
Math 711: Lecture of September 24, 2007

Flat base change and Hom

We want to discuss in some detail when a short exact sequence splits. The following
result is very useful.

Theorem (Hom commutes with flat base change). If S is a flat R-algebra and M , N
are R-modules such that M is finitely presented over R, then the canonical homomorphism

θM :S ⊗R HomR(M,N) → HomS(S ⊗R M,S ⊗R N)

sending s⊗ f to s(1S ⊗ f) is an isomorphism.

|
Proof. It is easy to see that θR is an isomorphism and that θM1⊕M2 may be identified

with θM1 ⊕ θM2 , so that θG is an isomorphism whenever G is a finitely generated free
R-module.

Since M is finitely presented, we have an exact sequence H → G � M → 0 where G, H
are finitely generated free R-modules. In the diagram below the right column is obtained
by first applying S⊗R (exactness is preserved since ⊗ is right exact), and then applying
HomS( , S⊗R N), so that the right column is exact. The left column is obtained by first
applying HomR( , N), and then S⊗R (exactness is preserved because of the hypothesis
that S is R-flat). The squares are easily seen to commute.

S ⊗R HomR(H,N) θH−−−−→ HomS(S ⊗R H,S ⊗R N)x x
S ⊗R HomR(G, N) θG−−−−→ HomS(S ⊗R G, S ⊗R N)x x
S ⊗R HomR(M,N) θM−−−−→ HomS(S ⊗R M,S ⊗R N)x x

0 −−−−→ 0

From the fact, established in the first paragraph, that θG and θH are isomorphisms and
the exactness of the two columns, it follows that θM is an isomorphism as well (kernels of
isomorphic maps are isomorphic). �

|
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Corollary. If W is a multiplicative system in R and M is finitely presented, we have that
W−1HomR(M,N) ∼= HomW−1R(W−1M,W−1N).

Moreover, if (R,m) is a local ring and both M , N are finitely generated, we may identify
Hom

R̂
(M̂, N̂) with the m-adic completion of HomR(M,N) (since m-adic completion is

the same as tensoring over R with R̂ (as covariant functors) on finitely generated R-
modules). �

When does a short exact sequence split?

Throughout this section, 0 −→ N
α−→ M

β−→ Q → 0 is a short exact sequence of modules
over a ring R. There is no restriction on the characteristic of R. We want to discuss the
problem of when this sequence splits. One condition is that there exist a map η : M → N
such that ηα = 1N . Let Q′ = Ker (η). Then Q′ is disjoint from the image α(N) = N ′ of
N in M , and N ′ + Q′ = M . It follows that M is the internal direct sum of N ′ and Q′ and
that β maps Q′ isomorphically onto Q.

Similarly, the sequence splits if there is a map θ : Q → M such that βθ = 1Q. In this
case let N ′ = α(N) and Q′ = θ(Q). Again, N ′ and Q′ are disjoint, and N ′ + Q′ = M , so
that M is again the internal direct sum of N ′ and Q′.

Proposition. Let R be an arbitrary ring and let

(#) 0 −→ N
α−→ M

β−→ Q → 0

be a short exact sequence of R-modules. Consider the sequence

(∗) 0 −→ HomR(Q, N) α∗−→ HomR(Q, M)
β∗−→ HomR(Q, Q) → 0

which is exact except possibly at HomR(Q, Q), and let C = Coker (β∗). The following
conditions are equivalent:

(1) The sequence (#) is split.

(2) The sequence (∗) is exact.

(3) The map β∗ is surjective.

(4) C = 0.

(5) The element 1Q is in the image of β∗.

Proof. Because Hom commutes with finite direct sum, we have that (1) ⇒ (2), while (2) ⇒
(3) ⇔ (4) ⇒ (5) is clear. It remains to show that (5) ⇒ (1). Suppose θ : Q → M is such
that β∗(θ) = 1Q. Since β∗ is induced by composition with β, we have that βθ = 1Q. �

A split exact sequence remains split after any base change. In particular, it remains
split after localization. There are partial converses. Recall that if I ⊆ R,

V(I) = {P ∈ Spec (R) : I ⊆ P},
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and that
D(I) = Spec (R)− V(I).

In particular,
D(fR) = {P ∈ Spec (R) : f /∈ P},

and we also write D(f) or Df for D(fR).

Theorem. Let R be an arbitrary ring and let

(#) 0 −→ N
α−→ M

β−→ Q → 0

be a short exact sequence of R-modules such that Q is finitely presented.

(a) (#) is split if and only if for every maximal ideal m of R, the sequence

0 → Nm → Mm → Qm → 0

is split.

(b) Let S be a faithfully flat R-algebra. The sequence (#) is split if and only if the sequence

0 → S ⊗R N → S ⊗R M → S ⊗R Q → 0

is split.

(c) Let W be a multiplicative system in R. If the sequence

0 → W−1N → W−1M → W−1Q → 0

is split over W−1R, then there exists a single element c ∈ W such that

0 → Nc → Mc → Qc → 0

is split over Rc.

(d) If P is a prime ideal of R such that

0 → NP → MP → QP → 0

is split, there exists an element c ∈ R− P such that

0 → Nc → Mc → Qc → 0

is split over Rc. Hence, (#) becomes split after localization at any prime P ′ that does
not contain c, i.e., any prime P ′ such that c /∈ P ′.

(e) The split locus for (#), by which we mean the set of primes P ∈ Spec (R) such that

0 → NP → MP → QP → 0
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is split over RP , is a Zariski open set in Spec (R).

Proof. Let C = Coker
(
Hom(Q, M) → HomR(Q, Q)

)
, as in the preceding Proposition,

and let γ denote the image of 1Q in C. By part (4) of the preceding Propostion, (#) is
split if and only if γ = 0.

(a) The “only if” part is clear, since splitting is preserved by any base change. For the
“if” part, suppose that γ 6= 0. The we can choose a maximal ideal m in the support of
Rγ ⊆ C, i.e., such that AnnRγ ⊆ m. The fact that Q is finitely presented implies that
localization commutes with Hom. Thus, localizing at m yields

0 → HomRm(Qm, Nm) → HomRm(Qm, Mm) → HomRm(Qm, Qm) → Cm → 0,

and since the image of γ is not 0, the sequence 0 → Nm → Mm → Qm → 0 does not split.

(b) Again, the “only if” part is clear, and since Q is finitely presented and S is flat,
Hom commutes with base change to S. After base change, the new cokernel is S ⊗R C.
But C = 0 if and only if S ⊗R C = 0, since S is faithfully flat, and the result follows.

(c) Similarly, the sequence is split after localization at W if and only if the image of γ
is 0 after localization at W , and this happens if and only if cγ = 0 for some c ∈ W . But
then localiziing at the element c kills γ.

(d) This is simply part (c) applied with W = R− P

(e) If P is in the split locus and c /∈ P is chosen as in part (d), D(c) is a Zariski open
neighborhood of P in the split locus. �

Behavior of strongly F-regular rings

Theorem. Let R be an F-finite reduced ring. Then the following conditions are equivalent:

(1) R is strongly F-regular.

(2) Rm is strongly F-regular for every maximal ideal m of R.

(3) W−1R is strongly F -regular for every multiplicative system W in R.

Proof. We shall show that (1) ⇒ (3) ⇒ (2) ⇒ (1).

To show that (1) ⇒ (3), suppose that R is strongly F -regular and let W be a multi-
plicative system. By the Proposition on p. 2 of the Lecture Notes of September 17, every
element of (W−1R)◦ has the form c/w where w ∈ W and c ∈ R◦. Given such an element
c/w, we can choose qc and an R-linear map θ : R1/qc → R such that θ(c1/q) = 1. After
localization at c, θ induces a map θc : (Rc)1/qc → Rc sending (c/1)1/qc to 1/1. Define
η : (Rc)1/qc → Rc by η(u) = θc(w1/qcu). Then η : (Rc)1/qc → Rc is an Rc-linear map such
that η

(
(c/w)1/qc

)
= 1, as required. (3) ⇒ (2) is obvious.

It remains to show that (2) ⇒ (1). Fix c ∈ R◦. Then for every maximal ideal m of
R, the image of c is in (Rm)◦, and so there exist qm and a splitting of the map Rm →
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(R1/qm)m ∼= (Rm)1/qm that sends 1 7→ c1/qm . Then there is also such a splitting of the map
R → R1/qm after localizing at any prime in a Zariski neighborhood Um of m. Since the Um

cover MaxSpec (R), they cover Spec (R), and by the quasicompactness of Spec (R) there
are finitely many maximal ideals m1, . . . ,mn such that the open sets Um1 , . . . , Umn

cover
Spec (R). Let qc = max {qm1 , . . . , qmn}. Then the map R → R1/qc that sends 1 7→ c1/qc

splits after localizing at any maximal ideal in any of the Umi
, i.e., after localizing at any

maximal ideal. By part (a) of the preceding Proposition, the map R → R1/qc sending
1 7→ c1/qc splits, as required. �

Corollary. A strongly F-regular ring is F-regular.

Proof. This is immediate from the fact that strongly F-regular rings are weakly F-regular
and the fact that a localization of a strongly F-regular ring is strongly F-regular. �

Corollary. R is strongly F-regular if and only if it is a finite product of strongly F-regular
domains.

Proof. If R is strongly F-regular it is normal, and, therefore, a product of domains. Since
the issue of whether R is strongly F-regular is local on the maximal ideals of R, when R
is a product of domains it is strongly F-regular if and only if each of the factor domains is
strongly F-regular. �

Proposition. If S is strongly F-regular and R is a direct summand of S, then R is strongly
F-regular.

Proof. If R and S are domains, we may proceed as follows. Let c ∈ R◦ = R−{0} be given.
Since S is strongly F-regular we may choose q and an S-linear map θ : S1/q → S such that
θ(c1/q) = 1. Let α : S → R be R-linear such that α(1) = 1. Then α ◦ θ : S1/q → R is
R-linear and sends c1/q 7→ 1. We may restrict this map to R1/q.

In the general case, we may first localize at a prime of R: it suffices to see that every
such localization is strongly F -regular. S is a product of F -regular domains S1 × · · · × Sn

each of which is an R-algebra. Let α : S → R be such that α(1) = 1. The element 1 ∈ S is
the sum of n idempotents ei, where ei has component 0 in Sj for j 6= i while the component
in Si is 1. Then 1 = α(1) =

∑n
i=1 α(ei), and since R is local, at least one α(ei) is not in

the maximal ideal m of the local ring R, i.e., we can fix i such that α(ei) is a unit a of R.
We have an R-linear injection ι : Si → S by identifying Si with 0 × 0 × Si × 0 × 0, i.e.,
with the set of elements of S all of whose coordinates except the i th are 0. Then a−1α ◦ ι
is a splitting of R → Si over R, and so we have reduced to the domain case, which was
handled in the first paragraph. �

We also have:

Proposition. If R → S is faithfully flat and S is strongly F-regular then R is strongly
F-regular.
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Proof. Let c ∈ R◦. Then c ∈ S◦, and so there exists q and an S-linear map S1/q → S such
that c1/q 7→ 1. There is an obvious map S⊗R R1/q → S1/q, since both factors in the tensor
product have maps to S1/q as R-algebras. This yields a map S ⊗R R1/q → S = S ⊗R R
that sends 1⊗ c1/q 7→ 1⊗ 1 that is S-linear. This implies that the map R → R1/q sending
1 7→ c1/q splits after a faithfully flat base change to S. By part (b) of the Theorem at the
top of p. 3, the map R → R1/q such that 1 7→ c1/q spits over R, as required. �

Theorem. An F-finite regular ring is strongly F-regular.

Proof. We may assume that (R, m, K) is local: it is therefore a domain. Let c 6= 0 be
given. Choose q so large that c /∈ m[q]: this is possible because

⋂
q m[q] ⊆

⋂
q mq = (0).

The flatness of Frobenius implies that R1/q is flat and, therefore, free over R since R1/q is
module-finite over R. (Alternatively, R1/q is free because a regular system of parameters
x1, . . . , xn in R is a regular sequence on R1/q: one may apply the Lemma in the middle of
p. 8 of the Lecture Notes of September 5. Or one may further reduce to the case where R
is complete, using the preceding Proposition, and even pass from the complete regular ring
K[[x1, . . . , xn] to K[[x1, . . . , xn]], where K is an algebraic closure of K. This is simply a
further faithfully flat extension. Now the fact that R1/q is R-free is easy.) Since c /∈ m[q],
we have that c1/q /∈ mR1/q. By Nakayama’s Lemma, c1/q is part of a minimal basis for
the R-free module R1/q, and a minimal basis is a free basis. It follows that there is an
R-linear map R1/q → R such that c1/q 7→ 1: the values can be specified arbitrarily on a
free basis containing c1/q. �

Remark: q th roots of maps. The following situation arises frequently in studying
strongly F-regular rings. One has q, q0, q1, q2, where these are all powers of p, the prime
characteristic, such that q0 ≤ q1 and q0 ≤ q2, and we have an R1/q0-linear map α : R1/q1 →
R1/q2 . This map might have certain specified values, e.g., α(u) = v. Here, one or more of
the integers q, qi may be 1. Then one has a map which we denote α1/q : R1/q1q → R1/q2q

which is R1/q0q-linear, that is simply defined by the rule α1/q(s1/q) = α(s)1/q. Then
α1/q(u1/q) = v1/q.

The following result makes the property of being a strongly F-regular ring much easier
to test: instead of needing to worry about constructing a splitting for every element of R◦,
one only needs to construct a splitting for one element of R◦.

Theorem. Let R be a reduced F-finite ring of prime characteristic p > 0, and let c ∈ R◦

be such that Rc is strongly F-regular. Then R is strongly F-regular if and only if
(∗) there exists qc such that the map R → R1/qc sending 1 7→ c1/qc splits.

Proof. The condition (∗) is obviously necessary for R to be strongly F-regular: we need to
show that it is sufficient. Therefore, assume that we have an R-linear splitting

θ : R1/qc → R,

with θ(c1/qc) = 1. By the Remark beginning near the bottom of p. 4 of the Lecture Notes
of September 21, we know that R is F-split. Suppose that d ∈ R◦ is given.
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Since Rc is strongly F-regular we can choose qd and an Rc-linear map β : R
1/qd
c → Rc

such that β(d1/qd) = 1. Since HomRc(R
1/qd
c , Rc) is the localization of HomR(R1/qd , R)

at c, we have that β =
1
cq

α for some sufficiently large choice of q: since we are free to
make the power of c in the denominator larger if we choose, there is no loss of generality
in assuming that the exponent is a power of p. Then α : R1/qd → R is an R-linear map
such that

α(d1/qd) = cqβ(d1/qd) = cq.

By taking qqc roots we obtain a map

α1/qqc : R1/qqcqd → R1/qqc

that is R1/qqc -linear and sends d1/qqcqd 7→ c1/qc . Because R is F-split, the inclusion R ↪→
R1/q splits: let γ : R1/q → R be R linear such that γ(1) = 1. Then γ1/qc : R1/qqc → R1/qc

is an R1/qc -linear retraction and sends c1/qc 7→ c1/qc . Then θ◦γ1/qc ◦α1/qqc : R1/qqcqd → R
and sends d1/qqcqd 7→ 1, as required. �


