Math 711: Lecture of October 5, 2007

More on mapping cones and Koszul complexes

Let $\phi_{\bullet}: B_{\bullet} \to A_{\bullet}$ be a map of complexes that is injective. We shall write d_{\bullet} for the differential on A_{\bullet} and δ_{\bullet} for the differential on B_{\bullet} . Then we may form a quotient complex Q_{\bullet} such that $Q_n = B_n/\phi_n(A_n)$ for all n, and the differential on Q_{\bullet} is induced by the differential on B_{\bullet} . Let \mathcal{C}_{\bullet} be the mapping cone of ϕ_{\bullet} .

Proposition. With notation as in the preceding paragraph, $H_n(\mathcal{C}_{\bullet}) \cong H_n(Q_{\bullet})$ for all n.

Proof. We may assume that every ϕ_n is an inclusion map. A cycle in Q_n is represented by an element $z \in A_n$ whose boundary $d_n z$ is 0 in $A_{n-1}/\phi_{n-1}(B_{n-1})$. This means that $d_n z = \phi_{n-1}(b)$ for some $b \in B_{n-1}$. (Once we have specified z there is at most one choice of b, by the injectivity of ϕ_{n-1} .) The boundaries in Q_n are represented by the elements $d_{n+1}(A_{n+1}) + \phi_n(B)$. Thus,

$$H_n(Q_{\bullet}) \cong \frac{d_n^{-1}(\phi_{n-1}(B_{n-1}))}{d_{n+1}(A_{n+1}) + \phi_n(B_n)}.$$

A cycle in \mathcal{C}_n is represented by a sum $z \oplus b'$ such that

$$\left(d_n(z) + (-1)^{n-1}\phi_{n-1}(b')\right) \oplus \delta_{n-1}(b') = 0$$

Again, this element is uniquely determined by z, which must satisfy $d_n(z) \in \phi_{n-1}(B_{n-1})$. b' is then uniquely determined as $(-1)^n b$ where $b \in B_{n-1}$ is such that $\phi_{n-1}(b) = d_n(z)$. Such an element b is automatically killed by δ_{n-1} , since

$$\phi_{n-2}\delta_{n-1}(b) = d_{n-1}\phi_{n-1}(b) = d_{n-1}d_n(z) = 0,$$

and ϕ_{n-2} is injective. A boundary in \mathcal{C}_n has the form

$$(d_{n+1}(a) + (-1)^n \phi_n(b_n)) \oplus \delta_n b_n.$$

This shows that

$$H_n(\mathcal{C}_{\bullet}) \cong \frac{d_n^{-1}(\phi_{n-1}(B_{n-1}))}{d_{n+1}(A_{n+1}) + \phi_n(B_n)},$$

as required. \Box

Corollary. Let $\underline{x} = x_1, \ldots, x_n \in R$ be elements such that x_n is not a zerodivisor on the *R*-module *M*. Let $\underline{x}^- = x_1, \ldots, x_{n-1}$, i.e., the result of omitting x_n from the sequence. Then $H_i(\underline{x}; M) \cong H_i(\underline{x}^-; M/x_n M)$ for all *i*.

Proof. We apply that preceding Proposition with $A_{\bullet} = B_{\bullet} = \mathcal{K}_{\bullet}(\underline{x}^{-}; M)$, and ϕ_i given by multiplication by x_n in every degree *i*. Since every term of $\mathcal{K}_{\bullet}(\underline{x}^{-}; M)$ is a finite direct sum of copies of M, the maps ϕ_i are injective. The mapping cone, which is $\mathcal{K}_{\bullet}(\underline{x}; M)$, therefore has the same homology as the quotient complex, which may be identified with

$$\mathcal{K}_{\bullet}(\underline{x}^{-}, M) \otimes (R/x_n R) \cong \mathcal{K}_{\bullet}(\underline{x}^{-}; R) \otimes_R M \otimes_R R/x_n R \cong \mathcal{K}_{\bullet}(\underline{x}^{-}; R) \otimes_R (M/x_n M)$$

which is $\mathcal{K}_{\bullet}(\underline{x}^{-}; M/x_{n}M)$, and the result follows. \Box

We also observe:

Proposition. Let $\phi_{\bullet} : B_{\bullet} \to A_{\bullet}$ be any map of complexes and let \mathcal{C}_{\bullet} be the mapping cone. In the long exact sequence

$$\cdots \to H_n(A_{\bullet}) \to H_n(\mathcal{C}_{\bullet}) \to H_{n-1}(B_{\bullet}) \xrightarrow{\partial_{n-1}} H_{n-1}(A_{\bullet}) \to \cdots$$

the connecting homomorphism ∂_{n-1} is induced by $(-1)^{n-1}\phi_{n-1}$.

