
Math 711: Lecture of September 26, 2007

We want to use the theory of strongly F-regular F-finite rings to prove the existence of
test elements.

We first prove two preliminary results:

Lemma. Let R be an F-finite reduced ring and c ∈ R◦ be such that Rc is F-split (which
is automatic if Rc is strongly F-regular). Then there exists an R-linear map θ : R1/p → R
such that the value on 1 is a power of c.

Proof. We can choose an Rc-linear map (Rc)1/p → Rc such that 1 7→ 1, and

(Rc)1/p ∼= (R1/p)c.

Then HomRc
(R1/p

c , Rc) is the localization of HomR(R1/p, R) at c, and so we can write

θ =
1

cN
α, where N ∈ N and α : R1/p → R is R-linear. But then α = cNβ and so

α(1) = cNβ(1) = cN , as required. �

Lemma. Let R be a reduced F-finite ring and suppose that there exists an R-linear map
θ : R1/p → R such that θ(1) = c ∈ R◦. Then for every q = pe, there exists an R-linear
map ηq : R1/q → R such that ηq(1) = c2.

Proof. We use induction on q. If q = 1 we may take η1 = c21R, and if q = p we may take
ηp = c θ. Now suppose that ηq has been constructed for q ≥ p. Then η

1/p
q : R1/pq → R1/p,

it is R1/p-linear, hence, R-linear, and its value on 1 is c2/p. Define

ηpq(u) = θ
(
c(p−2)/pηq(u)

)
.

Consequently, we have, as required, that

ηpq(1) = θ
(
c(p−2)/pηq(1)

)
= θ(c(p−2)/pc2/p) = θ(c) = cθ(1) = c2. �

We can now prove the following:

Theorem (existence of big test elements). Let R be F-finite and reduced. If c ∈ R◦

and Rc is strongly F-regular, then c has a power that is a big test element. If Rc is strongly
F-regular and there exists an R-linear map θ : R1/p → R such that θ(1) = c, then c3 is a
big test element.

Proof. Since Rc is strongly F -regular it is F-split. By the first Lemma on p. 1 there exist
an integer N and an R-linear map θ : R1/p → R such that θ(1) = cN . By the second
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statement of the Theorem, c3N is then a big test element, and so it suffices to prove the
second statement.

Suppose that c satsifies the hypothesis of the second statement. By part (a) of the
Proposition at the bottom of p. 8 of the Lecture Notes of September 17, it suffices to show
that if N ⊆ M are arbitrary modules and u ∈ N∗

M , then c3u ∈ N . We may map a free
module G onto M , let H be the inverse image of N in G, and let v ∈ G be an element that
maps to u ∈ N . Then we have v ∈ H∗

G, and it suffices to prove that c3v ∈ H. Since v ∈ H∗
G

there exists d ∈ R◦ such that dvq ∈ H [q] for all q ≥ q1. Since Rc is strongly F-regular,
there exist qd and an Rc-linear map β : (Rc)1/qd → Rc that sends d1/qd → 1: we may take
qd larger, if necessary, and so we may assume that qd ≥ q1. As usual, we may assume that

β =
1
cq

α where α : R1/qd → R is R-linear. Hence, α = cqβ, and α(d1/qd) = cq. It follows

that α1/q : R1/qdq → R1/q is R1/q-linear, hence, R-linear, and its value on 1 is c. By the
preceding Lemma we have an R-linear map ηq : R1/q → R whose value on 1 is c2, so that
ηq(c) = cηq(1) = c3. Let γ = ηq ◦ α1/q, which is an R-linear map R1/qdq → R sending
d1/qdq to ηq(c) = c3. Since qdq ≥ q1, we have dvqdq ∈ H [qdq], i.e.,

(#) dvqdq =
n∑

i=1

rih
q
i

for some integer n > 0 and elements r1, . . . , rn ∈ R and h1, . . . , hn ∈ H.

Consider G′ = R1/qqd ⊗G. We identify G with its image under the map G → G′ that
sends g 7→ 1 ⊗ g. Thus, if s ∈ R1/qdq, we may write sg instead of s ⊗ g. Note that G′ is
free over R1/qqd, and the R-linear map γ : R1/qqd → R induces an R-linear map

γ′ : G′ = Rqqd ⊗R G → R⊗R G ∼= G

that sends sg 7→ γ(s)g for all s ∈ R1/qqd and all g ∈ G. Note that by taking qdq th roots
in the displayed equation (#) above, we obtain

(†) d1/qdqv =
n∑

i=1

r
1/qdq
i hi.

We may now apply γ′ to both sides of (†): we have

c3v =
n∑

i=1

γ(r1/qdq
i )hi ∈ H,

exactly as required. �

Disccussion. As noted on the bottom of p. 2 and top of p. 3 of the Lecture Notes of
September 21, it follows that every F-finite reduced ring has a big test element: one can
choose c ∈ R◦ such that Rc is regular. This is a consequence of the fact that F-finite
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rings are excellent. But one can give a proof of the existence of such elements c in F -finite
rings of characteristic p very easily if one assumes that a Noetherian ring is regular if and
only if the Frobenius endomorphism is flat (we proved the “only if” direction earlier). See
[E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 91
(1969) 772–784]. Assuming the “if” direction, we may argue as follows. First note that one
can localize at one such element c so that the idempotent elements of the total quotient
ring of R are in the localization. Therefore, there is no loss of generality in assuming that
R is a domain. Then R1/p is a finitely generated torsion-free R-module. Choose a maximal
set s1, . . . , sn of R-linearly independent elements in R1/p. This gives an inclusion

Rn ∼= Rs1 + · · ·+ Rsn ⊆ R1/p.

Call the cokernel C. Then C is finitely generated, and C must be a torsion module over R:
if sn+1 ∈ R1/p represents an element of C that is not a torsion element, then s1, . . . , sn+1

are linearly independent over R, a contradiction. Hence, there exists c ∈ R◦ that kills C,
and so cR1/p ⊆ Rn. It follows that (R1/p)c

∼= Rn
c , and so (Rc)1p is free over Rc. But this

implies that FRc
is flat, and so Rc is regular, as required. �

In any case, we have proved:

Corollary. If R is reduced and F-finite, then R has a big test element. Hence, τ b(R)
is generated by the big test elements of R, and τ(R) is generated by the test elements of
R. �

Our next objective is to show that the big test elements produced by the Theorem on
p. 1 are actually completely stable. In fact, we shall prove something more: they remain
test elements after any geometrically regular base change, i.e., their images under a flat
map R → S with geometrically regular fibers are again test elements.


