
Math 711: Lecture of October 3, 2007

Koszul homology

We define the i th Koszul homology module Hi(x1, . . . , xn; M) of M with respect to
x1, . . . , xn as the i th homology module Hi

(
K•(x1, . . . , xn; M) of the Koszul complex.

We note the following properties of Koszul homology.

Proposition. Let R be a ring and x = x1, . . . , xn ∈ R. Let I = (x)R. Let M be an
R-module.

(a) Hi(x; M) = 0 if i < 0 or if i > n.

(b) H0(x; M) ∼= M/IM .

(c) Hn(x; M) = AnnMI.

(d) AnnRM kills every Hi(x1, . . . , xn; M).

(e) If M is Noetherian, so is its Koszul homology Hi(x; M).

(f) For every i, Hi(x; ) is a covariant functor from R-modules to R-modules.

(g) If
0 → M ′ → M → M ′′ → 0

is a short exact sequence of R-modules, there is a long exact sequence of Koszul ho-
mology

· · · → Hi(x; M ′) → Hi(x; M) → Hi(x; M ′′) → Hi−1(x; M) → · · ·

(h) If x1, . . . , xn is a possibly improper regular sequence on M , then Hi(x; M) = 0, i ≥ 1.

Proof. Part (a) is immediate from the definition. Part (b) follows from the fact that last
map in the Koszul complex from K1(x; M) → K0(x; M) may be identified with the map
Mn → M such that (v1, . . . , vn) 7→ x1v + · · ·+ xnvn. Part (c) follows from the fact that
the map Kn(x; M) → Kn−1(x; M) may be identified with the map M → Mn such that
v 7→ (x1v, −x2v, · · · , (−1)n−1xnv).

Parts (d) and (e) are clear, since every term in the Koszul complex is itself a direct sum
of copies of M .

To prove (f), note that if we are given a map M → M ′, there is an induced map of
complexes

K•(x; R)⊗M → K•(x; R)⊗M ′.
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This map induces a map Hi(x; M) → Hix; M ′). Checking that this construction gives a
functor is straightforward.

For part (g), we note that

(∗) 0 → K•(x; R)⊗R M ′ → K•(x; R)⊗R M → K•(x; R)⊗R M ′′ → 0

is a short exact sequence of complexes, because each Kj(x; R) is R-free, so that the functor
Kj(x; R)⊗R is exact. The long exact sequence is simply the result of applying the snake
lemma to (∗). (This sequence can also be constructed by interpreting Koszul homology as
a special case of Tor: we return to this point later.)

Finally, part (h) is immediate by induction from the iterative construction of the Koszul
complex as a mapping cone and the Proposition at the top of p. 6 of the Lecture Notes
of October 1. The map of augmentations is the map given by multiplication by xn from
M/(x1, . . . , xn−1)M to itself, which is injective because x1, . . . , xn is a possibly improper
regular sequence. �

Corollary. Let x = x1, . . . , xn be a regular sequence on R and let I = (x)R. Then R/I
has a finite free resolution of length n over R, and does not have any projective resolution
of length shorter than n. Moreover, for every R-module M ,

TorR
i (R/I, M) ∼= Hi(x; M).

Proof. By part (f) of the preceding Proposition, K•(x; R) is acyclic. Since this is a free
complex of finitely generated free modules whose augmentation is R/I, we see that R/I

has the required resolution. Then, by definition of Tor, we may calculate TorR
i (R/I, M) as

Hi

(
K•(x; R)⊗RM

)
, which is precisely Hi(x; M). To see that there is no shorter projective

resolution of R/I, take M = R/I. Then

Torn(R/I, R/I) = Hn(x; R/I) = AnnR/II = R/I,

by part (c) of the preceding Proposition. If there were a shorter projective resolution, we
would have Torn(R/I, R/I) = 0. �

Independence of Koszul homology of the base ring

The following observation is immensely useful. Suppose that we have a ring homomor-
phism R → S and an S-module M . By restriction of scalars, M is an R-module. Let
x = x1, . . . , xn ∈ R and let y = y1, . . . , yn be the images of the xi in S. Note that
the actions of xi and yi on M are the same for every i. This means that the complexes
K•(x; M) and K•(y; M) are the same. In consequence, Hj(x; M) ∼= Hj(y; M) for all j, as
S-modules. Note that even if we treat M as an R-module initially in caclulating Hj(x; M),
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we can recover the S-module structure on the Koszul homoolgy from the S-module struc-
ture of M . For every s ∈ S, multiplication by s is an R-linear map from M to M , and
since Hi(x; ) is a covariant functor, we recover the action of s on Hi(x; M).

Koszul homology and Tor

Let R be a ring and let x = x1, . . . , xn ∈ R. Let M be an R-module. We have already
seen that if x1, . . . , xn is a regular sequence in R, then we may interpret Hi(x1, . . . , xn; M)
as a Tor over R.

In general, we may interpret Hi(x; M) as a Tor over an auxiliary ring. Let A be any
ring such R is an A-algebra. We may always take A = Z or A = R. If R contains a field
K, we may choose A = K. Let X = X1, . . . , Xn be indeterminates over A, and map
B = A[X1, . . . , Xn] → R by sending Xj 7→ xj for all j. Then M is also a B-module, as in
the section above, and X1, . . . , Xn is a regular sequence in B.

Hence:

Proposition. With notation as in the preceding paragraph,

Hi(x1, . . . , x;M) ∼= TorB
j

(
B/(X)B, M

)
.

Corollary. Let x = x1, . . . , xn ∈ R, let I = (x)R, and let M be an R-module. Then I
kills Hi(x; M) for all i.

Proof. We use the idea of the discussion preceding the Proposition above, taking A = R, so
that with X = X1, . . . , Xn we have an R-algebra map B = R[X] → R such that Xi 7→ xi,
1 ≤ i ≤ n. Then

(∗) Hi(x; M) ∼= TorB
i (B/(X)B, M).

When M is viewed as a B-module, every Xi − xi kiils M . But X kills B/(X)B, and
so for every i, both Xi − xi and Xi kill TorB

i (B/(X)B, M). It follows that every xi =
Xi − (Xi − xi) kills it as well, and the result now follows from (∗). �

An application to the study of regular local rings

Let M be a finitely generated R-module over a local ring (R, m, K). A minimal free
resolution of M may be constructed as follows. Let b0 be the least number of generators
of M , and begin by mapping Rb0 onto M using these generators. If

Rbi
αi−→ · · · α1−→ Rb0 α0−→ M −→ 0

has already been constructed, let bi+1 be the least number of generators of Zi = Ker (αi),
and construct αi+1 : Rbi+1 → Rbi by mapping the free generators of Rbi+1 to a minimal set
of generators of Zi ⊆ Rbi . Think of the linear maps αi , i ≥ 1, as given by matrices. Then
it is easy to see that a free resolution for M is minimal if and only if all of the matrices αi

for i ≥ 1 have entries in m. We have the following consequence:
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Proposition. Let (R, m, K) be local, let M be a finitely generated R-modules, and let

· · · −→ Rbi
αi−→ · · · −→ Rb0 −→ M −→ 0

be a minimal resolution of M . Then for all i, TorR
i (M, K) ∼= Kbi .

Proof. We may use the minimal resolution displayed to calculate the values of Tor. We
drop the augmentation M and apply K ⊗R . Since all of the matrices have entries in m,
the maps are alll 0, and we have the complex

· · · 0−→ Kbi
0−→ · · · 0−→ Kb0 0−→ 0.

Since all the maps are zero, the result stated is immediate. �

Theorem (Auslander-Buchsbaum). Let (R, m, K) be a regular local ring. Then every
finitely generated R-module has a finite projective resolution of length at most n = dim (R).

Proof. Let x = x1, . . . , xn be a regular system of parameters for R. These elements form
a regular sequence. It follows that K = R/(x) has a free resolution of length at most n.
Hence, Tori(M, K) = 0 for all i > n and for every R-module M .

Now let M be a finitely generated R-module, and let

· · · → Rbi → · · · → Rb1 → Rb0 → R → M → 0

be a minimal free resolution of M . For i > n, bi = 0 because Tori(M, K) = 0, and so
Rbi = 0 for i > n, as required. �

It is true that a local ring is regular if and only if its residue class field has finite
projective dimension: the converse part was proved by J.-P. Serre. The argument may be
found in the Lecture Notes of February 13 and 16, Math 615, Winter 2004.

It is an open question whether, if M is a module of finite length over a regular local
ring (R, m, K) of Krull dimension n, one has that

dimKTori(M, K) ≥
(

n

i

)
.

The numbers βi = dimKTorR
i (M, K) are called the Betti numbers of M . If x = x1, . . . , xn

is a minimal set of generators of m, these may also be characterized as the dimensions of
the Koszul homology modules Hi(x; M). A third point of view is that they give the ranks
of the free modules in a minimal free resolution of M .

The binomial coefficients are the Betti numbers of K = R/m: they are the ranks of the
free modules in the Koszul complex resolution of K. The question as to whether these are
the smallest possible Betti numbers for an R-module was raised by David Buchsbaum and
David Eisenbud in the first reference listed below, and was reported by Harthshorne in a
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1979 paper (again, see the list below) as a question raised by Horrocks. The question is
open in dimension 5 and greater. An affirmative answer would imply that the sum of the
Betti numbers is at least 2n: this weaker form is also open. We refer the reader interested
in learning more about this problem to the following selected references:

D. Buchsbaum and D Eisenbud, Algebra structures for finite free resolutions and some
structure theorems for ideals of codimension 3, Amer. J. of Math. 99 (1977) 447–485.

S.-T. Chang, Betti numbers of modules of exponent two over regular local rings, J. of Alg.
193 (1997) 640–659.

H. Charalambous, Lower Bounds for Betti Numbers of Multigraded Modules, J. of Alg.
137 (1991) 491–500.

D. Dugger, Betti Numbers of Almost Complete Intersections, Illinois J. Math. 44 (2000)
531–541.

D. Eisenbud and C. Huneke, editors, Free resolutions in commutative algebra and algebraic
geometry, Research Notes in Mathematics: Sundance 90, A. K. Peters, Ltd., 1992.

E.G. Evans and P. Griffith, Syzygies, London Math. Soc. Lecture Note Series 106 Cam-
bridge Univ. Press, Cambridge, 1985.

R. Hartshorne, Algebraic Vector Bundles on Projective Spaces: a Problem List, Topology,
18 (1979) 117–128.

M. Hochster and B. Richert, Lower bounds for Betti numbers of special extensions, J. Pure
and Appl. Alg 201 (2005) 328–339.

C. Huneke and B. Ulrich, The Structure of Linkage, Ann. of Math. 126 (1987) 277–334.

L. Santoni, Horrocks’ question for monomially graded modules, Pacific J. Math. 141 (1990)
105–124.


