= 0 and
that f/g is integral over R. Then we have an equation of integral dependence

(f/g)s + r1(f/g)s−1 + · · ·+ rj(f/g)s−j + · · ·+ rs = 0

with the rj ∈ R. Multiplying by gs we obtain

fs + (r1g)fs−1 + · · · (rjg
j)fs−j + · · ·+ rsg

s = 0,

which shows that f is in the integral closure of gR. Thus, f ∈ (gR)∗, and this is gR
by hypothesis. Consequently, f = gr with r ∈ R, which shows that f/g = r ∈ R, as
required. �

We next want to discuss the use of tight closure to prove Theorems about the behavior
of symbolic powers in regular rings of prime characteristic p > 0. The characteristic p



6

results imply corresponding results in equal characteristic 0. The following result was first
proved in equal characteristic 0 by Ein, Lazarsfeld, and Smith [L. Ein, R. Lazarsfeld, and
K. E. Smith, Uniform bounds and symbolic powers on smooth varieties, Inventiones Math.
144 (2001) 241–252], using the theory of multiplier ideals. The proof we give here may
be found in [M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of
ideals, Inventiones Math. 147 (2002) 349–369].

Theorem. Let P be a prime ideal of height h in a regular ring R of prime characteristic
p > 0. Then for every integer n ≥ 1, P (hn) ⊆ Pn.

There are sharper results if one places additional hypotheses on R/P . An extreme
example is to assume that R/P is regular so that, locally, P is generated by a regular
sequence. In this case, the symbolic and ordinary powers of P are equal. Doubtless the
best results of this sort remain to be discovered. It is not known whether the conclusion of
the Theorem above holds in regular rings of mixed characteristic. The version stated above
remains true with the hypotheses weakened in various ways. There are further comments
about what can be proved in the sequel: see the last paragraph on p. 7. We have attempted
to give a result that is of substantial interest but that has relatively few technicalities in its
proof. The methods used here also yield the result that, without any regularity hypothesis
on R, if R/P has finite projective dimension over R then

P (hn) ⊆ (Pn)∗.

Of course, if R is regular the hypothesis of finite projective dimension is automatic, while
one does not need to take the tight closure on the right because, in a regular ring, every
ideal is tightly closed.

We postpone the proof of the Theorem to give a preliminary result that we will need.

Lemma. Let P be a prime ideal of height h in a regular ring R of prime characteristic
p > 0.

(a) P [q] is primary to P .

(b) P (qh) ⊆ P [q].

Proof. For part (a), we have that Rad (P [q]) = P , clearly. Let f ∈ R − P . It suffices to
show that f is not a zerodivisor on R/P [q]. Since

0 → R/P
f ·−→ R/P

is exact, it remains exact when we tensor with R viewed as an R-algebra via F e, since this
is a flat base change. Thus,

0 → Fe(R/P )
fq·−−→ Fe(R/P )
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is exact, and this is

0 → R/P [q] fq·−−→ R/P [q].

Since fq is not a zerodivisor on R/P [q], neither is f .

Suppose u ∈ P (qh)−P [q]. Make a base change to RP . Then the image of u is in P qhRP ,
but not in P [q]RP = (PRP )[q]: if u were in the expansion of P [q]RP , it would be multiplied
into P [q] by some element of R − P . Since such an element is not in P [q] by part (a), we
have u /∈ (PRP )[q]. But PRP is generated by h elements, and so

(PRP )qh ⊆ (PRP )[q]

exactly as in the proof of the Briançon-Skoda Theorem: if a monomial in h elements has
degree qh, at least one of the exponents occurring on one of the elements must be at least
q. �

Proof of the symbolic power theorem. If u ∈ P (hn) − Pn, then this continues to be the
case after localizing at a maximal ideal in the support of (Pn + Ru)/Pn. Hence, we may
assume that R is regular local. We may also assume that P 6= 0. Given q = pe we can
write q = an + r where a ≥ 0 and 0 ≤ r ≤ n− 1 are integers. Then ua ∈ P (han) and

Phnua ⊆ Phrua ⊆ P (han+hr) = P (hq) ⊆ P [q].

Taking n th powers gives that

Phn2
uan ⊆ (P [q])n = (Pn)[q],

and since q ≥ an, we have that
Phn2

uq ⊆ (Pn)[q]

for fixed h and n and for all q. Let d be any nonzero element of Phn2
. The condition that

duq ∈ (Pn)[q] for all q says precisely that u is in the tight closure of Pn in R. But in a
regular ring, every ideal is tightly closed, and so u ∈ Pn, as required. �

|
One can prove a similar result for ideals I without assuming that I is prime and

without assuming that the ring is regular. We can define symbolic powers of ideals that
are not necessarily prime as follows. If W is the multiplicative system of nonzerodivisors on
I, define I(t) as the contraction of ItW−1R to R. Suppose that R/I has finite projective
dimension over R and that the localization of I at any associated prime of I can be
generated by at most h elements (or even that its analytic spread is at most h). Then one
can show I(nh) ⊆ (In)∗ for all n ≥ 1. See Theorem (1.1) of [M. Hochster and C. Huneke,
Comparison of symbolic and ordinary powers of ideals, Inventiones Math. 147 (2002) 349–
369].

|
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Test elements

The definition of tight closure allows the element c ∈ R◦ to vary with N , M , and the
element u ∈ M being “tested” for membership in N∗

M . But under mild conditions on
a reduced ring R, there exist elements, called test elements, that can be used in every
tight closure test. It is somewhat difficult to prove their existence, but they play a very
important role in the theory of tight closure.

Definition. Let R be a Noetherian ring of prime characteristic p > 0. An element c ∈ R◦

is called a test element (respectively, big test element) for R if for every inclusion of finitely
generated modules N ⊆ M (respectively, arbitrary modules N ⊆ M) and every u ∈ M ,
u ∈ N∗

M if and only if cuq ∈ N
[q]
M for every q = pe ≥ 1. A (big) test element is called locally

stable if it is a (big) test element in every localization of R. A (big) test element is called
completely stable if it is a (big) test element in the completion of every local ring of R.

It will be a while before we can prove that test elements exist. But we shall eventually
prove the following:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0 that is reduced and
essentially of finite type over an excellent semilocal ring R. Let c ∈ R◦ be such that Rc is
regular (such elements always exist). Then c has a power that is a completely stable big
test element for R.

We want to record some easy facts related to test elements. We first note:

Lemma. If N ⊆ M are R-modules, S is faithfully flat over R, and v ∈ M −N , then 1⊗v
is not in 〈S ⊗R N〉 in S ⊗R M .

Proof. We may replace M by M/N , N by 0, and v by its image in M/N . The result
then asserts that the map M → S ⊗R M is injective. Let v ∈ M be in the kernel. Then
S ⊗R Rv ↪→ S ⊗R M , and it suffices to see that (∗) Rv → S ⊗R Rv is injective. Let
I = AnnRv. Then (∗) is equivalent to the assertion that R/I → S/IS is injective. Since
S/IS is faithfully flat over R/I, we need only show that if R → S is faithfully flat, it is
injective. Let J ⊆ R be the kernel. Then J ⊗ S ∼= JS = 0, which implies that J = 0. �

Proposition. Let R be a Noetherian ring of prime characteristic p > 0, and let c ∈ R.

(a) If for every pair of modules (respectively, finitely generated modules) N ⊆ M one
has cN∗

M ⊆ N , then one also has that whenever u ∈ N∗
M , then cuq ∈ N

[q]
M for all q.

Thus, c is a big test element (respectively, test element) for R if and only if c ∈ R◦

and cN∗
M ⊆ N for all inclusions of modules (respectively, finitely generated modules)

N ⊆ M .

(b) If c ∈ R0, S is faithfully flat over R, and c is (big) test element for S, then it is a
(big) test element for R. If c is a completely stable (big) test element for S, then c is
a completely stable (big) test element for S.
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(c) If the image of c ∈ R◦ is a (big) test element in Rm for every maximal ideal m of R,
then c is a test element for R.

(d) If c ∈ R◦ and c is a (big) test element for RP for every prime ideal P of R, then c
is a (big) test element for W−1R for every multiplicative system W of R, i.e., c is a
locally stable (big) test element for R.

