
Math 711: Lecture of October 5, 2007

More on mapping cones and Koszul complexes

Let φ• : B• → A• be a map of complexes that is injective. We shall write d• for the
differential on A• and δ• for the differential on B•. Then we may form a quotient complex
Q• such that Qn = Bn/φn(An) for all n, and the differential on Q• is induced by the
differential on B•. Let C• be the mapping cone of φ•.

Proposition. With notation as in the preceding paragraph, Hn(C•) ∼= Hn(Q•) for all n.

Proof. We may assume that every φn is an inclusion map. A cycle in Qn is represented
by an element z ∈ An whose boundary dnz is 0 in An−1/φn−1(Bn−1). This means that
dnz = φn−1(b) for some b ∈ Bn−1. (Once we have specified z there is at most one choice
of b, by the injectivity of φn−1.) The boundaries in Qn are represented by the elements
dn+1(An+1) + φn(B). Thus,

Hn(Q•) ∼=
d−1

n

(
φn−1(Bn−1)

)
dn+1(An+1) + φn(Bn)

.

A cycle in Cn is represented by a sum z ⊕ b′ such that(
dn(z) + (−1)n−1φn−1(b′)

)
⊕ δn−1(b′) = 0

Again, this element is uniquely determined by z, which must satisfy dn(z) ∈ φn−1(Bn−1).
b′ is then uniquely determined as (−1)nb where b ∈ Bn−1 is such that φn−1(b) = dn(z).
Such an element b is automatically killed by δn−1, since

φn−2δn−1(b) = dn−1φn−1(b) = dn−1dn(z) = 0,

and φn−2 is injective. A boundary in Cn has the form(
dn+1(a) + (−1)nφn(bn)

)
⊕ δnbn.

This shows that

Hn(C•) ∼=
d−1

n

(
φn−1(Bn−1)

)
dn+1(An+1) + φn(Bn)

,

as required. �
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Corollary. Let x = x1, . . . , xn ∈ R be elements such that xn is not a zerodivisor on the
R-module M . Let x− = x1, . . . , xn−1, i..e., the result of omitting xn from the sequence.
Then Hi(x; M) ∼= Hi(x−; M/xnM) for all i.

Proof. We apply that preceding Proposition with A• = B• = K•(x−; M), and φi given by
multiplication by xn in every degree i. Since every term of K•(x−; M) is a finite direct
sum of copies of M , the maps φi are injective. The mapping cone, which is K•(x; M),
therefore has the same homology as the quotient complex, which may be identified with

K•(x−, M)⊗ (R/xnR) ∼= K•(x−; R)⊗R M ⊗R R/xnR ∼= K•(x−; R)⊗R (M/xnM)

which is K•(x−; M/xnM), and the result follows. �

We also observe:

Proposition. Let φ• : B• → A• be any map of complexes and let C• be the mapping cone.
In the long exact sequence

· · · −→ Hn(A•) −→ Hn(C•) −→ Hn−1(B•)
∂n−1−−−→ Hn−1(A•) −→ · · ·

the connecting homomorphism ∂n−1 is induced by (−1)n−1φn−1.

Proof. We follow the prescription for constructing the connecting homomorphism. Let
b ∈ Bn−1 be a cycle in Bn−1. We lift this cycle to an element of Cn that maps to it: one
such lifting is 0 ⊕ b (the choice of lifting does not affect the result). We now apply the
differential in the mapping cone C• to the lifting: this gives

(−1)n−1φn−1(b)⊕ δn−1(b) = (−1)n−1φn−1(b)⊕ 0,

since b was a cycle in Bn−1. Call the element on the right α. Finally, we choose an
element of An−1 that maps to α: this gives (−1)n−1φn−1(b), which represents the value of
∂n−1([b]), as required. �

Corollary. Let x = x1, . . . , xn ∈ R be arbitrary elements. Let x− = x1, . . . , xn−1, i..e.,
the result of omitting xn from the sequence. Let M be any R-module. Then there are short
exact sequences

0 → Hi(x−; M)
xnHi(x−; M)

→ Hi(x; M) → AnnHi−1(x−; M)xn → 0

for every integer i.

