Math 711: Lecture of September 26, 2007

We want to use the theory of strongly F-regular F-finite rings to prove the existence of
test elements.

We first prove two preliminary results:

Lemma. Let R be an F-finite reduced ring and ¢ € R° be such that R. is F-split (which
is automatic if R, is strongly F-regular). Then there exists an R-linear map 0 : RY/? — R
such that the value on 1 is a power of c.

Proof. We can choose an R.-linear map (Rc)l/ P — R. such that 1 +— 1, and
(Rc)l/p ~ (Rl/p)c.

Then Hoch(Ri/p, R.) is the localization of Homg(R'/?, R) at ¢, and so we can write

1
¢ = —«a, where N € N and « : RYP — R is R-linear. But then a = ¢V and so

c
a(l) = cNp(1) = cV, as required. [

Lemma. Let R be a reduced F-finite ring and suppose that there exists an R-linear map
0 : R'? — R such that 0(1) = ¢ € R°. Then for every q = p°, there exists an R-linear
map 1, : RY7 — R such that n,(1) = c?.

Proof. We use induction on ¢. If ¢ = 1 we may take n; = c?1g, and if ¢ = p we may take
np = cf. Now suppose that 1, has been constructed for ¢ > p. Then n;/p : RY/ra — RV/p,
it is R'/P-linear, hence, R-linear, and its value on 1 is ¢2/?. Define

Npq(u) = Q(C(p_Q)/pnq (u))

Consequently, we have, as required, that

Toa(1) = 0(cP=2 P, (1) = B(P=2/P2/P) = () = ch(1) = *. O

We can now prove the following:

Theorem (existence of big test elements). Let R be F-finite and reduced. If ¢ € R°
and R. is strongly F-regular, then ¢ has a power that is a big test element. If R. is strongly
F-regular and there exists an R-linear map 0 : RY? — R such that (1) = ¢, then ¢ is a
big test element.

Proof. Since R, is strongly F'-regular it is F-split. By the first Lemma on p. 1 there exist
an integer N and an R-linear map 6 : RY/? — R such that (1) = ¢V. By the second
1
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statement of the Theorem, ¢V is then a big test element, and so it suffices to prove the

second statement.

Suppose that ¢ satsifies the hypothesis of the second statement. By part (a) of the
Proposition at the bottom of p. 8 of the Lecture Notes of September 17, it suffices to show
that if N C M are arbitrary modules and v € Nj;, then c®>u € N. We may map a free
module G onto M, let H be the inverse image of NV in GG, and let v € GG be an element that
maps to v € N. Then we have v € H{,, and it suffices to prove that c3v € H. Sincev € HZ
there exists d € R° such that dv? € H4 for all ¢ > ¢;. Since R, is strongly F-regular,
there exist gg and an R.-linear map 3 : (R.)'/% — R, that sends d'/9%¢ — 1: we may take
qq larger, if necessary, and so we may assume that g > ¢;. As usual, we may assume that

1
B = — o where a : RY4¢ — R is R-linear. Hence, o = ¢93, and a(d'/9¢) = ¢4. Tt follows
c

that o'/9 : RY/949 — R4 is R'/4-linear, hence, R-linear, and its value on 1 is ¢. By the

preceding Lemma we have an R-linear map 7, : R'/9 — R whose value on 1 is ¢?, so that

ne(c) = en?(1) = 3. Let v = n, o a'/9, which is an R-linear map R'/9%49 — R sending

d'/949 to n,(c) = c. Since qaq > q1, we have dv?? € Hld je.

n

(#) dv™? = r;h

i=1
for some integer n > 0 and elements r{, ... ,7, € Rand hy, ... ,h, € H.

Consider G’ = R4 @ G. We identify G with its image under the map G — G’ that
sends g — 1 ® g. Thus, if s € R/, we may write sg instead of s ® g. Note that G’ is
free over R'/99% and the R-linear map v : R'/%9¢ — R induces an R-linear map

VI:G/:Rqu®RG—>R®RGgG

that sends sg — (s)g for all s € R'/%94 and all g € G. Note that by taking ggq th roots
in the displayed equation (#) above, we obtain

(1) Vs, = 3y,
i=1
We may now apply 7’ to both sides of (f): we have
Sv= Zv(ril/qdq)hi € H,
i=1
exactly as required. [J

Disccussion. As noted on the bottom of p. 2 and top of p. 3 of the Lecture Notes of
September 21, it follows that every F-finite reduced ring has a big test element: one can
choose ¢ € R° such that R, is regular. This is a consequence of the fact that F-finite



rings are excellent. But one can give a proof of the existence of such elements ¢ in F-finite
rings of characteristic p very easily if one assumes that a Noetherian ring is regular if and
only if the Frobenius endomorphism is flat (we proved the “only if” direction earlier). See
[E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 91
(1969) 772-784]. Assuming the “if” direction, we may argue as follows. First note that one
can localize at one such element ¢ so that the idempotent elements of the total quotient
ring of R are in the localization. Therefore, there is no loss of generality in assuming that
R is a domain. Then R'/? is a finitely generated torsion-free R-module. Choose a maximal
set s1, ..., S, of R-linearly independent elements in R'/P. This gives an inclusion

R" 2 Rs; +---+ Rs, C R'/P.

Call the cokernel C'. Then C'is finitely generated, and C' must be a torsion module over R:
if 5,41 € RY/P represents an element of C that is not a torsion element, then sq, ..., 5,41
are linearly independent over R, a contradiction. Hence, there exists ¢ € R° that kills C,
and so cR'/? C R™. Tt follows that (R'/P?), = R”, and so (R.)' is free over R.. But this
implies that F_ is flat, and so R, is regular, as required. [

In any case, we have proved:

Corollary. If R is reduced and F-finite, then R has a big test element. Hence, T1,(R)
is generated by the big test elements of R, and T(R) is generated by the test elements of
R. O

Our next objective is to show that the big test elements produced by the Theorem on
p- 1 are actually completely stable. In fact, we shall prove something more: they remain
test elements after any geometrically regular base change, i.e., their images under a flat
map R — S with geometrically regular fibers are again test elements.



