Math 711: Lecture of September 24, 2007

Flat base change and Hom

We want to discuss in some detail when a short exact sequence splits. The following result is very useful.

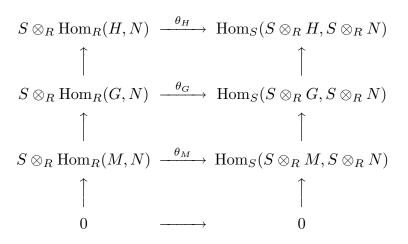
Theorem (Hom commutes with flat base change). If S is a flat R-algebra and M, N are R-modules such that M is finitely presented over R, then the canonical homomorphism

 $\theta_M: S \otimes_R \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_S(S \otimes_R M, S \otimes_R N)$

sending $s \otimes f$ to $s(\mathbf{1}_S \otimes f)$ is an isomorphism.

Proof. It is easy to see that θ_R is an isomorphism and that $\theta_{M_1 \oplus M_2}$ may be identified with $\theta_{M_1} \oplus \theta_{M_2}$, so that θ_G is an isomorphism whenever G is a finitely generated free R-module.

Since M is finitely presented, we have an exact sequence $H \to G \twoheadrightarrow M \to 0$ where G, H are finitely generated free R-modules. In the diagram below the right column is obtained by first applying $S \otimes_{R}$ (exactness is preserved since \otimes is right exact), and then applying $\operatorname{Hom}_{S}(_, S \otimes_{R} N)$, so that the right column is exact. The left column is obtained by first applying $\operatorname{Hom}_{R}(_, N)$, and then $S \otimes_{R}$ (exactness is preserved because of the hypothesis that S is R-flat). The squares are easily seen to commute.



From the fact, established in the first paragraph, that θ_G and θ_H are isomorphisms and the exactness of the two columns, it follows that θ_M is an isomorphism as well (kernels of isomorphic maps are isomorphic). \Box

Corollary. If W is a multiplicative system in R and M is finitely presented, we have that $W^{-1}\operatorname{Hom}_R(M,N) \cong \operatorname{Hom}_{W^{-1}R}(W^{-1}M,W^{-1}N).$

Moreover, if (R, m) is a local ring and both M, N are finitely generated, we may identify $\operatorname{Hom}_{\widehat{R}}(\widehat{M}, \widehat{N})$ with the m-adic completion of $\operatorname{Hom}_{R}(M, N)$ (since m-adic completion is the same as tensoring over R with \widehat{R} (as covariant functors) on finitely generated R-modules). \Box

When does a short exact sequence split?

Throughout this section, $0 \to N \xrightarrow{\alpha} M \xrightarrow{\beta} Q \to 0$ is a short exact sequence of modules over a ring R. There is no restriction on the characteristic of R. We want to discuss the problem of when this sequence splits. One condition is that there exist a map $\eta : M \to N$ such that $\eta \alpha = \mathbf{1}_N$. Let $Q' = \text{Ker}(\eta)$. Then Q' is disjoint from the image $\alpha(N) = N'$ of N in M, and N' + Q' = M. It follows that M is the internal direct sum of N' and Q' and that β maps Q' isomorphically onto Q.

Similarly, the sequence splits if there is a map $\theta: Q \to M$ such that $\beta \theta = \mathbf{1}_Q$. In this case let $N' = \alpha(N)$ and $Q' = \theta(Q)$. Again, N' and Q' are disjoint, and N' + Q' = M, so that M is again the internal direct sum of N' and Q'.

Proposition. Let R be an arbitrary ring and let

$$(\#) \quad 0 \to N \xrightarrow{\alpha} M \xrightarrow{\beta} Q \to 0$$

be a short exact sequence of R-modules. Consider the sequence

(*)
$$0 \to \operatorname{Hom}_R(Q, N) \xrightarrow{\alpha_*} \operatorname{Hom}_R(Q, M) \xrightarrow{\beta_*} \operatorname{Hom}_R(Q, Q) \to 0$$

which is exact except possibly at $\operatorname{Hom}_R(Q, Q)$, and let $C = \operatorname{Coker}(\beta_*)$. The following conditions are equivalent:

- (1) The sequence (#) is split.
- (2) The sequence (*) is exact.
- (3) The map β_* is surjective.
- (4) C = 0.
- (5) The element $\mathbf{1}_Q$ is in the image of β_* .

Proof. Because Hom commutes with finite direct sum, we have that $(1) \Rightarrow (2)$, while $(2) \Rightarrow (3) \Leftrightarrow (4) \Rightarrow (5)$ is clear. It remains to show that $(5) \Rightarrow (1)$. Suppose $\theta : Q \to M$ is such that $\beta_*(\theta) = \mathbf{1}_Q$. Since β_* is induced by composition with β , we have that $\beta\theta = \mathbf{1}_Q$. \Box

A split exact sequence remains split after any base change. In particular, it remains split after localization. There are partial converses. Recall that if $I \subseteq R$,

$$\mathcal{V}(I) = \{ P \in \text{Spec}(R) : I \subseteq P \}_{!}$$

and that

$$\mathcal{D}(I) = \operatorname{Spec}(R) - \mathcal{V}(I).$$

In particular,

$$\mathcal{D}(fR) = \{ P \in \operatorname{Spec}(R) : f \notin P \},\$$

and we also write $\mathcal{D}(f)$ or \mathcal{D}_f for $\mathcal{D}(fR)$.

Theorem. Let R be an arbitrary ring and let

$$(\#) \quad 0 \to N \xrightarrow{\alpha} M \xrightarrow{\beta} Q \to 0$$

be a short exact sequence of R-modules such that Q is finitely presented.

(a) (#) is split if and only if for every maximal ideal m of R, the sequence

$$0 \to N_m \to M_m \to Q_m \to 0$$

is split.

(b) Let S be a faithfully flat R-algebra. The sequence (#) is split if and only if the sequence

$$0 \to S \otimes_R N \to S \otimes_R M \to S \otimes_R Q \to 0$$

is split.

(c) Let W be a multiplicative system in R. If the sequence

$$0 \to W^{-1}N \to W^{-1}M \to W^{-1}Q \to 0$$

is split over $W^{-1}R$, then there exists a single element $c \in W$ such that

$$0 \to N_c \to M_c \to Q_c \to 0$$

is split over R_c .

(d) If P is a prime ideal of R such that

$$0 \to N_P \to M_P \to Q_P \to 0$$

is split, there exists an element $c \in R - P$ such that

$$0 \to N_c \to M_c \to Q_c \to 0$$

is split over R_c . Hence, (#) becomes split after localization at any prime P' that does not contain c, i.e., any prime P' such that $c \notin P'$.

(e) The split locus for (#), by which we mean the set of primes $P \in \text{Spec}(R)$ such that

$$0 \to N_P \to M_P \to Q_P \to 0$$

is split over R_P , is a Zariski open set in Spec (R).

Proof. Let $C = \text{Coker}(\text{Hom}(Q, M) \to \text{Hom}_R(Q, Q))$, as in the preceding Proposition, and let γ denote the image of $\mathbf{1}_Q$ in C. By part (4) of the preceding Proposition, (#) is split if and only if $\gamma = 0$.

(a) The "only if" part is clear, since splitting is preserved by any base change. For the "if" part, suppose that $\gamma \neq 0$. The we can choose a maximal ideal m in the support of $R\gamma \subseteq C$, i.e., such that $\operatorname{Ann}_R\gamma \subseteq m$. The fact that Q is finitely presented implies that localization commutes with Hom. Thus, localizing at m yields

$$0 \to \operatorname{Hom}_{R_m}(Q_m, N_m) \to \operatorname{Hom}_{R_m}(Q_m, M_m) \to \operatorname{Hom}_{R_m}(Q_m, Q_m) \to C_m \to 0,$$

and since the image of γ is not 0, the sequence $0 \to N_m \to M_m \to Q_m \to 0$ does not split.

(b) Again, the "only if" part is clear, and since Q is finitely presented and S is flat, Hom commutes with base change to S. After base change, the new cokernel is $S \otimes_R C$. But C = 0 if and only if $S \otimes_R C = 0$, since S is faithfully flat, and the result follows.

(c) Similarly, the sequence is split after localization at W if and only if the image of γ is 0 after localization at W, and this happens if and only if $c\gamma = 0$ for some $c \in W$. But then localizing at the element c kills γ .

(d) This is simply part (c) applied with W = R - P

(e) If P is in the split locus and $c \notin P$ is chosen as in part (d), $\mathcal{D}(c)$ is a Zariski open neighborhood of P in the split locus. \Box

Behavior of strongly F-regular rings

Theorem. Let R be an F-finite reduced ring. Then the following conditions are equivalent:

- (1) R is strongly F-regular.
- (2) R_m is strongly F-regular for every maximal ideal m of R.
- (3) $W^{-1}R$ is strongly F-regular for every multiplicative system W in R.

Proof. We shall show that $(1) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$.

To show that $(1) \Rightarrow (3)$, suppose that R is strongly F-regular and let W be a multiplicative system. By the Proposition on p. 2 of the Lecture Notes of September 17, every element of $(W^{-1}R)^{\circ}$ has the form c/w where $w \in W$ and $c \in R^{\circ}$. Given such an element c/w, we can choose q_c and an R-linear map $\theta : R^{1/q_c} \to R$ such that $\theta(c^{1/q}) = 1$. After localization at c, θ induces a map $\theta_c : (R_c)^{1/q_c} \to R_c$ sending $(c/1)^{1/q_c}$ to 1/1. Define $\eta : (R_c)^{1/q_c} \to R_c$ by $\eta(u) = \theta_c(w^{1/q_c}u)$. Then $\eta : (R_c)^{1/q_c} \to R_c$ is an R_c -linear map such that $\eta((c/w)^{1/q_c}) = 1$, as required. (3) \Rightarrow (2) is obvious.

It remains to show that $(2) \Rightarrow (1)$. Fix $c \in R^{\circ}$. Then for every maximal ideal m of R, the image of c is in $(R_m)^{\circ}$, and so there exist q_m and a splitting of the map $R_m \rightarrow$

 $(R^{1/q_m})m \cong (R_m)^{1/q_m}$ that sends $1 \mapsto c^{1/q_m}$. Then there is also such a splitting of the map $R \to R^{1/q_m}$ after localizing at any prime in a Zariski neighborhood U_m of m. Since the U_m cover MaxSpec (R), they cover Spec (R), and by the quasicompactness of Spec (R) there are finitely many maximal ideals m_1, \ldots, m_n such that the open sets U_{m_1}, \ldots, U_{m_n} cover Spec (R). Let $q_c = \max\{q_{m_1}, \ldots, q_{m_n}\}$. Then the map $R \to R^{1/q_c}$ that sends $1 \mapsto c^{1/q_c}$ splits after localizing at any maximal ideal in any of the U_{m_i} , i.e., after localizing at any maximal ideal. By part (a) of the preceding Proposition, the map $R \to R^{1/q_c}$ sending $1 \mapsto c^{1/q_c}$ splits, as required. \Box

Corollary. A strongly F-regular ring is F-regular.

Proof. This is immediate from the fact that strongly F-regular rings are weakly F-regular and the fact that a localization of a strongly F-regular ring is strongly F-regular. \Box

Corollary. *R* is strongly *F*-regular if and only if it is a finite product of strongly *F*-regular domains.

Proof. If R is strongly F-regular it is normal, and, therefore, a product of domains. Since the issue of whether R is strongly F-regular is local on the maximal ideals of R, when R is a product of domains it is strongly F-regular if and only if each of the factor domains is strongly F-regular. \Box

Proposition. If S is strongly F-regular and R is a direct summand of S, then R is strongly F-regular.

Proof. If R and S are domains, we may proceed as follows. Let $c \in R^{\circ} = R - \{0\}$ be given. Since S is strongly F-regular we may choose q and an S-linear map $\theta : S^{1/q} \to S$ such that $\theta(c^{1/q}) = 1$. Let $\alpha : S \to R$ be R-linear such that $\alpha(1) = 1$. Then $\alpha \circ \theta : S^{1/q} \to R$ is R-linear and sends $c^{1/q} \mapsto 1$. We may restrict this map to $R^{1/q}$.

In the general case, we may first localize at a prime of R: it suffices to see that every such localization is strongly F-regular. S is a product of F-regular domains $S_1 \times \cdots \times S_n$ each of which is an R-algebra. Let $\alpha : S \to R$ be such that $\alpha(1) = 1$. The element $1 \in S$ is the sum of n idempotents e_i , where e_i has component 0 in S_j for $j \neq i$ while the component in S_i is 1. Then $1 = \alpha(1) = \sum_{i=1}^n \alpha(e_i)$, and since R is local, at least one $\alpha(e_i)$ is not in the maximal ideal m of the local ring R, i.e., we can fix i such that $\alpha(e_i)$ is a unit a of R. We have an R-linear injection $\iota : S_i \to S$ by identifying S_i with $0 \times 0 \times S_i \times 0 \times 0$, i.e., with the set of elements of S all of whose coordinates except the i th are 0. Then $a^{-1}\alpha \circ \iota$ is a splitting of $R \to S_i$ over R, and so we have reduced to the domain case, which was handled in the first paragraph. \Box

We also have:

Proposition. If $R \to S$ is faithfully flat and S is strongly F-regular then R is strongly F-regular.

Proof. Let $c \in R^{\circ}$. Then $c \in S^{\circ}$, and so there exists q and an S-linear map $S^{1/q} \to S$ such that $c^{1/q} \mapsto 1$. There is an obvious map $S \otimes_R R^{1/q} \to S^{1/q}$, since both factors in the tensor product have maps to $S^{1/q}$ as R-algebras. This yields a map $S \otimes_R R^{1/q} \to S = S \otimes_R R$ that sends $1 \otimes c^{1/q} \mapsto 1 \otimes 1$ that is S-linear. This implies that the map $R \to R^{1/q}$ sending $1 \mapsto c^{1/q}$ splits after a faithfully flat base change to S. By part (b) of the Theorem at the top of p. 3, the map $R \to R^{1/q}$ such that $1 \mapsto c^{1/q}$ splits over R, as required. \Box

Theorem. An F-finite regular ring is strongly F-regular.

Proof. We may assume that (R, m, K) is local: it is therefore a domain. Let $c \neq 0$ be given. Choose q so large that $c \notin m^{[q]}$: this is possible because $\bigcap_q m^{[q]} \subseteq \bigcap_q m^q = (0)$. The flatness of Frobenius implies that $R^{1/q}$ is flat and, therefore, free over R since $R^{1/q}$ is module-finite over R. (Alternatively, $R^{1/q}$ is free because a regular system of parameters x_1, \ldots, x_n in R is a regular sequence on $R^{1/q}$: one may apply the Lemma in the middle of p. 8 of the Lecture Notes of September 5. Or one may further reduce to the case where R is complete, using the preceding Proposition, and even pass from the complete regular ring $K[[x_1, \ldots, x_n]$ to $\overline{K}[[x_1, \ldots, x_n]]$, where \overline{K} is an algebraic closure of K. This is simply a further faithfully flat extension. Now the fact that $R^{1/q}$ is R-free is easy.) Since $c \notin m^{[q]}$, we have that $c^{1/q} \notin mR^{1/q}$. By Nakayama's Lemma, $c^{1/q}$ is part of a minimal basis for the R-free module $R^{1/q} \to R$ such that $c^{1/q} \mapsto 1$: the values can be specified arbitrarily on a free basis containing $c^{1/q}$. □

Remark: q th roots of maps. The following situation arises frequently in studying strongly F-regular rings. One has q, q_0 , q_1 , q_2 , where these are all powers of p, the prime characteristic, such that $q_0 \leq q_1$ and $q_0 \leq q_2$, and we have an R^{1/q_0} -linear map $\alpha : R^{1/q_1} \rightarrow R^{1/q_2}$. This map might have certain specified values, e.g., $\alpha(u) = v$. Here, one or more of the integers q, q_i may be 1. Then one has a map which we denote $\alpha^{1/q} : R^{1/q_1q} \rightarrow R^{1/q_2q}$ which is R^{1/q_0q} -linear, that is simply defined by the rule $\alpha^{1/q}(s^{1/q}) = \alpha(s)^{1/q}$. Then $\alpha^{1/q}(u^{1/q}) = v^{1/q}$.

The following result makes the property of being a strongly F-regular ring much easier to test: instead of needing to worry about constructing a splitting for every element of R° , one only needs to construct a splitting for *one* element of R° .

Theorem. Let R be a reduced F-finite ring of prime characteristic p > 0, and let $c \in R^{\circ}$ be such that R_c is strongly F-regular. Then R is strongly F-regular if and only if

(*) there exists q_c such that the map $R \to R^{1/q_c}$ sending $1 \mapsto c^{1/q_c}$ splits.

Proof. The condition (*) is obviously necessary for R to be strongly F-regular: we need to show that it is sufficient. Therefore, assume that we have an R-linear splitting

$$\theta: R^{1/q_c} \to R,$$

with $\theta(c^{1/q_c}) = 1$. By the Remark beginning near the bottom of p. 4 of the Lecture Notes of September 21, we know that R is F-split. Suppose that $d \in R^{\circ}$ is given.

Since R_c is strongly F-regular we can choose q_d and an R_c -linear map $\beta : R_c^{1/q_d} \to R_c$ such that $\beta(d^{1/q_d}) = 1$. Since $\operatorname{Hom}_{R_c}(R_c^{1/q_d}, R_c)$ is the localization of $\operatorname{Hom}_R(R^{1/q_d}, R)$ at c, we have that $\beta = \frac{1}{c^q} \alpha$ for some sufficiently large choice of q: since we are free to make the power of c in the denominator larger if we choose, there is no loss of generality in assuming that the exponent is a power of p. Then $\alpha : R^{1/q_d} \to R$ is an R-linear map such that

$$\alpha(d^{1/q_d}) = c^q \beta(d^{1/q_d}) = c^q.$$

By taking qq_c roots we obtain a map

$$\alpha^{1/qq_c}: R^{1/qq_cq_d} \to R^{1/qq_c}$$

that is R^{1/qq_c} -linear and sends $d^{1/qq_cq_d} \mapsto c^{1/q_c}$. Because R is F-split, the inclusion $R \hookrightarrow R^{1/q}$ splits: let $\gamma: R^{1/q} \to R$ be R linear such that $\gamma(1) = 1$. Then $\gamma^{1/q_c}: R^{1/qq_c} \to R^{1/q_c}$ is an R^{1/q_c} -linear retraction and sends $c^{1/q_c} \mapsto c^{1/q_c}$. Then $\theta \circ \gamma^{1/q_c} \circ \alpha^{1/qq_c}: R^{1/qq_cq_d} \to R$ and sends $d^{1/qq_cq_d} \mapsto 1$, as required. \Box