Proof. By the preceding Proposition, the long exact sequence for the homology of the
mapping cone of the map of complexes

K•(x−; M) xn·−−→ K•(x−; M)
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has the form

· · · −→ Hi(x−; M)
(−1)ixn·−−−−−→ Hi(x−; M) −→ Hi(x; M)

−→ Hi−1(x−; M)
(−1)i−1xn·−−−−−−−→ Hi−1(x−; M) −→ · · ·

Since the maps given by multiplication by xn and by −xn have the same kernel and
cokernel, this sequence implies the existence of the short exact sequences specified in the
statement of the Theorem. �

The cohomological Koszul complex

Notice that if P is a finitely generated projective module over a ring R, ∗ denotes
the functor that sends N 7→ HomR(N, R), and M is any module, then there is a natural
isomorphism

HomR(P, M) ∼= P ∗ ⊗R M

such that the inverse map ηP is defined as follows: ηP is the linear map induced by the
R-bilinear map BP given by BP (g, u)(v) = g(v)u for g ∈ P ∗, u ∈ M , and v ∈ P . It is
easy to check that

(1) ηP⊕Q = ηP ⊕ ηQ and

(2) that ηR is an isomorphism.

It follows at once that

(3) ηRn is an isomorphism for all n ∈ N.

For any finitely generated projective module P we can choose Q such that P ⊕Q ∼= Rn,
and then, since ηP ⊕ ηQ is an isomorphism, it follows that

(4) ηP is an isomorphism for every finitely generated projective module P .

If R is a ring, M an R-module, and x = x1, . . . , xn ∈ R, the cohomological Koszul
complex K•(x; M), is defined as

HomR

(
K•(x; R), M

)
,

and its cohomology, called Koszul cohomology, is denoted H•(x; M). The cohomological
Koszul complex of R (and, it easily follows, of M) is isomorphic with the homological
Koszul complex numbered “backward,” but this is not quite obvious: one needs to make
sign changes on the obvious choices of bases to get the isomorphism.
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To see this, take the elements uj1, ... ,ji with 1 ≤ j1 < · · · < ji ≤ n as a basis for
Ki = Ki(x; R). We continue to use the notation ∗ to indicate the functor HomR( , R).
We want to set up isomorphisms K∗

n−i
∼= Ki that commute with the differentials.

Note that there is a bijection between the two free bases for Ki and Kn−i as follows:
given 1 ≤ j1 < · · · < ji ≤ n, let k1, . . . , kn−i be the elements of the set

{1, 2, . . . , n} − {j1, . . . , ji}

arranged in increasing order, and let uj1, ... ,ji correspond to uk1, ... ,kn−i which we shall also
denote as vj1, ... ,ji .

When a free R-module G has free basis b1, . . . , bt, this determines what is called a dual
basis b′1, . . . , b′t for G∗, where b′j is the map G → R that sends bj to 1 and kills the other
elements in the free basis. Thus, K∗

n−i has basis v′j1, ... ,ji
. However, when we compute the

value of the differential d∗n−i+1 on v′j1, ... ,ji
, while the coefficient of v′h1, ... ,hi−1

does turn out
to be zero unless the elements h1 < · · · < hi−1 are included among the ji, if the omitted
element is jt then the coefficient of v′h1, ... ,hi−1

is

d∗n−i+1(v
′
j1, ... ,ji

)(vh1, ... ,hi−1) = v′j1, ... ,ji

(
dn−i+1(vh1, ... ,hi−1)

)
,

which is the coefficient of vj1, ... ,ji
in dn−i+1(vh1, ... ,hi−1).

Note that the complement of {j1, . . . , ji} in {1, 2, . . . , n} is the same as the complement
of {h1, . . . , hi−1} in {1, 2, . . . , n}, except that one additional element, jt, is included in
the latter. Thus, the coefficient needed is (−1)s−1xjt , where s−1 is the number of elements
in the complement of {h1, . . . , hi−1} that precede jt. The signs don’t match what we get
from the differential in K•(x; R): we need a factor of (−1)(s−1)−(t−1) to correct (note that
t − 1 is the number of elements in j1, . . . , ji that precede jt). This sign correction may
be written as (−1)(s−1)+(t−1), and the exponent is jt − 1, the total number of elements
preceding jt in {1, 2, . . . , n}. This sign implies that the signs will match the ones in the
homological Koszul complex if we replace every v′ji

by (−1)Σv′ji
, where Σ =

∑i
t=1(jt − 1).

This completes the proof. �

|

This duality enables us to compute Ext using Koszul homology, and, hence, Tor in
certain instances:

Theorem. Let x = x1, . . . , xn be a possibly improper regular sequence in a ring R and
let M be any R-module. Then

Exti
R(R/(x)R; M) ∼= Hi(x; M) ∼= Hn−i(x; M) ∼= TorR

n−i(R/(x)R, M).
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Proof. Because the Koszul complex on the xi is a free resolution of R/(x)R, we may
use it to calculate Extj(R/(x)R, M): this yields the leftmost isomorphism. The middle
isomorphism now follows from the self-duality of the Koszul complex proved above, and we
have already proved that the Koszul homology yields Tor when x is a regular sequence in R:
this is simply because we may use again that K•(x; R) is a free resolution of R/(x)R. �

Depth and Ext

When R → S is a homomorphism of Noetherian rings, N is a finitely generated R-
module, and M is a finitely generated S-module, the modules Extj

R(N, M) are finitely
generated S-modules. One can see this by taking a left resolution G• of N by finitely
generated free R-modules, so that

Extj
R(N, M) = Hj

(
HomR(G•, M)

)
.

Since each term of HomR(G•, M) is a finite direct sum of copies of M , the statement
follows.

If I is an ideal of R such that IM 6= M , then any regular sequence in I on M can
be extended to a maximal such sequence that is necessarily finite. To see that we cannot
have an infinite sequence x1, . . . , xn, . . . ∈ I that is a regular sequence on M we may
reason as follows. Because R is Noetherian, the ideals Jn = (x1, . . . , xn)R must be
eventually constant. Alternatively, we may argue that because M is Noetherian over S,
the submodules JnM must be eventually constant. In either case, once JnM = Jn+1M we
have that xn+1M ⊆ JnM , and so the action of xn+1 on M/JnM is 0. Since Jn ⊆ I and
IM 6= M , we have that M/JnM 6= 0, and this is a contradiction, since xn+1 is supposed
to be a nonzerodivisor on M/JnM . We shall show that maximal regular sequences on M
in I all have the same length, which we will then define to be the depth of M on I.

The following result will be the basis for our treatment of depth.

Theorem. Let R → S be a homomorphism of Noetherian rings, let I ⊆ R be an ideal and
let N be a finitely generated R-module with annihilator I. Let M be a finitely generated
S-module with annihilator J ⊆ S.

(a) The support of N ⊗R M is V(IS +J). Hence, N ⊗R M = 0 if and only if IS +J = S.
In particular, M = IM if and only if IS + J = S.

(b) If IM 6= M , then there are finite maximal regular sequences x1, . . . , xd on M in I. For
any such maximal regular sequence, Exti

R(N, M) = 0 if i < d and Extd
R(N, M) 6= 0.

In particular, these statements hold when N = R/I. Hence, any two maximal regular
sequences in I on M have the same length.

(c) IM = M if and only if Exti
R(N, M) = 0 for all i. In particular, this statement holds

when N = R/I.

Proof. (a) N ⊗R M is clealy killed by J and by I. Since it is an S-module, it is also killed
by IS and so it is killed by IS + J . It follows that any prime in the support must contain
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IS+J . Now suppose that Q ∈ Spec (S) is in V(IS+J), and let P be the contraction of Q to
R. It suffices to show that (N⊗RM)Q 6= 0, and so it suffices to show that NP⊗RP

MQ 6= 0.
Since I ⊆ P , NP 6= 0 and NP /PNP is a nonzero vector space over κ = RP /PRP : call it
κs, where s ≥ 1. MQ maps onto MQ/QMQ = λt, where λ = SQ/QSQ, is a field, t ≥ 1,
and we have κ ↪→ λ. But then we have

(N ⊗R M)Q
∼= NP ⊗RP

MQ � κs ⊗RP
λt ∼= κs ⊗κ λt ∼= (κ⊗κ λ)st ∼= λst 6= 0,

as required. The second statement in part (a) is now clear, and the third is the special
case where N = R/I.

Now assume that M 6= IM , and choose any maximal regular sequence x1, . . . , xd ∈ I
on M . We shall prove by induction on d that Exti

R(N, M) = 0 for i < d and that
Extd

R(N, M) 6= 0.

First suppose that d = 0. Let Q1, . . . , Qh be the associated primes of M in S. Let
Pj be the contraction of Qj to R for 1 ≤ j ≤ h. The fact that depthIM = 0 means that
I consists entirely of zerodivisors on M , and so I maps into the union of the Qj . This
means that I is contained in the union of the Pj , and so I is contained in one of the Pj :
called it Pj0 = P . Choose u ∈ M whose annihilator in S is Qj0 , and whose annihilator
in R is therefore P . It will suffice to show that HomR(N, M) 6= 0, and therefore to show
that its localization at P is not 0, i.e., that HomRP

(NP ,MP ) 6= 0. Since P contains
I = AnnRN , we have that NP 6= 0. Therefore, by Nakayama’s lemma, we can conclude
that NP /PNP 6= 0. This module is then a nonzero finite dimensional vector space over
κP = RP /PRP , and we have a surjection NP /PNP � κP and therefore a composite
surjection NP � κP . Consider the image of u ∈ M in MP . Since AnnRu = P , the image
v of u ∈ MP is nonzero, and it is killed by P . Thus, AnnRP

v = PRP , and it follows that
v generates a copy of κP in MP , i.e., we have an injection κP ↪→ MP . The composite map
NP � κP ↪→ MP gives a nonzero map NP → MP , as required.

Finally, suppose that d > 0. Let x = x1, which is a nonzerodivisor on M . Note that
x2, . . . , xd ∈ I is a maximal regular sequence on M/xM . Since x ∈ I, we have that x kills
N . The short exact sequence 0 → M → M → M/xM → 0 gives a long exact sequence for
Ext when we apply HomR(N, ). Because x kills N , it kills all of the Ext modules in this
sequence, and thus the maps induced by multiplication by x are all 0. This implies that
the long exact sequence breaks up into short exact sequences

(∗j) 0 → Extj
R(N, M) → Extj

R(N, M/xM) → Extj+1
R (N, M) → 0

We have from the induction hypothesis that the modules Extj
R(N, M/xM) = 0 for j <

d − 1, and the exact sequence above shows that Extj
R(N, M) = 0 for j < d. Moreover,

Extd−1
R (N, M/xM) 6= 0, and (∗d−1) shows that Extd−1

R (N, M/xM) is isomorphic with
Extd

R(N, M).

The final statement in part (b) follows because the least exponent j for which, say,
Extj

R(R/I, M) 6= 0 is independent of the choice of maximal regular sequence.
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It remains to prove part (c). If IM 6= M , we can choose a maximal regular sequence
x1, . . . , xd on M in I, and then we know from part (b) that Extd

R(N, M) 6= 0. On the
other hand, if IM = M , we know that IS + AnnRM = S from part (a), and this ideal
kills every Extj

R(N, M), so that all of the Ext modules vanish. �

If R → S is a map of Noetherian rings, M is a finitely generated S-module, and
IM 6= M , we define depthIM , the depth of M on I, to be, equivalently, the length of any
maximal regular sequence in I on M , or inf{j ∈ Z : Extj

R(R/I, M) 6= 0}. If IM = M , we
define the depth of M on I as +∞, which is consistent with the Ext characterization.

Note the following:

Corollary. With hypothesis as in the preceding Theorem, depthIM = depthISM . More-
over, if R′ is flat over R, e.g., a localization of R, then depthIR′R′ ⊗R M ≥ depthIM .

Proof. Choose a maximal regular sequence in I, say x1, . . . , xd. These elements map to a
regular sequence in IS. We may replace M by M/(x1, . . . , xd)M . We therefore reduce to
showing that when depthIM = 0, it is also true that depthISM = 0 . But it was shown
in the proof of the Theorem above that that under the condition depthIM = 0 there is an
element u ∈ M whose annihilator is an associated prime Q ∈ Spec (S) of M that contains
IS. The second statement follows from the fact that calculation of ExtR commutes with
flat base change when the first module is finitely generated over R. (One may also use the
characterization in terms of regular sequences.) �

We also note:

Proposition. With hypothesis as in the preceding Theorem, let x = x1, . . . , xn be gener-
ators of I ⊆ R. If IM = M , then all of the Koszul homology Hi(x; M) = 0. If IM 6= M ,
then Hn−i(x; M) = 0 if i < d, and Hn−d(x; M) 6= 0.

Proof. We may map a Noetherian ring B containing elements X1, . . . , Xn that form a
regular sequence in B to R so that Xi 7→ xi, 1 ≤ i ≤ n. For example, we may take
B = R[X1, . . . , Xn] and map to R using the R-algebra map that sends Xi 7→ xi, 1 ≤ i ≤ n.
Let J = (X1, . . . , Xn)B. Then depthIM = depthJM , and the latter is determined by the
least integer j such that Extj

B(B/(X)B, M) 6= 0. The result is now immediate from the
Theorem at the bottom of p. 4. �

Cohen-Macaulay rings and lifting while preserving height

Proposition. A Noetherian ring R is Cohen-Macaulay if and only if for every proper
ideal I of R, depthIR = height (I).

Proof. Suppose that R is Cohen-Macaulay, and let I be any ideal of R. We use induction
on height (I). If height (I) = 0, then I is contained in a minimal prime of R, and so
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depthIR = 0. Now suppose that height (I) > 0. Each prime in Ass (R) must be minimal:
otherwise, we may localize at such a prime, which yields a Cohen-Macaulay ring of positive
dimension such that every element of its maximal ideal is a zerodivisor, a contradiction.
Since I is not contained in the union of the minimal primes, I is not contained in the union
of the primes in Ass (R). Choose an element x1 ∈ I not in any minimal prime of R and,
hence, not a zerodivisor on R. It follows that R/x1R is Cohen-Macaulay, and the height
of I drops exactly by one. The result now follows from the induction hypothesis applied
to I/x1R ∈ R/x1R.

For the converse, we may apply the hypothesis with I a given maximal ideal m of
height d. Then m contains a regular sequence of length d, say x1, . . . , xd. This is preserved
when we pass to Rm. The regular sequence remains regular in Rm, and so must be a
system of parameters for Rm: killing a nonzerodivisor drops the dimension of a local ring
by exactly 1. Hence, Rm is Cohen-Macaulay. �

We also note:

Proposition. Let R be a Noetherian ring and let x1, . . . , xd generate a proper ideal I
of height d. Then there exist elements y1, . . . , yd ∈ R such that for every i, 1 ≤ i ≤ d,
yi ∈ xi + (xi+1, . . . , xd)R, and for all i, 1 ≤ i ≤ d, y1, . . . , yi generate an ideal of height
i in R. Moreover, (y1, . . . , yd) = I, and yd = xd.

If R is Cohen-Macaulay, then y1, . . . , yd is a regular sequence.

Proof. We use induction on d. Note that by the coset form of the Lemma on prime
avoidance, we cannot have that x1+(x2, . . . , xd)R is contained in the union of the minimal
primes of R, or else (x1, . . . , xd)R has height 0. This enables us to pick y1 = x1 +∆1 with
∆1 ∈ (x2, . . . , xd)R such that y1 is not in any minimal prime of R. In case R is Cohen-
Macaulay, this implies that y1 is not a zerodivisor. It is clear that (y1, x2, . . . , xd)R = I.
The result now follows from the induction hypothesis applied to the images of x2, . . . , xd

in R/y1R. �

Note that even in the polynomial ring K[x, y, z] the fact that three elements generate
an ideal of height three does not imply that these elements form a regular sequence:
(1− x)y, (1− x)z, x gives a counterexample.

Proposition. Let R be a Noetherian ring, let p be a minimal prime of R, and let x1, . . . , xd

be elements of R such that (x1, . . . , xi)(R/p) has height i, 1 ≤ i ≤ d. Then there are ele-
ments δ1, . . . , δd ∈ p such that if yi = xi + δi, 1 ≤ i ≤ d, then (y1, . . . , yi)R has height i,
1 ≤ i ≤ d.

Proof. We construct the δi recursively. Suppose that δ1, . . . , δt have already been chosen:
t may be 0. If t < d, we cannot have that xt+1 +p is contained in the union of the minimal
primes of (y1, . . . , yt). If that were the case, by the coset form of prime avoidance we would
have that xt+1R+p ⊆ Q for one such minimal prime Q. Then Q has height at most t, but
modulo p all of x1, . . . , xt+1 are in Q, so that height (Q/p) ≥ t + 1, a contradiction. �
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The following result will be useful in proving the colon-capturing property for tight
closure.

Lemma. Let P be a prime ideal of height h in a Cohen-Macaulay ring S. Let x1, . . . , xk+1

be elements of R = S/P such that (x1, . . . , xk)R has height k in R while (x1, . . . , xk+1)R
has height k + 1. Then we can choose elements y1, . . . , yh ∈ P and z1, . . . , zk+1 ∈ S such
that:

(1) y1, . . . , yh, z1, . . . , zk+1 is a regular sequence in S.

(2) The images of z1, . . . , zk in R generate the ideal (x1, . . . , xk)R.

(3) The image of zk+1 in R is xk+1.

Proof. By the first Proposition on p. 8, we may assume without loss of generality that
x1, . . . , xi generate an ideal of height i in R, 1 ≤ i ≤ k. We also know this for i = k + 1.
Choose zi arbitrarily such that zi maps to xi, 1 ≤ i ≤ k + 1. Choose a regular sequence
y1, . . . , yh of length h in P . Then P is a minimal prime of (y1, . . . , yh)S. By the second
Proposition on p. 8 applied to the images of the of the zi in S/(y1, . . . , yh)S with p =
P/(y1, . . . , yh)S, we may alter the zi by adding elements of P so that the height of the
image of the ideal generated by the images of z1, . . . , zi in S/(y1, . . . , yh) is i, 1 ≤ i ≤ k+1.
Since S/(y1, . . . , yh)S is again Cohen-Macaulay, it follows from the first Proposition on
p. 8 that the images of the z1, . . . , zk+1 modulo (y1, . . . , yh)S form a regular sequence.
But this means that y1, . . . , yh, z1, . . . , zk+1 is a regular sequence. �

Colon-capturing

We can now prove a result on the colon-capturing property of tight closure.

Theorem (colon-capturing). Let R be a reduced Noetherian ring of prime characteristic
p > 0 that is a homomorphic image of a Cohen-Macaulay ring. Let x1, . . . , xk+1 be
elements of R. Let It denote the ideal (x1, . . . , xt)R, 0 ≤ t ≤ k + 1. Suppose that the
image of the ideal Ik has height k modulo every minimal prime of R, and that the image
of the ideal Ik+1R has height k + 1 modulo every minimal prime of R. Then:

(a) Ik :R xk+1 ⊆ I∗k .

(b) If R has a test element, I∗k :R xk+1 ⊆ I∗k , i.e., xk+1 is not a zerodivisor on R/I∗k .

Proof. To prove part (a), note that it suffices to prove the result working in turn modulo
each of the finitely many minimal primes of R. We may therefore assume that R is a
domain. We can consequently write R = S/P , where S is Cohen-Macaulay. Let h be the
height of P . Then we can choose y1, . . . , yh ∈ P and z1, . . . , zk+1 in S as in the conclusion
of the Lemma just above, i.e., so y1, . . . , yh, z1, . . . , zk+1 is a regular sequence in S, and
so that we may replace x1, . . . , xk+1 by the images of the zi in R. Since P has height h,
it is a minimal prime of J = (y1, . . . , yh)S, and so if we localize at S − P , we have that



10

P is nilpotent modulo J . Hence, for each generator gi of P we can choose ci ∈ S − P and
an expoment of the form qi = pei such that cig

qi

i ∈ J . It follows that if c ∈ S − P is the
product of the ci and q0 is the maximum of the qi, then cP [q0] ⊆ J .

Now suppose that we have a relation

rxk+1 = r1x1 + · · ·+ rkxk

in R. Then we can lift r, r1, . . . , rk to elements s, s1, . . . , sk ∈ S such that

szk+1 = s1z1 + · · ·+ skzk + v,

where v ∈ P . Then for all q ≥ q0 we may raise both sides to the q th power and multiply
by c to obtain

csqzq
k+1 = csq

1z
q
1 + · · ·+ csq

kzq
k + cvq;

moreover, cvq ∈ (y1, . . . , yh). Therefore

csqzq
k+1 ∈ (zq

1 , . . . , zq
k, y1, . . . , yh)S.

Since y1, . . . , yh, zq
1 , . . . , zq

k+1 is a regular sequence in S, we have that

csq ∈ (zq
1 , . . . , zq

k)S + (y1, . . . , yh)S.

Let c ∈ R◦ be the image of c. Then, working modulo P ⊇ (y1, . . . , yh)R, we have

crq ∈ (x1, . . . , xk)[q]

for all q ≥ q0, and so r ∈ (x1, . . . , xk)∗ in R, as required. This completes the argument
for part (a).

It remains to prove part (b). Suppose that R has a test element d ∈ R◦, that r ∈ R,
and that rxk+1 ∈ I∗k . Then there exists c ∈ R◦ such that c(rxk+1)q ∈ (I∗k)[q] for all q � 0.
Note that (I∗k)[q] ⊆ (I [q]

k )∗, so that crqxq
k+1 ∈ (I [q]

k )∗, and dcrqxq
k+1 ∈ I

[q]
k . From part (a),

it follows that dcrq ∈ (I [q]
k )∗ for all q � 0, and so d2crq ∈ I

[q]
k for all q � 0. But then

r ∈ I∗k , as required. �

Corollary. Let R be a Noetherian ring of prime characteristic p > 0 that is a homomor-
phic image of a Cohen-Macaulay ring, and suppose that R is weakly F-regular. Then R is
Cohen-Macaulay.

Proof. Consider a local ring of R at a maximal ideal. Then this local ring remains weakly
F-regular, and is normal. Therefore, we may assume that R is a local domain. Let
x1, . . . , xn be a system of parameters. Then for every k < n, (x1, . . . , xk) :R xk+1 ⊆
(x1, . . . , xk)∗ = (x1, . . . , xk), since (x1, . . . , xk) is tightly closed. �


