
Math 711: Lecture of September 19, 2007

Earlier (see the Lecture of September 7, p. 7) we discussed very briefly the class of
excellent Noetherian rings. The condition that a ring be excellent or, at least, locally ex-
cellent, is the right hypothesis for many theorems on tight closure. The theory of excellent
rings is substantial enough to occupy an entire course, and we do not want to spend an
inordinate amount of time on it here. We shall summarize what we need to know about
excellent rings in this lecture. In the sequel, the reader who prefers may restrict attention
to rings essentially of finite type over a field or over a complete local ring, which is the most
important family of rings for applications. The definition of an excellent Noetherian ring
was given by Grothendieck. A readable treatment of the subject, which is a reference for
all of the facts about excellent rings stated without proof in this lecture, is [H. Matsumura,
Commutative Algebra, W.A. Benjamin, New York, 1970], Chapter 13.

Before discussing excellence, we want to review the notion of fibers of ring homomor-
phisms.

Fibers

Let f : R → S be a ring homomorphism and let P be a prime ideal of R. We write κP

for the canonically isomorphic R-algrebras

frac (R/P ) ∼= RP /PRP .

By the fiber of f over P we mean the κP -algebra

κP ⊗R S ∼= (R− P )−1S/PS

which is also an R-algebra (since we have R → κP ) and an S-algebra. One of the key
points about this terminology is that the map

Spec (κP ⊗R S) → Spec (S)

gives a bijection between the prime ideals of κP ⊗R S and the prime ideals of S that lie
over P ⊆ R. In fact, it is straightforward to check that Spec (κP ⊗R S) is homeomorphic
with its image in Spec (S).

It is also said that Spec (κP ⊗R S) is the scheme-theoretic fiber of the map

Spec (S) → Spec (R).

This is entirely consistent with thinking of the fiber of a map of sets g : Y → X over a
point P ∈ X as

g−1(P ) = {Q ∈ Y : g(Q) = P}.
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In our case, we may take g = Spec (f), Y = Spec (S), and X = Spec (R), and then
Spec (κP ⊗R S) may be naturally identified with the set-theoretic fiber of

Spec (S) → Spec (R).

If R is a domain, the fiber over the prime ideal (0) of R, namely frac (R)⊗R S, is called
the generic fiber of R → S.

If (R, m, K) is quasilocal, the fiber K ⊗R S = S/mS over the unique closed point m of
Spec (R) is called the closed fiber of R → S.

Geometric regularity

Let κ be a field. A Noetherian κ-algebra R, is called geometrically regular over κ if the
following two equivalent conditions hold:

(1) For every finite algebraic field extension κ′ of κ, κ′ ⊗κ R is regular.

(2) For every finite purely inseparable field extension κ′ of κ, κ′ ⊗κ R is regular.

Of course, since we may take κ′ = κ, if R is geometrically regular over κ then it is
regular. In equal characteristic 0, geometric regularity is equivalent to regularity, using
characterization (2).

When R is essentially of finite type over κ, these conditions are also equivalent to

(3) K ⊗κ R is regular for every field K

(4) K ⊗κ R is regular for one perfect field extension K of κ.

(5) K ⊗κ R is regular when K = κ is the algebraic closure of κ.

These conditions are not equivalent to (1) and (2) in general, because K ⊗κ R need not
be Noetherian.

|
We indicate how the equivalences are proved. This will require a very considerable

effort.

Theorem. Let R → S be a faithfully flat homomorphism of Noetherian rings. If S is
regular, then R is regular.

Proof. We use the fact that a local ring A is regular if and only its residue class field has
finite projective dimension over A, in which case every finitely generated module has finite
projective dimension over A. Given a prime P of R, there is a prime Q of S lying over
it. It suffices to show that RP is regular, and we have a faithfully flat map RP → SQ.
Therefore we may assume that (R, P, K) → (S, Q, L) is a flat, local homomorphism and
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that S is regular. Consider a minimal free resolution of R/P over R, which, a priori, may
be infinite:

· · · → Rbn
αn−−→ Rbn−1 −→ · · · α1−→ Rb0 −→ R/P −→ 0.

By the minimality of the resolution, the matrices αj all have entries in P . Now apply
S ⊗R . We obtain a free resolution

· · · → Sbn
αn−−→ Sbn−1 −→ · · · α1−→ Sb0 −→ S ⊗R S/PS −→ 0,

where we have identified R with its image in S under the injection R ↪→ S. This resolution
of S/PS is minimal: the matrices have entries in Q because R ↪→ S is local. Since S is
regular, S/PS has finite projective dimension over S, and so the matrices αj must be 0
for all j � 0. But this implies that the projective dimension of R/P over R is finite. �

Corollary. If R is a Noetherian K-algebra and L is an extension field of K such that
L ⊗K R is regular (in general, this ring may not be Noetherian, although it is if R is
essentially of finite type over K, because in that case L ⊗K R is essentially of finite type
over L, and therefore Noetherian), then R is regular.

Proof. Since L is free over K, it is faithfully flat over K, and so L⊗K R is faithfully flat
over R and we may apply the preceding result. �

Proposition. Let (R, m, K) → (S, Q, L) be a flat local homomorphism of local rings.
Then

(a) dim (S) = dim (R) + dim (S/mS), the sum of the dimensions of the base and of the
closed fiber.

(b) If R is regular and S/mS is regular, then S is regular.

Proof. (a) We use induction on dim (R). If dim (R) = 0, m and mS are nilpotent. Then
dim (S) = dim (S/mS) = dim (R) + dim (S/mS), as required. If dim (R) > 0, let J be the
ideal of nilpotent elements in R. Then dim (R/J) = dim (R), dim (S/JS) = dim (S), and
the closed fiber of R/J → S/JS, which is still a flat and local homomorphism, is S/mS.
Therefore, we may consider the map R/J → S/JS instead, and so we may assume that R
is reduced. Since dim (R) > 0, there is an element f ∈ m not in any minimal prime of R,
and, since R is reduced, f is not in any associated prime of R, i.e., f is a nonzerodivisor
in R. Then the fact that S is flat over R implies that f is not a zerodivisor in S. We may
apply the induction hypothesis to R/fR → S/fS, and so

dim (S)− 1 = dim (S/fS) = dim (R/f) + dim (S/mS) = dim (R)− 1 + dim (S/mS),

and the result follows.

(b) The least number of generators of Q is at most the sum of the number of generators
of m and the number of generators of Q/mS, i.e., it is bounded by dim (R)+dim (S/mS) =
dim (S) by part (a). The other inequality always holds, and so S is regular. �
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Corollary. Let R → S be a flat homomorphism of Noetherian rings. If R is regular and
the fibers of R → S are regular, then S is regular.

Proof. If Q is any prime of S we may apply part (b) of the preceding Theorem, since
SQ/PSQ is a localization of the fiber κP ⊗R S, and therefore regular. �

Corollary. Let R be a regular Noetherian K-algebra, where K is a field, and let L be a
separable extension field of K such that L⊗K R is Noetherian. Then L⊗K R is regular.

Proof. The extension is flat, and so it suffices to show that every κP⊗R(L⊗KR) ∼= κP⊗KL
is regular. Since L is algebraic over K, this ring is integral over κP and so zero-dimensional.
Since L⊗K R is Noetherian by hypothesis, κP ⊗K L is Noetherian, and so has finitely many
minimal primes. Hence, it is Artinian, and if it is reduced, it is a product of fields and,
therefore, regular as required. Thus, it suffices to show that κP ⊗K L is reduced. Since
L is a direct limit of finite separable algebraic extension, it suffices to prove the result
when L is a finite separable extension of K. In this case, L has a primitive element θ, and
L ∼= K[x]/g where g ∈ K[x] is a monic irreducible separable polynomial over K ⊆ κP . Let
Ω denote the algebraic closure of κP . Then κP ⊗K L ⊆ Ω⊗K L, and so it suffices to show
that

Ω⊗K L ∼= Ω⊗K (K[x]/gK[x]) ∼= Ω[x]/gΩ[x]

is reduced. This follows because g is separable, and so has distinct roots in Ω. �

Theorem. Let K be an algebraically closed field and let L be any finitely generated field
extension of K. Then L has a separating transcendence basis B, i.e., a transcendence basis
B such that L is separable over the pure transcendental extension K(B).

Proof. If F is a subfield of L, let F sep denote the separable closure of F in L. Choose a
transcendence basis x1, . . . , xn so as to minimize [L : L′] where L′ = K(x1, . . . , xn)sep.
Suppose that y ∈ L is not separable over K(x1, . . . , xn). Choose a minimal polynomial
F (z) for y over K(x1, . . . , xn). Then every exponent on z is divisible by p. Put each
coefficient in lowest terms, and multiply F (z) by a least common multiple of the denom-
inators of the coefficients. This yields a polynomial H(x1, . . . , xn, z) ∈ K[x1, . . . , xn][z]
such that the coefficients in K[x1, . . . , xn] are relatively prime, and such that the poly-
nomial is irreducible over K(x1, . . . , xn)[z]. By Gauss’s Lemma, this polynomial is ir-
reducible in K[x1, . . . , xn, z]. It cannot be the case that every exponent on every xj

is divisible by p, for if that were true, since the field is perfect, H would be a p th
power, and not irreducible. By renumbering the xi we may assume that xn occurs with
an exponent not divisible by p. Then the element xn is separable algebraic over the
field K(x1, . . . , xn−1, y), and we may use the transcendence basis x1, . . . , xn−1, y for L.
Note that xn, y ∈ K(x1, . . . , xn−1, y)sep = L′′, which is therefore strictly larger than
L′ = K(x1, . . . , xn)sep. Hence, [L : L′′] < [L : L′], a contradiction. �

We can now prove:
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Theorem. Let R be a Noetherian κ-algebra, where κ is a field. Then the following two
conditions are equivalent:

(1) For every finite algebraic field extension κ′ of κ, κ′ ⊗κ R is regular.

(2) For every finite purely inseparable field extension κ′ of κ, κ′ ⊗κ R is regular.

Moreover, if R is essentially of finite type over κ then the following three conditions are
equivalent to (1) and (2) as well:

(3) K ⊗κ R is regular for every field K

(4) K ⊗κ R is regular for one perfect field extension K of κ.

(5) K ⊗κ R is regular when K = κ is the algebraic closure of κ.

Proof. We shall repeatedly use that if we have regularity for a larger field extension, then
we also have it for a smaller one: this follows from the Corollary on p. 3.

Evidently, (1) ⇒ (2). But (2) ⇒ (1) as well, because given any finite algebraic extension
κ′ of κ, there is a larger finite field extension obtained by first making a finite purely insep-
arable extension and then a finite separable extension. The purely inseparable extension
yields a regular ring by hypothesis, and the separable field extension yields a regular ring
by the second Corollary on p. 4.

Now consider the case where R is essentially of finite type over κ. Evidently, (3) ⇒
(5) ⇒ (4) ⇒ (2) (the last holds because any perfect field extension contains the perfect
closure, and this contains every finite purely inseparable algebraic extension), and it will
suffice to prove that (2) ⇒ (3).

Let κ∞ denote the perfect closure
⋃
q

κ1/q of κ. We first show that κ∞ ⊗κ R is regular.

Replace R by Rm. Then B = κ∞ ⊗R Rm is purely inseparable over Rm: consequently, it
is a local ring of the same dimension as Rm, and it is the directed union of the local rings
κ′⊗κ Rm as κ′ runs through finite purely inseparable extensions of κ contained in κ∞. All
of these local rings have the same dimension: call it d. Let u1, . . . , un be a minimal set
of generators of the maximal ideal of B = κ∞⊗κ Rm, and choose κ′ sufficiently large that
u1, . . . , un are elements of A = κ′ ⊗R Rm. Let J = (u1, . . . , un)A. Since B is faithfully
flat over A, we have that JB ∩ A = J . But JB is the maximal ideal of B, which lies
over the maximal ideal of A, and so J generates the maximal ideal of A. None of the
generators is an A-linear combination of the others, or else this would also be true in B.
Hence, u1, . . . , un is a minimal set of generators of the maximal ideal of A. Since A is
regular, n = d, and so B is regular.

Since the algebraic closure of κ is separable over κ∞, it follows from the second Corollary
on p. 4 that (2) ⇒ (5). To complete the proof, it suffices to show that if κ is algebraically
closed, R is regular, and L is any field extension of κ, then L ⊗κ R is regular. Since
R → L ⊗κ R is flat, it suffices to show the fibers L ⊗κ κP are regular, and κP is finitely
generated as a field over κ. Hence, κP has a separating transcendence basis x1, . . . , xn
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over κ. Let K = κ(x1, . . . , xn). Then

L⊗κ κP = (L⊗κ κ(x1, . . . , xn))⊗K κP .

Since κP is a finite separable algebraic extension of K, it suffices prove that L ⊗κ K is
regular. But this ring is a localization of L[x1, . . . , xn], and so the proof is complete. �

|

We say that a homomorphism R → S of Noetherian rings is geometrically regular if it
is flat and all the fibers κP → κP ⊗R S are geometrically regular. (Some authors use the
term “regular” for this property.)

For those readers familiar with smooth homomorphisms, we mention that if S is essen-
tially of finite type over R, then S is geometrically regular if and only if it is smooth.

By a very deep result of Popescu (cf. [D. Popescu, General Néron desingularization,
Nagoya Math. J. 100 (1985) 97–126], every geometrically regular map is a direct limit
of smooth maps. Whether Popescu’s argument was correct was controversial for a while.
Richard Swan showed that Popescu’s argument was essentially correct in [R. G Swan,
Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995), 135–192, Lect.
Algebra Geom. 2 Int. Press, Cambridge, MA, 1998].

Catenary and universally catenary rings

A Noetherian ring is called catenary if for any two prime ideals P ⊆ Q, any two saturated
chains of primes joining P to Q have the same length. In this case, the common length
will be the same as the dimension of the local domain RQ/PRQ.

Nagata was the first to give examples of Notherian rings that are not catenary. E.g.,
in [M. Nagata, Local Rings, Interscience, New York, 1962] Appendix, pp. 204–5, Nagata
gives an example of a local domain (D, m) of dimension 3 containing a height one prime
P such that dim (D/P ) = 1, so that (0) ⊂ Q ⊂ m is a saturated chain, while the longest
saturated chains joining (0) to m have the form (0) ⊂ P1 ⊂ P2 ⊂ m. One has to work
hard to construct Noetherian rings that are not catenary. Nagata also gives an example
of a ring R that is catenary, but such that R[x] is not catenary.

Notice that a localization or homomorphic image of a catenary ring is automatically
catenary.

R is called universally catenary if every polynomial ring over R is catenary. This implies
that every ring essentially of finite type over R is catenary.

A very important fact about Cohen-Macaulay rings is that they are catenary. Moreover,
a polynomial ring over a Cohen-Macaulay ring is again a Cohen-Macaulay ring, which then
implies that every Cohen-Macaulay ring is universally catenary. In particular, regular rings
are universally catenary. Cohen-Macaulay local rings have a stronger property: they are
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equidimensional, and all saturated chains from a minimal prime to the maximal ideal have
length equal to the dimension of the local ring.

|
We shall prove the statements in the paragraph above. We first note:

Theorem. If R is Cohen-Macaulay, so is the polynomial ring in n variables over R.

Proof. By induction, we may assume that n = 1. Let M be a maximal ideal of R[X]
lying over m in R. We may replace R by Rm and so we may assume that (R, m, K) is
local. Then M, which is a maximal ideal of R[x] lying over m, corresponds to a maximal
ideal of K[x]: each of these is generated by a monic irreducible polynomial f , which lifts
to a monic polynomial F in R[x]. Thus, we may assume that M = mR[x] + FR[X]. Let
x1, . . . , xd be a system of parameters in R, which is also a regular sequence. We may kill
the ideal generated by these elements, which also form a regular sequence in R[X]M. We
are now in the case where R is an Artin local ring. It is clear that the height of M is
one. Because F is monic, it is not a zerodivisor: a monic polynomial over any ring is not
a zerodivisor. This shows that the depth of M is one, as needed. �

Theorem. Let (R, m, K) be a local ring and M 6= 0 a finitely generated Cohen-Macaulay
R-module of Krull dimension d. Then every nonzero submodule N of M has Krull dimen-
sion d.

Proof. We replace R by R/AnnRM . Then every system of parameters for R is a regular
sequence on M . We use induction on d. If d = 0 there is nothing to prove. Assume
d > 0 and that the result holds for smaller d. If M has a submodule N 6= 0 of dimension
≤ d − 1, we may choose N maximal with respect to this property. If N ′ is any nonzero
submodule of M of dimension < d, then N ′ ⊆ N . To see this, note that N ⊕ N ′ has
dimension < d, and maps onto N + N ′ ⊆ M , which therefore also has dimension < d. By
the maximality of N , we must have N + N ′ = N . Since M is Cohen-Macaulay and d ≥ 1,
we can choose x ∈ m not a zerodivisor on M , and, hence, also not a zerodivisor on N .
We claim that x is not a zerodivisor on M = M/N , for if u ∈ M −N and xu ∈ N , then
Rxu ⊆ N has dimension < d. But this module is isomorphic with Ru ⊆ M , since x is
not a zerodivisor, and so dim (Ru) < d. But then Ru ⊆ N . Consequently, multiplication
by x induces an isomorphism of the exact sequence 0 → N → M → M → 0 with the
sequence 0 → xN → xM → xM → 0, and so this sequence is also exact. But we have a
commutative diagram

0 −−−−→ N −−−−→ M −−−−→ M −−−−→ 0x x x
0 −−−−→ xN −−−−→ xM −−−−→ xM −−−−→ 0

where the vertical arrows are inclusions. By the nine lemma, or by an elementary diagram
chase, the sequence of cokernels 0 → N/xN → M/xM → M/xM → 0 is exact. Because x
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is not a zerodivisor on M , it is part of a system of parameters for R, and can be extended
to a system of parameters of length d, which is a regular sequence on M . Since x is
a nonzerodivisor on N and M , dim (N/xN) = dim (N) − 1 < d − 1, while M/xM is
Cohen-Macaulay of dimension d− 1. This contradicts the induction hypothesis. �

Corollary. If (R, m, K) is Cohen-Macaulay, R is equidimensional: every minimal prime
p is such that dim (R/p) = dim (R).

Proof. If p is minimal, it is an associated prime of R, and we have R/p ↪→ R. Since all
nonzero submodules of R have dimension dim (R), the result follows. �

Thus, a Cohen-Macaulay local ring cannot exhibit the kind of behavior one observes
in R = K[[x, y, z]]/

(
(x, y) ∩ (z)

)
: this ring has two minimal primes. One of them, p1,

generated by the images of x and y, is such that R/p1 has dimension 1. The other, p2,
generated by the image of z, is such that R/p2 has dimension 2. Note that while R is not
equidimensional, it is still catenary.

We next observe:

Theorem. In a Cohen-Macaulay ring R, if P ⊆ Q are prime ideals of R then every
saturated chain of prime ideals from P to Q has length height (Q) − height (P ). Thus, R
is catenary.

It follows that every ring essentially of finite type over a Cohen-Macaulay ring is uni-
versally catenary.

Proof. The issues are unaffected by localizing at Q. Thus, we may assume that R is
local and that Q is the maximal ideal. There is part of a system of parameters of length
h = height (P ) contained in P , call it x1, . . . , xh, by the Corollary near the bottom of p. 7
of the Lecture Notes of Septermber 5. This sequence is a regular sequence on R and so
on RP , which implies that its image in RP is system of parameters. We now replace R by
R/(x1, . . . , xh): when we kill part of a system of parameters in a Cohen-Macaulay ring, the
image of the rest of that system of parameters is both a system of parameters and a regular
sequence in the quotient. Thus, R remains Cohen-Macaulay. Q and P are replaced by their
images, which have heights dim (R)− h and 0, and dim (R)− h = dim

(
R/(x1, . . . , xh)

)
.

We have therefore reduced to the case where (R, Q) is local and P is a minimal prime.

We know that dim (R) = dim (R/P ), and so at least one saturated chain from P to Q
has length height (Q) − height (P ) = height (Q) − 0 = dim (R). To complete the proof, it
will suffice to show that all saturated chains from P to Q have the same length, and we
may use induction on dim (R). Consider two such chains, and let their smallest elements
other than P be P1 and P ′1. We claim that both of these are height one primes: if, say, P1

is not height one we can localize at it and obtain a Cohen-Macaulay local ring (S, m) of
dimension at least two and a saturated chain p ⊆ m with p = PS minimal in S. Choose
an element y ∈ m that is not in any minimal primes of S: its image will be a system of
parameters for S/p, so that Ry +p is m-primary. Extend y to a regular sequence of length
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two in S: the second element has a power of the form ry + u, so that y, ry + u is a regular
sequence, and, hence, so is y, u. But then u, y is a regular sequence, a contradiction, since
u ∈ p. Thus, P1 (and, similarly, P ′1), have height one.

Choose an element f in P1 not in any minimal prime of R, and an element g of P ′1
not in any minimal prime of R. Then fg is a nonzerodivisor in R, and P1, P ′1 are both
minimal primes of xy. The ring R/(xy) is Cohen-Macaulay of dimension dim (R) − 1.
The result now follows from the induction hypothesis applied to R/(xy): the images of
the two saturated chains (omitting P from each) give saturated chains joining P1/(xy)
(respectively, P ′1/(xy)) to Q/(xy) in R/(xy). These have the same length, and, hence, so
did the original two chains.

The final statement now follows because a polynomial ring over a Cohen-Macaulay ring
is again Cohen-Macaulay. �

|

Excellent rings

A Noetherian ring R is called a G-ring (“G” as in “Grothendieck”) if for every local
ring A of R, the map A → Â is geometrically regular.

An excellent ring is a universally catenary Noetherian G-ring R such that in every
finitely generated R-algebra S, the regular locus {P ∈ Spec (S) : SP is regular} is Zariski
open.

Excellent rings include the integers, fields, and complete local rings, as well as convergent
power series rings over C and R. Every discrete valuation ring of equal characteristic 0
or of mixed characteristic is excellent. The following two results contain most of what we
need to know about excellent rings.

Theorem. Let R be an excellent ring. Then every localization of R, every homomor-
phic image of R, and every finitely generated R-algebra is excellent. Hence, every algebra
essentially of finite type over R is excellent.

Theorem. Let R be an excellent ring.

(a) If R is reduced, the normalization of R is module-finite over R.

(b) If R is local and reduced, then R̂ is reduced.

(c) If R is local and equidimensional, then R̂ is equidimensional.

(d) If R is local and normal, then R̂ is normal.

For proofs of these results, we refer the reader to [H. Matsumura, Commutative Algebra,
W.A. Benjamin, New York, 1970], as mentioned earlier.
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Note that one does not expect the completion of an excellent local doman to be a
domain. For example, consider the one-dimensional domain S = C[x, y]/(y2 − x2 − x3).
This is a domain because x2 + x3 is not a perfect square in C[x, y] (and, hence, not in its
fraction field either, since C[x, y] is normal). If m = (x, y)S, then Sm is a local domain
of dimension one. The completion of this ring is ∼= C[[x, y]]/(y2 − x2 − x3). This ring
is not a domain: the point is that x2 + x3 = x2(1 + x) is a perfect square in the formal
power series ring. Its square root may be written down explicitly using Newton’s binomial
theorem. Alternatively, one may see this using Hensel’s Lemma: see p. 2 of the lecture
notes of March 21 from Math 615, Winter 2007.

One does have from parts (b) and (c) of the Theorem above that the completion of an
excellent local domain is reduced and equidimensional.

|

Example: a DVR that is not excellent. Let K be a perfect field of prime characteristic
p > 0, and let

t1, t2, t3, . . . , tn, . . .

be countably many indeterminates over K. Let

L = K(t1, . . . , tn, . . . ),

and let Ln = Lp(t1, . . . , tn), which contains the p th power of every tj and the first powers
of t1, . . . , tn. Let x be a formal indeterminate, and let Vn = Ln[[x]], a DVR in which every
nonzero element is a unit times a power of x. Let

V =
∞⋃

n=1

Vn,

which is also a DVR in which every element is unit times a power of x. V has residue field
L, and V̂ ∼= L[[x]], but V only contains those power series such that all coefficients lie in
a fixed choice of Ln. For example,

f = t1x + t2x
2 + · · ·+ tnxn + · · · ∈ V̂ − V.

Note that the p th power of every element of V̂ is in V . Thus, the generic fiber

K = frac (V ) → frac (V̂ ) = L

is a purely inseparable field extension, and is not geometrically regular. The ring

K[f ]⊗K L

is not even reduced: f ⊗ 1− 1⊗ f is a nonzero nilpotent. Thus, V is not a G-ring.

|


