Math 711: Lecture of October 3, 2007

Koszul homology

We define the ith Koszul homology module H;(x1, ... ,z,; M) of M with respect to
1, ... ,Tp, as the ith homology module H; (IC. (z1, ... ,xn; M) of the Koszul complex.

We note the following properties of Koszul homology.
Proposition. Let R be a ring and x = z1, ... ,x, € R. Let I = (z)R. Let M be an
R-module.
(a) Hi(z; M) =01ifi <0 orifi>n.

(b) Ho(z; M) = M/IM.
(¢) Hp(z; M) = Anny,I.
(d) AnngM Fkills every H;i(x1, ... ,zn; M).

If M is Noetherian, so is its Koszul homology H;(z; M).

For every i, H;(z; _) is a covariant functor from R-modules to R-modules.

(g) If
0—-M —-M-—-M"—-0
is a short exact sequence of R-modules, there is a long exact sequence of Koszul ho-
mology
- — Hi(z; M') — Hi(z; M) — Hi(z; M") — H;1(z; M) — -
(h) Ifxy, ...z, is a possibly improper reqular sequence on M, then H;(z; M) =10, i > 1.

Proof. Part (a) is immediate from the definition. Part (b) follows from the fact that last
map in the Koszul complex from Ky (z; M) — Ko(z; M) may be identified with the map
M™ — M such that (vq, ... ,v,) — 10 + -+ - + x,v,. Part (c) follows from the fact that
the map K, (z; M) — K,,—1(z; M) may be identified with the map M — M™ such that
v (10, —120, -+, (=1)" "Lz ,0).

Parts (d) and (e) are clear, since every term in the Koszul complex is itself a direct sum
of copies of M.

To prove (f), note that if we are given a map M — M’ there is an induced map of
complexes
Ke(z; R)® M — Ko(z; R) @ M'.
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This map induces a map H;(z; M) — H;z; M’). Checking that this construction gives a
functor is straightforward.

For part (g), we note that
() 0 Kazs R) @ M’ — Ka(z; R) @ M — Ka(z; R) @ M" — 0

is a short exact sequence of complexes, because each K;(z; R) is R-free, so that the functor
ICj(z; R)®gr _ is exact. The long exact sequence is simply the result of applying the snake
lemma to (*). (This sequence can also be constructed by interpreting Koszul homology as
a special case of Tor: we return to this point later.)

Finally, part (h) is immediate by induction from the iterative construction of the Koszul
complex as a mapping cone and the Proposition at the top of p. 6 of the Lecture Notes
of October 1. The map of augmentations is the map given by multiplication by x,, from
M/(xq, ... ,xn—1)M to itself, which is injective because z1, ... ,x, is a possibly improper
regular sequence. [J

Corollary. Let x = x1, ... ,x, be a reqular sequence on R and let I = (z)R. Then R/I
has a finite free resolution of length n over R, and does not have any projective resolution
of length shorter than n. Moreover, for every R-module M,

Torj'(R/I, M) = H,(z; M).

Proof. By part (f) of the preceding Proposition, o (z; R) is acyclic. Since this is a free
complex of finitely generated free modules whose augmentation is R/I, we see that R/I
has the required resolution. Then, by definition of Tor, we may calculate Torf% (R/1, M) as
H; (IC. (z; R)®Rr M), which is precisely H;(z; M). To see that there is no shorter projective
resolution of R/I, take M = R/I. Then

Tor,(R/I, R/I) = Hy(z; R/I) = Anng,;I = R/I,

by part (c) of the preceding Proposition. If there were a shorter projective resolution, we

would have Tor,(R/I, R/I)=0. O
Independence of Koszul homology of the base ring

The following observation is immensely useful. Suppose that we have a ring homomor-
phism R — S and an S-module M. By restriction of scalars, M is an R-module. Let
r =2xy,...,0n, € Rand let y = y1,...,y, be the images of the z; in S. Note that
the actions of z; and y; on M are the same for every i. This means that the complexes
Ke(z; M) and K(y; M) are the same. In consequence, H;(z; M) = H;(y; M) for all j, as
S-modules. Note that even if we treat M as an R-module initially in caclulating H;(z; M),
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we can recover the S-module structure on the Koszul homoolgy from the S-module struc-
ture of M. For every s € S, multiplication by s is an R-linear map from M to M, and
since H;(x; _ ) is a covariant functor, we recover the action of s on H;(z; M).

Koszul homology and Tor

Let R be aring and let z = x4, ... ,z, € R. Let M be an R-module. We have already
seen that if z1, ... , x, is aregular sequence in R, then we may interpret H;(z1, ... ,x,; M)
as a Tor over R.

In general, we may interpret H;(z; M) as a Tor over an auxiliary ring. Let A be any
ring such R is an A-algebra. We may always take A = Z or A = R. If R contains a field

K, we may choose A = K. Let X = Xy, ...,X, be indeterminates over A, and map
B = A[Xy, ..., X,] — R by sending X; — z; for all j. Then M is also a B-module, as in
the section above, and X1, ..., X,, is a regular sequence in B.

Hence:

Proposition. With notation as in the preceding paragraph,

Hi(zy, ... ,z.M) = Tor? (B/(X)B, M).

Corollary. Let x = x1, ... ,x, € R, let I = (z)R, and let M be an R-module. Then I
kills H;(x; M) for all i.

Proof. We use the idea of the discussion preceding the Proposition above, taking A = R, so
that with X = X1, ..., X,, we have an R-algebra map B = R[X] — R such that X; — x;,
1 <4 <n. Then

(x) Hi(z; M) = Tor? (B/(X)B, M).

When M is viewed as a B-module, every X; — z; kiils M. But X kills B/(X)B, and
so for every i, both X; — x; and X; kill Tor? (B/(X)B, M). It follows that every z; =
Xi — (X; — x;) kills it as well, and the result now follows from (x). [

An application to the study of regular local rings

Let M be a finitely generated R-module over a local ring (R, m, K). A minimal free
resolution of M may be constructed as follows. Let by be the least number of generators
of M, and begin by mapping R? onto M using these generators. If

Rbi &4, ... 2 Rbo X0 Ar

has already been constructed, let b; 1 be the least number of generators of Z; = Ker («;),
and construct a;; : R%+1 — RY by mapping the free generators of R%+! to a minimal set
of generators of Z; C R . Think of the linear maps o , i > 1, as given by matrices. Then
it is easy to see that a free resolution for M is minimal if and only if all of the matrices a;
for ¢ > 1 have entries in m. We have the following consequence:
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Proposition. Let (R, m, K) be local, let M be a finitely generated R-modules, and let
- — RV % .. R M — 0

be a minimal resolution of M. Then for all i, Tor®(M, K) = K.

Proof. We may use the minimal resolution displayed to calculate the values of Tor. We
drop the augmentation M and apply K ®r _ . Since all of the matrices have entries in m,
the maps are alll 0, and we have the complex

O kb O 9 Kbo &0_

Since all the maps are zero, the result stated is immediate. [

Theorem (Auslander-Buchsbaum). Let (R, m, K) be a regular local ring. Then every
finitely generated R-module has a finite projective resolution of length at most n = dim (R).

Proof. Let x = x1, ... ,x, be a regular system of parameters for R. These elements form
a regular sequence. It follows that K = R/(z) has a free resolution of length at most n.
Hence, Tor;(M, K) = 0 for all ¢ > n and for every R-module M.

Now let M be a finitely generated R-module, and let
SRV R LR SR M0

be a minimal free resolution of M. For i > n, b; = 0 because Tor;(M, K) = 0, and so
Rb =0 for i > n, as required. [J

It is true that a local ring is regular if and only if its residue class field has finite
projective dimension: the converse part was proved by J.-P. Serre. The argument may be
found in the Lecture Notes of February 13 and 16, Math 615, Winter 2004.

It is an open question whether, if M is a module of finite length over a regular local
ring (R, m, K) of Krull dimension n, one has that

dim Tor; (M, K) > (")
7

The numbers 3; = dimKTorf(M, K) are called the Betti numbersof M. lf x = x4, ... ,x,
is a minimal set of generators of m, these may also be characterized as the dimensions of
the Koszul homology modules H;(z; M). A third point of view is that they give the ranks
of the free modules in a minimal free resolution of M.

The binomial coefficients are the Betti numbers of K = R/m: they are the ranks of the
free modules in the Koszul complex resolution of K. The question as to whether these are
the smallest possible Betti numbers for an R-module was raised by David Buchsbaum and
David Eisenbud in the first reference listed below, and was reported by Harthshorne in a
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1979 paper (again, see the list below) as a question raised by Horrocks. The question is
open in dimension 5 and greater. An affirmative answer would imply that the sum of the
Betti numbers is at least 2™: this weaker form is also open. We refer the reader interested
in learning more about this problem to the following selected references:

D. Buchsbaum and D Eisenbud, Algebra structures for finite free resolutions and some
structure theorems for ideals of codimension 3, Amer. J. of Math. 99 (1977) 447-485.

S.-T. Chang, Betti numbers of modules of exponent two over regular local rings, J. of Alg.
193 (1997) 640-659.

H. Charalambous, Lower Bounds for Betti Numbers of Multigraded Modules, J. of Alg.
137 (1991) 491-500.

D. Dugger, Betti Numbers of Almost Complete Intersections, Illinois J. Math. 44 (2000)
531-541.

D. Eisenbud and C. Huneke, editors, Free resolutions in commutative algebra and algebraic
geometry, Research Notes in Mathematics: Sundance 90, A. K. Peters, Ltd., 1992.

E.G. Evans and P. Griffith, Syzygies, London Math. Soc. Lecture Note Series 106 Cam-
bridge Univ. Press, Cambridge, 1985.

R. Hartshorne, Algebraic Vector Bundles on Projective Spaces: a Problem List, Topology,
18 (1979) 117-128.

M. Hochster and B. Richert, Lower bounds for Betti numbers of special extensions, J. Pure
and Appl. Alg 201 (2005) 328-339.

C. Huneke and B. Ulrich, The Structure of Linkage, Ann. of Math. 126 (1987) 277-334.

L. Santoni, Horrocks’ question for monomially graded modules, Pacific J. Math. 141 (1990)
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