Proof. We follow the prescription for constructing the connecting homomorphism. Let $b \in B_{n-1}$ be a cycle in B_{n-1} . We lift this cycle to an element of C_n that maps to it: one such lifting is $0 \oplus b$ (the choice of lifting does not affect the result). We now apply the differential in the mapping cone C_{\bullet} to the lifting: this gives

$$(-1)^{n-1}\phi_{n-1}(b)\oplus\delta_{n-1}(b)=(-1)^{n-1}\phi_{n-1}(b)\oplus 0,$$

since b was a cycle in B_{n-1} . Call the element on the right α . Finally, we choose an element of A_{n-1} that maps to α : this gives $(-1)^{n-1}\phi_{n-1}(b)$, which represents the value of $\partial_{n-1}([b])$, as required. \Box

Corollary. Let $\underline{x} = x_1, \ldots, x_n \in R$ be arbitrary elements. Let $\underline{x}^- = x_1, \ldots, x_{n-1}$, i.e., the result of omitting x_n from the sequence. Let M be any R-module. Then there are short exact sequences

$$0 \to \frac{H_i(\underline{x}^-; M)}{x_n H_i(\underline{x}^-; M)} \to H_i(\underline{x}; M) \to \operatorname{Ann}_{H_{i-1}(\underline{x}^-; M)} x_n \to 0$$

for every integer i.

Proof. By the preceding Proposition, the long exact sequence for the homology of the mapping cone of the map of complexes

$$\mathcal{K}_{\bullet}(\underline{x}^{-}; M) \xrightarrow{x_{n}} \mathcal{K}_{\bullet}(\underline{x}^{-}; M)$$

has the form

$$\cdots \longrightarrow H_i(\underline{x}^-; M) \xrightarrow{(-1)^i x_n} H_i(\underline{x}^-; M) \longrightarrow H_i(\underline{x}; M)$$
$$\longrightarrow H_{i-1}(\underline{x}^-; M) \xrightarrow{(-1)^{i-1} x_n} H_{i-1}(\underline{x}^-; M) \longrightarrow \cdots$$

Since the maps given by multiplication by x_n and by $-x_n$ have the same kernel and cokernel, this sequence implies the existence of the short exact sequences specified in the statement of the Theorem. \Box

The cohomological Koszul complex

Notice that if P is a finitely generated projective module over a ring R, _* denotes the functor that sends $N \mapsto \operatorname{Hom}_R(N, R)$, and M is any module, then there is a natural isomorphism

 $\operatorname{Hom}_R(P, M) \cong P^* \otimes_R M$

such that the inverse map η_P is defined as follows: η_P is the linear map induced by the *R*-bilinear map B_P given by $B_P(g, u)(v) = g(v)u$ for $g \in P^*$, $u \in M$, and $v \in P$. It is easy to check that

- (1) $\eta_{P\oplus Q} = \eta_P \oplus \eta_Q$ and
- (2) that η_R is an isomorphism.

It follows at once that

(3) η_{R^n} is an isomorphism for all $n \in \mathbb{N}$.

For any finitely generated projective module P we can choose Q such that $P \oplus Q \cong \mathbb{R}^n$, and then, since $\eta_P \oplus \eta_Q$ is an isomorphism, it follows that

(4) η_P is an isomorphism for every finitely generated projective module P.

If R is a ring, M an R-module, and $\underline{x} = x_1, \ldots, x_n \in R$, the cohomological Koszul complex $\mathcal{K}^{\bullet}(\underline{x}; M)$, is defined as

$$\operatorname{Hom}_R(\mathcal{K}_{\bullet}(\underline{x}; R), M),$$

and its cohomology, called *Koszul cohomology*, is denoted $H^{\bullet}(\underline{x}; M)$. The cohomological Koszul complex of R (and, it easily follows, of M) is isomorphic with the homological Koszul complex numbered "backward," but this is not quite obvious: one needs to make sign changes on the obvious choices of bases to get the isomorphism.

To see this, take the elements u_{j_1,\ldots,j_i} with $1 \leq j_1 < \cdots < j_i \leq n$ as a basis for $\mathcal{K}_i = \mathcal{K}_i(\underline{x}; R)$. We continue to use the notation _* to indicate the functor $\operatorname{Hom}_R(\underline{\ }, R)$. We want to set up isomorphisms $\mathcal{K}_{n-i}^* \cong \mathcal{K}_i$ that commute with the differentials.

Note that there is a bijection between the two free bases for \mathcal{K}_i and \mathcal{K}_{n-i} as follows: given $1 \leq j_1 < \cdots < j_i \leq n$, let k_1, \ldots, k_{n-i} be the elements of the set

$$\{1, 2, \ldots, n\} - \{j_1, \ldots, j_i\}$$

arranged in increasing order, and let u_{j_1,\ldots,j_i} correspond to $u_{k_1,\ldots,k_{n-i}}$ which we shall also denote as v_{j_1,\ldots,j_i} .

When a free *R*-module *G* has free basis b_1, \ldots, b_t , this determines what is called a *dual* basis b'_1, \ldots, b'_t for G^* , where b'_j is the map $G \to R$ that sends b_j to 1 and kills the other elements in the free basis. Thus, \mathcal{K}^*_{n-i} has basis v'_{j_1,\ldots,j_i} . However, when we compute the value of the differential d^*_{n-i+1} on v'_{j_1,\ldots,j_i} , while the coefficient of $v'_{h_1,\ldots,h_{i-1}}$ does turn out to be zero unless the elements $h_1 < \cdots < h_{i-1}$ are included among the j_i , if the omitted element is j_t then the coefficient of $v'_{h_1,\ldots,h_{i-1}}$ is

$$d_{n-i+1}^*(v_{j_1,\ldots,j_i}')(v_{h_1,\ldots,h_{i-1}}) = v_{j_1,\ldots,j_i}' \Big(d_{n-i+1}(v_{h_1,\ldots,h_{i-1}}) \Big),$$

which is the coefficient of v_{j_1,\ldots,j_i} in $d_{n-i+1}(v_{h_1,\ldots,h_{i-1}})$.

Note that the complement of $\{j_1, \ldots, j_i\}$ in $\{1, 2, \ldots, n\}$ is the same as the complement of $\{h_1, \ldots, h_{i-1}\}$ in $\{1, 2, \ldots, n\}$, except that one additional element, j_t , is included in the latter. Thus, the coefficient needed is $(-1)^{s-1}x_{j_t}$, where s-1 is the number of elements in the complement of $\{h_1, \ldots, h_{i-1}\}$ that precede j_t . The signs don't match what we get from the differential in $\mathcal{K}_{\bullet}(\underline{x}; R)$: we need a factor of $(-1)^{(s-1)-(t-1)}$ to correct (note that t-1 is the number of elements in j_1, \ldots, j_i that precede j_t). This sign correction may be written as $(-1)^{(s-1)+(t-1)}$, and the exponent is $j_t - 1$, the total number of elements preceding j_t in $\{1, 2, \ldots, n\}$. This sign implies that the signs will match the ones in the homological Koszul complex if we replace every v'_{j_i} by $(-1)^{\Sigma}v'_{j_i}$, where $\Sigma = \sum_{t=1}^i (j_t - 1)$. This completes the proof. \Box

Theorem. Let $\underline{x} = x_1, \ldots, x_n$ be a possibly improper regular sequence in a ring R and let M be any R-module. Then

$$\operatorname{Ext}_{R}^{i}(R/(\underline{x})R; M) \cong H^{i}(\underline{x}; M) \cong H_{n-i}(\underline{x}; M) \cong \operatorname{Tor}_{n-i}^{R}(R/(\underline{x})R, M).$$

This duality enables us to compute Ext using Koszul homology, and, hence, Tor in certain instances:

Proof. Because the Koszul complex on the x_i is a free resolution of $R/(\underline{x})R$, we may use it to calculate $\operatorname{Ext}^j(R/(\underline{x})R, M)$: this yields the leftmost isomorphism. The middle isomorphism now follows from the self-duality of the Koszul complex proved above, and we have already proved that the Koszul homology yields Tor when \underline{x} is a regular sequence in R: this is simply because we may use again that $\mathcal{K}_{\bullet}(\underline{x}; R)$ is a free resolution of $R/(\underline{x})R$. \Box

Depth and Ext

When $R \to S$ is a homomorphism of Noetherian rings, N is a finitely generated Rmodule, and M is a finitely generated S-module, the modules $\operatorname{Ext}_R^j(N, M)$ are finitely generated S-modules. One can see this by taking a left resolution G_{\bullet} of N by finitely generated free R-modules, so that

$$\operatorname{Ext}_{R}^{j}(N, M) = H^{j}(\operatorname{Hom}_{R}(G_{\bullet}, M)).$$

Since each term of $\operatorname{Hom}_R(G_{\bullet}, M)$ is a finite direct sum of copies of M, the statement follows.

If I is an ideal of R such that $IM \neq M$, then any regular sequence in I on M can be extended to a maximal such sequence that is necessarily finite. To see that we cannot have an infinite sequence $x_1, \ldots, x_n, \ldots \in I$ that is a regular sequence on M we may reason as follows. Because R is Noetherian, the ideals $J_n = (x_1, \ldots, x_n)R$ must be eventually constant. Alternatively, we may argue that because M is Noetherian over S, the submodules J_nM must be eventually constant. In either case, once $J_nM = J_{n+1}M$ we have that $x_{n+1}M \subseteq J_nM$, and so the action of x_{n+1} on M/J_nM is 0. Since $J_n \subseteq I$ and $IM \neq M$, we have that $M/J_nM \neq 0$, and this is a contradiction, since x_{n+1} is supposed to be a nonzerodivisor on M/J_nM . We shall show that maximal regular sequences on M in I all have the same length, which we will then define to be the *depth* of M on I.

The following result will be the basis for our treatment of depth.

Theorem. Let $R \to S$ be a homomorphism of Noetherian rings, let $I \subseteq R$ be an ideal and let N be a finitely generated R-module with annihilator I. Let M be a finitely generated S-module with annihilator $J \subseteq S$.

- (a) The support of $N \otimes_R M$ is $\mathcal{V}(IS+J)$. Hence, $N \otimes_R M = 0$ if and only if IS+J = S. In particular, M = IM if and only if IS+J = S.
- (b) If $IM \neq M$, then there are finite maximal regular sequences x_1, \ldots, x_d on M in I. For any such maximal regular sequence, $\operatorname{Ext}_R^i(N, M) = 0$ if i < d and $\operatorname{Ext}_R^d(N, M) \neq 0$. In particular, these statements hold when N = R/I. Hence, any two maximal regular sequences in I on M have the same length.
- (c) IM = M if and only if $\operatorname{Ext}_{R}^{i}(N, M) = 0$ for all *i*. In particular, this statement holds when N = R/I.

Proof. (a) $N \otimes_R M$ is clealy killed by J and by I. Since it is an S-module, it is also killed by IS and so it is killed by IS + J. It follows that any prime in the support must contain

IS+J. Now suppose that $Q \in \text{Spec}(S)$ is in $\mathcal{V}(IS+J)$, and let P be the contraction of Q to R. It suffices to show that $(N \otimes_R M)_Q \neq 0$, and so it suffices to show that $N_P \otimes_{R_P} M_Q \neq 0$. Since $I \subseteq P$, $N_P \neq 0$ and N_P/PN_P is a nonzero vector space over $\kappa = R_P/PR_P$: call it κ^s , where $s \geq 1$. M_Q maps onto $M_Q/QM_Q = \lambda^t$, where $\lambda = S_Q/QS_Q$, is a field, $t \geq 1$, and we have $\kappa \hookrightarrow \lambda$. But then we have

$$(N \otimes_R M)_Q \cong N_P \otimes_{R_P} M_Q \twoheadrightarrow \kappa^s \otimes_{R_P} \lambda^t \cong \kappa^s \otimes_{\kappa} \lambda^t \cong (\kappa \otimes_{\kappa} \lambda)^{st} \cong \lambda^{st} \neq 0,$$

as required. The second statement in part (a) is now clear, and the third is the special case where N = R/I.

Now assume that $M \neq IM$, and choose any maximal regular sequence $x_1, \ldots, x_d \in I$ on M. We shall prove by induction on d that $\operatorname{Ext}^i_R(N, M) = 0$ for i < d and that $\operatorname{Ext}^d_R(N, M) \neq 0$.

First suppose that d = 0. Let Q_1, \ldots, Q_h be the associated primes of M in S. Let P_j be the contraction of Q_j to R for $1 \leq j \leq h$. The fact that depth_IM = 0 means that I consists entirely of zerodivisors on M, and so I maps into the union of the Q_j . This means that I is contained in the union of the P_j , and so I is contained in one of the P_j : called it $P_{j_0} = P$. Choose $u \in M$ whose annihilator in S is Q_{j_0} , and whose annihilator in R is therefore P. It will suffice to show that $\operatorname{Hom}_{R_P}(N_P, M_P) \neq 0$, and therefore to show that its localization at P is not 0, i.e., that $\operatorname{Hom}_{R_P}(N_P, M_P) \neq 0$. Since P contains $I = \operatorname{Ann}_R N$, we have that $N_P \neq 0$. Therefore, by Nakayama's lemma, we can conclude that $N_P/PN_P \neq 0$. This module is then a nonzero finite dimensional vector space over $\kappa_P = R_P/PR_P$, and we have a surjection $N_P/PN_P \twoheadrightarrow \kappa_P$ and therefore a composite surjection $N_P \twoheadrightarrow \kappa_P$. Consider the image of $u \in M$ in M_P . Since $\operatorname{Ann}_R u = P$, the image v of $u \in M_P$ is nonzero, and it is killed by P. Thus, $\operatorname{Ann}_{R_P} v = PR_P$, and it follows that v generates a copy of κ_P in M_P , i.e., we have an injection $\kappa_P \hookrightarrow M_P$. The composite map $N_P \twoheadrightarrow \kappa_P \hookrightarrow M_P$ gives a nonzero map $N_P \to M_P$, as required.

Finally, suppose that d > 0. Let $x = x_1$, which is a nonzerodivisor on M. Note that $x_2, \ldots, x_d \in I$ is a maximal regular sequence on M/xM. Since $x \in I$, we have that x kills N. The short exact sequence $0 \to M \to M \to M/xM \to 0$ gives a long exact sequence for Ext when we apply $\operatorname{Hom}_R(N, _)$. Because x kills N, it kills all of the Ext modules in this sequence, and thus the maps induced by multiplication by x are all 0. This implies that the long exact sequence breaks up into short exact sequences

$$(*_j)$$
 $0 \to \operatorname{Ext}_R^j(N, M) \to \operatorname{Ext}_R^j(N, M/xM) \to \operatorname{Ext}_R^{j+1}(N, M) \to 0$

We have from the induction hypothesis that the modules $\operatorname{Ext}_{R}^{j}(N, M/xM) = 0$ for j < d-1, and the exact sequence above shows that $\operatorname{Ext}_{R}^{j}(N, M) = 0$ for j < d. Moreover, $\operatorname{Ext}_{R}^{d-1}(N, M/xM) \neq 0$, and $(*_{d-1})$ shows that $\operatorname{Ext}_{R}^{d-1}(N, M/xM)$ is isomorphic with $\operatorname{Ext}_{R}^{d}(N, M)$.

The final statement in part (b) follows because the least exponent j for which, say, $\operatorname{Ext}_{R}^{j}(R/I, M) \neq 0$ is independent of the choice of maximal regular sequence.

It remains to prove part (c). If $IM \neq M$, we can choose a maximal regular sequence x_1, \ldots, x_d on M in I, and then we know from part (b) that $\operatorname{Ext}^d_R(N, M) \neq 0$. On the other hand, if IM = M, we know that $IS + \operatorname{Ann}_R M = S$ from part (a), and this ideal kills every $\operatorname{Ext}^j_R(N, M)$, so that all of the Ext modules vanish. \Box

If $R \to S$ is a map of Noetherian rings, M is a finitely generated S-module, and $IM \neq M$, we define depth_IM, the *depth* of M on I, to be, equivalently, the length of any maximal regular sequence in I on M, or $\inf\{j \in \mathbb{Z} : \operatorname{Ext}_{R}^{j}(R/I, M) \neq 0\}$. If IM = M, we define the depth of M on I as $+\infty$, which is consistent with the Ext characterization.

Note the following:

Corollary. With hypothesis as in the preceding Theorem, $\operatorname{depth}_{IM} = \operatorname{depth}_{IS} M$. Moreover, if R' is flat over R, e.g., a localization of R, then $\operatorname{depth}_{IR'} R' \otimes_R M \geq \operatorname{depth}_{I} M$.

Proof. Choose a maximal regular sequence in I, say x_1, \ldots, x_d . These elements map to a regular sequence in IS. We may replace M by $M/(x_1, \ldots, x_d)M$. We therefore reduce to showing that when depth_IM = 0, it is also true that depth_{IS}M = 0. But it was shown in the proof of the Theorem above that that under the condition depth_IM = 0 there is an element $u \in M$ whose annihilator is an associated prime $Q \in \text{Spec}(S)$ of M that contains IS. The second statement follows from the fact that calculation of Ext_R commutes with flat base change when the first module is finitely generated over R. (One may also use the characterization in terms of regular sequences.) \Box

We also note:

Proposition. With hypothesis as in the preceding Theorem, let $\underline{x} = x_1, \ldots, x_n$ be generators of $I \subseteq R$. If IM = M, then all of the Koszul homology $H_i(\underline{x}; M) = 0$. If $IM \neq M$, then $H_{n-i}(\underline{x}; M) = 0$ if i < d, and $H_{n-d}(\underline{x}; M) \neq 0$.

Proof. We may map a Noetherian ring B containing elements X_1, \ldots, X_n that form a regular sequence in B to R so that $X_i \mapsto x_i$, $1 \leq i \leq n$. For example, we may take $B = R[X_1, \ldots, X_n]$ and map to R using the R-algebra map that sends $X_i \mapsto x_i$, $1 \leq i \leq n$. Let $J = (X_1, \ldots, X_n)B$. Then depth_I $M = \text{depth}_J M$, and the latter is determined by the least integer j such that $\text{Ext}_B^j(B/(\underline{X})B, M) \neq 0$. The result is now immediate from the Theorem at the bottom of p. 4. \Box

Cohen-Macaulay rings and lifting while preserving height

Proposition. A Noetherian ring R is Cohen-Macaulay if and only if for every proper ideal I of R, depth_IR = height (I).

Proof. Suppose that R is Cohen-Macaulay, and let I be any ideal of R. We use induction on height (I). If height (I) = 0, then I is contained in a minimal prime of R, and so

depth_IR = 0. Now suppose that height (I) > 0. Each prime in Ass (R) must be minimal: otherwise, we may localize at such a prime, which yields a Cohen-Macaulay ring of positive dimension such that every element of its maximal ideal is a zerodivisor, a contradiction. Since I is not contained in the union of the minimal primes, I is not contained in the union of the primes in Ass (R). Choose an element $x_1 \in I$ not in any minimal prime of R and, hence, not a zerodivisor on R. It follows that R/x_1R is Cohen-Macaulay, and the height of I drops exactly by one. The result now follows from the induction hypothesis applied to $I/x_1R \in R/x_1R$.

For the converse, we may apply the hypothesis with I a given maximal ideal m of height d. Then m contains a regular sequence of length d, say x_1, \ldots, x_d . This is preserved when we pass to R_m . The regular sequence remains regular in R_m , and so must be a system of parameters for R_m : killing a nonzerodivisor drops the dimension of a local ring by exactly 1. Hence, R_m is Cohen-Macaulay. \Box

We also note:

Proposition. Let R be a Noetherian ring and let x_1, \ldots, x_d generate a proper ideal I of height d. Then there exist elements $y_1, \ldots, y_d \in R$ such that for every $i, 1 \leq i \leq d$, $y_i \in x_i + (x_{i+1}, \ldots, x_d)R$, and for all $i, 1 \leq i \leq d, y_1, \ldots, y_i$ generate an ideal of height i in R. Moreover, $(y_1, \ldots, y_d) = I$, and $y_d = x_d$.

If R is Cohen-Macaulay, then y_1, \ldots, y_d is a regular sequence.

Proof. We use induction on d. Note that by the coset form of the Lemma on prime avoidance, we cannot have that $x_1 + (x_2, \ldots, x_d)R$ is contained in the union of the minimal primes of R, or else $(x_1, \ldots, x_d)R$ has height 0. This enables us to pick $y_1 = x_1 + \Delta_1$ with $\Delta_1 \in (x_2, \ldots, x_d)R$ such that y_1 is not in any minimal prime of R. In case R is Cohen-Macaulay, this implies that y_1 is not a zerodivisor. It is clear that $(y_1, x_2, \ldots, x_d)R = I$. The result now follows from the induction hypothesis applied to the images of x_2, \ldots, x_d in R/y_1R . \Box

Note that even in the polynomial ring K[x, y, z] the fact that three elements generate an ideal of height three does not imply that these elements form a regular sequence: (1-x)y, (1-x)z, x gives a counterexample.

Proposition. Let R be a Noetherian ring, let \mathfrak{p} be a minimal prime of R, and let x_1, \ldots, x_d be elements of R such that $(x_1, \ldots, x_i)(R/\mathfrak{p})$ has height $i, 1 \leq i \leq d$. Then there are elements $\delta_1, \ldots, \delta_d \in \mathfrak{p}$ such that if $y_i = x_i + \delta_i$, $1 \leq i \leq d$, then $(y_1, \ldots, y_i)R$ has height i, $1 \leq i \leq d$.

Proof. We construct the δ_i recursively. Suppose that $\delta_1, \ldots, \delta_t$ have already been chosen: t may be 0. If t < d, we cannot have that $x_{t+1} + \mathfrak{p}$ is contained in the union of the minimal primes of (y_1, \ldots, y_t) . If that were the case, by the coset form of prime avoidance we would have that $x_{t+1}R + \mathfrak{p} \subseteq Q$ for one such minimal prime Q. Then Q has height at most t, but modulo \mathfrak{p} all of x_1, \ldots, x_{t+1} are in Q, so that height $(Q/\mathfrak{p}) \ge t + 1$, a contradiction. \Box The following result will be useful in proving the colon-capturing property for tight closure.

Lemma. Let P be a prime ideal of height h in a Cohen-Macaulay ring S. Let x_1, \ldots, x_{k+1} be elements of R = S/P such that $(x_1, \ldots, x_k)R$ has height k in R while $(x_1, \ldots, x_{k+1})R$ has height k + 1. Then we can choose elements $y_1, \ldots, y_h \in P$ and $z_1, \ldots, z_{k+1} \in S$ such that:

- (1) $y_1, \ldots, y_h, z_1, \ldots, z_{k+1}$ is a regular sequence in S.
- (2) The images of z_1, \ldots, z_k in R generate the ideal $(x_1, \ldots, x_k)R$.
- (3) The image of z_{k+1} in R is x_{k+1} .

Proof. By the first Proposition on p. 8, we may assume without loss of generality that x_1, \ldots, x_i generate an ideal of height i in $R, 1 \leq i \leq k$. We also know this for i = k + 1. Choose z_i arbitrarily such that z_i maps to $x_i, 1 \leq i \leq k + 1$. Choose a regular sequence y_1, \ldots, y_h of length h in P. Then P is a minimal prime of $(y_1, \ldots, y_h)S$. By the second Proposition on p. 8 applied to the images of the of the z_i in $S/(y_1, \ldots, y_h)S$ with $\mathfrak{p} = P/(y_1, \ldots, y_h)S$, we may alter the z_i by adding elements of P so that the height of the image of the ideal generated by the images of z_1, \ldots, z_i in $S/(y_1, \ldots, y_h)$ is $i, 1 \leq i \leq k+1$. Since $S/(y_1, \ldots, y_h)S$ is again Cohen-Macaulay, it follows from the first Proposition on p. 8 that the images of the z_1, \ldots, z_{k+1} modulo $(y_1, \ldots, y_h)S$ form a regular sequence. But this means that $y_1, \ldots, y_h, z_1, \ldots, z_{k+1}$ is a regular sequence.

Colon-capturing

We can now prove a result on the colon-capturing property of tight closure.

Theorem (colon-capturing). Let R be a reduced Noetherian ring of prime characteristic p > 0 that is a homomorphic image of a Cohen-Macaulay ring. Let x_1, \ldots, x_{k+1} be elements of R. Let I_t denote the ideal $(x_1, \ldots, x_t)R$, $0 \le t \le k+1$. Suppose that the image of the ideal I_k has height k modulo every minimal prime of R, and that the image of the ideal $I_{k+1}R$ has height k+1 modulo every minimal prime of R. Then:

- (a) $I_k :_R x_{k+1} \subseteq I_k^*$.
- (b) If R has a test element, $I_k^* :_R x_{k+1} \subseteq I_k^*$, i.e., x_{k+1} is not a zerodivisor on R/I_k^* .

Proof. To prove part (a), note that it suffices to prove the result working in turn modulo each of the finitely many minimal primes of R. We may therefore assume that R is a domain. We can consequently write R = S/P, where S is Cohen-Macaulay. Let h be the height of P. Then we can choose $y_1, \ldots, y_h \in P$ and z_1, \ldots, z_{k+1} in S as in the conclusion of the Lemma just above, i.e., so $y_1, \ldots, y_h, z_1, \ldots, z_{k+1}$ is a regular sequence in S, and so that we may replace x_1, \ldots, x_{k+1} by the images of the z_i in R. Since P has height h, it is a minimal prime of $J = (y_1, \ldots, y_h)S$, and so if we localize at S - P, we have that P is nilpotent modulo J. Hence, for each generator g_i of P we can choose $c_i \in S - P$ and an expoment of the form $q_i = p^{e_i}$ such that $c_i g_i^{q_i} \in J$. It follows that if $c \in S - P$ is the product of the c_i and q_0 is the maximum of the q_i , then $cP^{[q_0]} \subseteq J$.

Now suppose that we have a relation

$$rx_{k+1} = r_1x_1 + \dots + r_kx_k$$

in R. Then we can lift r, r_1, \ldots, r_k to elements $s, s_1, \ldots, s_k \in S$ such that

$$sz_{k+1} = s_1z_1 + \dots + s_kz_k + v,$$

where $v \in P$. Then for all $q \ge q_0$ we may raise both sides to the q th power and multiply by c to obtain

$$cs^{q}z_{k+1}^{q} = cs_{1}^{q}z_{1}^{q} + \dots + cs_{k}^{q}z_{k}^{q} + cv^{q};$$

moreover, $cv^q \in (y_1, \ldots, y_h)$. Therefore

$$cs^{q}z_{k+1}^{q} \in (z_{1}^{q}, \ldots, z_{k}^{q}, y_{1}, \ldots, y_{h})S.$$

Since $y_1, \ldots, y_h, z_1^q, \ldots, z_{k+1}^q$ is a regular sequence in S, we have that

$$cs^q \in (z_1^q, \ldots, z_k^q)S + (y_1, \ldots, y_h)S$$

Let $\overline{c} \in R^{\circ}$ be the image of c. Then, working modulo $P \supseteq (y_1, \ldots, y_h)R$, we have

$$\overline{c}r^q \in (x_1, \ldots, x_k)^{[q]}$$

for all $q \ge q_0$, and so $r \in (x_1, \ldots, x_k)^*$ in R, as required. This completes the argument for part (a).

It remains to prove part (b). Suppose that R has a test element $d \in R^{\circ}$, that $r \in R$, and that $rx_{k+1} \in I_k^*$. Then there exists $c \in R^{\circ}$ such that $c(rx_{k+1})^q \in (I_k^*)^{[q]}$ for all $q \gg 0$. Note that $(I_k^*)^{[q]} \subseteq (I_k^{[q]})^*$, so that $cr^q x_{k+1}^q \in (I_k^{[q]})^*$, and $dcr^q x_{k+1}^q \in I_k^{[q]}$. From part (a), it follows that $dcr^q \in (I_k^{[q]})^*$ for all $q \gg 0$, and so $d^2cr^q \in I_k^{[q]}$ for all $q \gg 0$. But then $r \in I_k^*$, as required. \Box

Corollary. Let R be a Noetherian ring of prime characteristic p > 0 that is a homomorphic image of a Cohen-Macaulay ring, and suppose that R is weakly F-regular. Then R is Cohen-Macaulay.

Proof. Consider a local ring of R at a maximal ideal. Then this local ring remains weakly F-regular, and is normal. Therefore, we may assume that R is a local domain. Let x_1, \ldots, x_n be a system of parameters. Then for every $k < n, (x_1, \ldots, x_k) :_R x_{k+1} \subseteq (x_1, \ldots, x_k)^* = (x_1, \ldots, x_k)$, since (x_1, \ldots, x_k) is tightly closed. \Box