(e) If c is a completely stable (big) test element for R then it is a locally stable (big) test
element for R.

Proof. In each part, if we are proving a statement about test elements we assume that
N ⊆ M are finitely generated, while if we are proving a statement about big test elements,
we allow them to be arbitrary.

(a) If u ∈ N∗
M we also have that uq ∈ (N [q])∗Fe(M) for all q, and hence that cuq ∈ N [q],

as required.

(b) Suppose that u ∈ N∗
M . Then 1⊗ u is in 〈S ⊗R N〉∗ in S ⊗R M , and it follows that

c(1⊗ u) = 1⊗ cu is in 〈S ⊗R N〉 in S ⊗R M . Because S is faithfully flat over R, it follows
from the preceding Lemma that cu ∈ N . The second statement follows from the first,
because of P is prime in R and Q is a minimal prime of PS, then RP → SQ is faithfully
flat, and hence so is the induced map of completions R̂P → ŜQ. Since c is a (big) test
element for ŜQ, it is a (big) test element for R̂P .

(c) Suppose that u ∈ N∗
M in R. If cu /∈ N , then there exists a maximal ideal m in the

support of (N + Rcu)/N . When we pass to Rm, Nm ⊆ Mm, and u/1, the image of u in
M , we still have that u/1 is in (Nm)∗Mm

working over Rm. If follows that cu/1 ∈ Nm, a
contradiction.

(d) follows from (c), because every localization of W−1R at a maximal ideal is a local-
ization of R at some prime ideal P .

(e) follows from (d) and (b), because for every prime ideal P of R, the completion of
RP is faithfully flat over RP . �

Definition: test ideals. Let R be a Noetherian ring of prime characteristic p > 0, and
assume that R is reduced. We define τ(R) to be the set of elements c ∈ R such that
cN∗

M ⊆ N for all inclusion maps N ⊆ M of finitely generated R-modules. Alternatively,
we may write:

τ(R) =
⋂

N⊆M finitely generated

N :R N∗
M ,

and we also have that
N :R N∗

M = AnnR(N∗
M/N).

We refer τ(R) as the test ideal of R.

We define τ b(R) to be the set of elements c ∈ R such that cN∗
M ⊆ N for all inclusion



10

maps N ⊆ M of arbitrary R-modules. Alternatively, we may write:

τ b(R) =
⋂

N⊆M

N :R N∗
M ,

and refer to τ b(R) as the big test ideal of R, although it is obviously contained in τ(R).
We shall see below that if R has a (big) test element, then τ(R) (respectively, τ b(R)) is
generated by all the (big) test elements of R. We first note:

Lemma. Let R be any ring and P1, . . . , Pk any finite set of primes of R. Let

W = R−
k⋃

i=1

Pi.

If an ideal I of R is not contained in any of the Pj, then I is generated by its intersection
with W . In particular, if R is Noetherian and I is not contained in any minimal prime of
R, then I is generated by its intersection with R◦.

Proof. Let J be the ideal generated by all elements of I ∩W . Then

I ⊆ J ∪ P1 ∪ · · · ∪ Pk,

since every element of I not in any of the Pi is in J . Since all but one of the ideals on
the right is prime, we have that I ⊆ J or I ⊆ Pi for some i. Since I contains at least
one element of W , it is not contained in any of the Pi. Thus, J ⊆ I ⊆ J , and so J = I,
as required. The final statement now follows because a Noetherian ring has only finitely
many minimal primes. �

Proposition. Let R be a Noetherian ring of prime characteristic p > 0, and assume that
R is reduced.

(a) τ b(R) ⊆ τ(R).

(b) τ(R) ∩R◦ (respectively, τ b(R) ∩R◦) is the set of test elements (respectively, big test
elements) of R.

(c) If R has at least one test element (respectively, one big test element), then τ(R)
(respectively, τ b(R)) is the ideal of R generated by all test elements (respectively, all
big test elements) of R.

Proof. (a) is clear from the definition, and so is (b). Part (c) then follows from the
preceding Lemma. �


