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Properties of regular sequences

In the sequel we shall need to make use of certain standard facts about regular sequences
on a module: for convenience, we collect these facts here. Many of the proofs can be made
simpler in the case of a regular sequence that is permutable, i.e., whose terms form a regular
sequence in every order. This hypothesis holds automatically for regular sequences on a
finitely generated module over a local ring. However, we shall give complete proofs here
for the general case, without assuming permutability. The following fact will be needed
repeatedly.

Lemma. Let R be a ring, M an R-module, and let x1, . . . , xn be a possibly improper
regular sequence on M . If u1, . . . , un ∈ M are such that

n∑
j=1

xjuj = 0,

then every uj ∈ (x1, . . . , xn)M .

Proof. We use induction on n. The case where n = 1 is obvious. We have from the
definition of possibly improper regular sequence that un =

∑n−1
j=1 xjvj , with v1, . . . , vn−1 ∈

M , and so
∑n−1

j=1 xj(uj + xnvj) = 0. By the induction hypothesis, every uj + xnvj ∈
(x1, . . . , xn−1)M , from which the desired conclusion follows at once �

Proposition. Let 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mh = M be a finite filtration of M . If
x1, . . . , xn is a possibly improper regular sequence on every factor Mk+1/Mk, 0 ≤ k ≤ h−1,
then it is a possibly improper regular sequence on M . If, moreover, it is a regular sequence
on M/Mh−1, then it is a regular sequence on M .

Proof. If we know the result in the possibly improper case, the final statement follows, for
if I = (x1, . . . , xn)R and IM = M , then the same hold for every homomorphic image of
M , contradicting the hypothesis on M/Mh−1.

It remains to prove the result when x1, . . . , xn is a possibly improper regular sequence
on every factor. The case where h = 1 is obvious. We use induction on h. Suppose that
h = 2, so that we have a short exact sequence

0 → M1 → M → N → 0
1



2

and x1, . . . , xn is a possibly regular sequence on M1 and N . Then x1 is a nonzerodivisor
on M , for if x1u = 0, then x1 kills the image of u in N . But this shows that the image
of u in N must be 0, which means that u ∈ M1. But x1 is not a zerodivisor on M1. It
follows that

0 → xM1 → xM → xN → 0

is also exact, since it is isomorphic with the original short exact sequence. Therefore, we
have a short exact sequence of quotients

0 → M1/x1M1 → M/x1N → M/x1N → 0.

We may now apply the induction hypothesis to conclude that x2, . . . , xn is a possibly
improper regular sequence on M/x1M , and hence that x1, . . . , xn is a possibly improper
regular sequence on M .

We now carry through the induction on h. Suppose we know the result for filtrations
of length h− 1. We can conclude that x1, . . . , xn is a possibly improper regular sequence
on Mh−1, and we also have this for M/Mh−1. The result for M now follows from the case
where h = 2. �

Theorem. Let x1, . . . , xn ∈ R and let M be an R-module. Let t1, . . . , tn be integers ≥ 1.
Then x1, . . . , xn is a regular sequence (respectively, a possibly improper regular sequence)
on M iff xt1

1 , . . . , xtn
n is a regular sequence on M (respectively, a possibly improper regular

sequence on M).

Proof. If IM = M then IkM = M for all k. If each of I and J has a power in the other,
it follows that IM = M iff JM = M . Thus, we will have a proper regular sequence in
one case iff we do in the other, once we have established that we have a possibly improper
regular sequence. In the sequel we deal with possibly improper regular sequences, but for
the rest of this proof we omit the words “possibly improper.”

Suppose that x1, . . . , xn is a regular sequence on M . By induction on n, it will suffice
to show that xt1

1 , x2, . . . , xn is a regular sequence on M : we may pass to x2, . . . , xn and
M/xt1

n M and then apply the induction hypothesis. It is clear that xt1
1 is a nonzerodivisor

when x1 is. Moreover, M/xt1
1 M has a finite filtration by submodules xj

1M/xt1
1 M with

factors xj
1M/xj+1

1 M ∼= M/x1M , 1 ≤ j ≤ t1 − 1. Since x2, . . . , xn is a regular sequence
on each factor, it is a regular sequence on M/xt1

1 M by the preceding Proposition.

For the other implication, it will suffice to show that if x1, . . . , xj−1, x
t
j , xj+1, . . . , xn

is a regular sequence on M , then x1, . . . , xn is: we may change the exponents to 1 one
at a time. The issue may be considered mod (x1, . . . , xj−1)M . Therefore, it suffices to
consider the case j = 1, and we need only show that if xt

1, x2, . . . , xn is a regular sequence
on M then so is x1, . . . , xn. It is clear that if xt

1 is a nonzerodivisor then so is x1.

By induction on n we may assume that x1, . . . , xn−1 is a regular sequence on M . We
need to show that if xnu ∈ (x1, . . . , xn−1)M , then u ∈ (x1, x2, . . . , xn−1)M . If we multiply
by xt−1

1 , we find that
xn(xt−1

1 u) ∈ (xt
1, x2, . . . , xn−1)M,
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and so
xt−1

1 u = xt
1v1 + x2v2 + · · ·+ xn−1vn−1,

i.e.,
xt−1

1 (u− x1v1)− x2v2 − · · · − xn−1vn−1 = 0.

By the induction hypothesis, x1, . . . , xn−1 is a regular sequence on M , and by the first
part, xt−1

1 , x2, ..., xn−1 is a regular sequence on M . By the Lemma on p. 1, we have that

u− x1v1 ∈ (xt−1
1 , x2, . . . , xn−1)M,

and so u ∈ (x1, . . . , xn−1)M , as required. �

Theorem. Let x1, . . . , xn be a regular sequence on the R-module M , and let I denote the
ideal (x1, . . . , xn)R. Let a1, . . . , an be nonnegative integers, and suppose that u, u1, . . . , un

are elements of M such that

(#) xa1
1 · · ·xan

n u =
n∑

j=1

x
aj+1
j uj .

Then u ∈ IM .

Proof. We use induction on the number of nonzero aj : we are done if all are 0. If ai > 0,
let y be Πj 6=ix

aj

j . Rewrite (#) as
∑

j 6=i x
aj+1
j uj − x

aj

i (yu− xiui) = 0. Since powers of the

xj are again regular, the Lemma on p. 1 yields that yu− xiui ∈ xai
i M + (xaj+1

j : j 6= i)M
and so yu ∈ xiM + (xaj+1

j : j 6= i)M . Now ai = 0 in the monomial y, and there is one
fewer nonzero aj . The desired result now follows from the induction hypothesis. �

If I is an ideal of a ring R, we can form the associated graded ring

grI(R) = R/I ⊕ I/I2 ⊕ · · · ⊕ Ik/Ik+1 ⊕ · · · ,

an N-graded ring whose k th graded piece is Ik/Ik+1. If f ∈ Ih represents an element
a ∈ Ih/Ih+1 = [grIR]h and g ∈ Ik represents an element b ∈ Ik/Ik+1 = [grI(R)]k, then ab
is the class of fg in Ih+k/Ih+k+1. Likewise, if M is an R-module, we can form

grIM = M/IM ⊕ IM/I2M ⊕ · · · ⊕ IkM/Ik+1M ⊕ · · · .

This is an N-graded module over grI(R) in an obvious way: with f and a as above, if
u ∈ IkM represents an element z ∈ IkM/Ik+1M , then the class of fu in Ih+kM/Ih+k+1M
represents az.

If x1, . . . , xn ∈ R generate I, the classes [xi] ∈ I/I2 generate grI(R) as an (R/I)-
algebra. Let θ : (R/I)[X1, . . . , Xn] � grI(R) be the (R/I)-algebra map such that Xi 7→
[xi]. This is a surjection of graded (R/I)-algebras. By restriction of scalars, grI(M) is also
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a module over (R/I)[X1, . . . , Xn]. The (R/I)-linear map M/IM ↪→ grIM then gives a
map

θM : (R/I)[X1, . . . , Xn]⊗R/I M/IM → grI(M).

Note that θR = θ. If u ∈ M represents [u] in M/IM and t1, . . . , tn are nonnegative
integers whose sum is k, then

Xt1
1 · · ·Xtn

n ⊗ [u] 7→ [xt1
1 · · ·xtn

n u],

where the right hand side is to be interpreted in IkM/Ik+1M . Note that θM is surjective.

Theorem. Let x1, . . . , xn be a regular sequence on the R-module M , and suppose that
I = (x1, . . . , xn)R. Let X1, . . . , Xn be indeterminates over the ring R/I. Then

grI(M) ∼= (R/I)[X1, . . . , Xn]⊗R/I (M/IM)

in such a way that the action of [xi] ∈ I/I2 = [grI(R)]1 on grI(M) is the same as multi-
plication by the variable Xi.

In particular, if x1, . . . , xn is a regular sequence in R, then grI(R) ∼= (R/I)[X1, . . . , Xn]
in such a way that [xi] corresponds to Xi.

In other words, if x1, . . . , xn is a regular sequence on M (respectively, R), then the map
θM (respectively, θ) discussed in the paragraph above is an isomorphism.

Proof. The issue is whether θM is injective. If not, there is a nontrivial relation on the
monomials in the elements [xi] with coefficients in M/IM , and then there must be such a
relation that is homogeneous of, say, degree k. Lifting to M , we see that this means that
there is an (M − IM)-linear combination of mutually distinct monomials of degree k in
x1, . . . , xn which is in Ik+1M . Choose one monomial term in this relation: it will have the
form xa1

1 · · ·xan
n u, where the sum of the aj is k and u ∈ M − IM . The other monomials

of degree k in the elements x1, . . . , xn and the monomial generators of Ik+1 all have as a
factor at least one of the terms xa1+1

1 , . . . , xan+1
n . This yields that

(#) (Πjx
aj

j )u =
n∑

j=1

x
aj+1
j uj .

By the preceding Theorem, u ∈ IM , contradictioning that u ∈ M − IM . �

|

Another description of the Koszul complex

Let R be a ring and let x = x1, . . . , xn ∈ R. In our development of the Koszul complex,

we showed that Ki(x; R) has
(

n

i

)
generators uj1···ji

where 1 ≤ j1 < · · · < ji ≤ n, so that
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the generators may the thought of as indexed by strictly increasing sequences of integers
between 1 and n inclusive of length i. We may also think of the generators as indexed by
the i element subsets of {1, . . . , n}.

This means that with

G = K1(x; R) = Ku1 ⊕ · · · ⊕Kun,

we have that

Ki(x; R) ∼=
i∧

G,

for all i ∈ Z in such a way that uj1···ji
corresponds to uj1 ∧· · ·∧uji

. Thus, the Koszul com-
plex coincides with the skew-commutative N-graded algebra

∧•(G). (A skew-commutative
N-graded algebra is an associative N-graded ring with identity such that if u and v are
forms of degree d, e respectively, then vu = (−1)deuv. The elements of even degree span a
subalgebra that is in the center.) A graded derivation of such an algebra of degree −1 is a
Z-linear map δ that lowers degrees by 1 and satisfies

δ(uv) =
(
δ(u)

)
v + (−1)duδ(v)

when u and v or forms as above.

It is easy to check that the differential of the Koszul complex is a derivation of degree
−1 in the sense specified. Moreover, given any R-linear map G → R, it extends uniqely to
an R-linear derivation of

∧•(G) of degree −1. If we choose a basis for G, call it u1, . . . , un,
and let xi be the value of the map on ui, we recover K•(x; R) in this way.

Maps of quotients by regular sequences

Let x = x1, . . . , xn and y = y1, . . . , yn be two regular sequences in R such that J =
(y1, . . . , yn)R ⊆ (x1, . . . , xn)R = I. It is obvious that there is a surjection R/J � R/I.
It is far less obvious, but very useful, that there is an injection R/I → R/J .

Theorem. Let x1, . . . , xn and y1, . . . , yn be two regular sequences on a Noetherian mod-
ule M over a Noetherian ring R. Suppose that

J = (y1, . . . , yn)R ⊆ (x1, . . . , xn)R = I.

Choose elements aij ∈ R such that for all j, yj =
∑n

i=1 aijxi. Let A be the matrix
(
aij

)
,

so that we have a matrix equation

(y1 . . . yn) = (x1 . . . xn)A.

Let D = det(A). Then DI ⊆ J , and the map M/IM → M/JM induced by multiplication
by D on the numerators in injective.
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Proof. Let B be the classical adjoint of A, so that BA = AB = DIn, where In is the n×n
identity matrix. Then

(y1 . . . yn)B = (x1 . . . xn)AB = (x1 . . . xn)D

shows that DI ⊆ J .

The surjection R/J � R/I lifts to a map of projective resolutions of these modules:
we can use any projective resolutions, but in this case we use the two Koszul complexes
K•(x; R) and K•(y; R). With these specific resolutions, we can use the matrix A to give
the lifting as far as degree 1:

K1(x; R)
(x1 ... xn)−−−−−−→ R −−−−→ R/(x1, . . . , xn) −−−−→ 0

A

x 1R

x x
K1(y; R)

(y1 ... yn)−−−−−−→ R −−−−→ R/(y1, . . . , yn) −−−−→ 0

Here, we are using the usual bases for K1(x; R) and K1(y; R). It is easy to check that if
we use the maps

i∧
A : Ki(y; R) → Ki(x; R)

for all i, we get a map of complexes. This means that the map

R ∼= Kn(y; R) → Kn(x; R) ∼= R

is given by multiplication by D. It follows that the map induced by multiplication by D
gives the induced map

Extn
R(R/(x1, . . . , xd), M) → Extn(R/(y1, . . . , yn), M).

We have already seen that these top Ext modules may be identified with M/(x1, . . . , x)M
and M/(y1, . . . , yn)M , respectively: this is the special case of the Theorem at the bottom
of p. 4 of the Lecture Notes of October 5 in the case where i = n.

Consider the short exact sequence

0 → I/J → R/J → R/I → 0.

The long exact sequence for Ext yields, in part,

Extn−1
R (I/J ;M) → Extn

R(R/I; M) → Extn
R(R/J ;M).

Since the depth of M on AnnR(I/J) ⊇ J is at least n, the leftmost term vanishes, which
proves the injectivity of the map on the right. �
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Remark. We focus on the case where M = R: a similar comment may be made in
general. We simply want to emphasize that the identification of Extn

R(R/I, R) with R/I
is not canonical: it depends on the choice of generators for I. But a different identification
can only arise from multiplication by a unit of R/I. A similar remark applies to the
identification of Extn

R(R/J, R) with R/J .

Remark. The hypothesis that R and M be Noetherian is not really needed. Even if
the ring is not Noetherian, if the annihilator of a module N contains a regular sequence
x1, . . . , xd of length d on M , it is true that Exti

R(N, M) = 0 for i < d. If d ≥ 1, it is easy
to see that any map N → M must be 0: any element in the image of the map must be
killed by x1, and AnnMx1 = 0. The inductive step in the argument is then the same as in
the Noetherian case: consider the long exact sequence for Ext arising when HomR(N, )
is applied to

0 −→ M
x1·−−→ M −→ M/x1M −→ 0.

The type of a Cohen-Macaulay module over a local ring

Let (R, m, K) be local and let M be a finitely generated nonzero R-module that is
Cohen-Macaulay, i.e., every system of parameters for R/I, where I = AnnRM , is a regular
sequence on M . (It is equivalent to assume that depthmM = dim (M).) Recall that the
socle of an R-module M is AnnMm ∼= HomR(K, M). It turns out that for any maximal
regular sequence x1, . . . , xd on M , the dimension as a K-vector space of the socle in
M/(x1, . . . , xd)M is independent of the choice of the system of parameters. One way to
see this is as follows:

Propostion. Let (R, m, K) and M be as above with M Cohen-Macaulay of dimension
d over R. Then for every maximal regular sequence x1, . . . , xd on M and for every i,
1 ≤ i ≤ d,

Extd
R(K, M) ∼= Extd−i

R

(
K, M/(x1, . . . , xi)M

)
.

In particular, for every maximal regular sequence on M , the socle in M/(x1, . . . , xd)M
is isomorphic to Extd

R(K, M), and so its K-vector space dimension is independent of the
choice maximal regular sequence.

Proof. The statement in the second paragraph follows from the result of the first paragraph
in the case where i = d. By induction, the proof that

Extd
R(K, M) ∼= Extd−i

R

(
K, M/(x1, . . . , xi)M

)
reduces at once to the case where i = 1. To see this, apply the long exact sequence for Ext
arising from the application of HomR(K, ) to the short exact sequence

0 → M → M → M/x1M → 0.
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Note that Extj(K, M) = 0 for j < d, since the depth of M on AnnRK = m is d, and that
Extj(K, M/x1M) = 0 for j < d− 1, similarly. Hence, we obtain, in part,

0 −→ Extd−1
R (K, M/x1M) −→ Extd

R(K, M) x1·−−→ Extd
R(K, M).

Since x1 ∈ m kills K, the map on the right is 0, which gives the required isomorphism. �

Proposition. Let M 6= 0 be a Cohen-Macaulay module over a local ring R. Let x1, . . . , xn

and y1, . . . , yn be two systems of parameters on M with (y1, . . . , yn)R ⊆ (x1, . . . , xn)R
and let A =

(
aij

)
be a matrix of elements of R such that (y1 . . . yn) = (x1 . . . xn)A. Let

D = det(A). Then the map M/(x1, . . . , xn)M → M/(y1, . . . , yn)M induced by multipli-
cation by D on the numerators carries the socle of M/(x1, . . . , xn)M isomorphically onto
the socle of M/(y1, . . . , yn)M .

In particular, if yi = xt
i, 1 ≤ i ≤ n, then the map induced by multiplication by

xt−1
1 · · ·xt−1

n carries the socle of the quotient module M/(x1, . . . , xn)M isomorphically
onto the socle of M/(xt

1, . . . , xt
n)M .

Proof. By the Theorem on p. 5, multiplication by D gives an injection

M/(x1, . . . , xn)M ↪→ M/(y1, . . . , yn)M

which must map the socle in the left hand module injectively into the socle in the right
hand module. Since, by the preceding Proposition, the two socles have the same finite
dimension as vector spaces over K, the map yields an isomorphism of the two socles. The
final statement follows because in the case of this specific pair of systems of parameters,
we may take A to be the diagonal matrix with diagonal entries xt−1

1 , . . . , xt−1
n . �

F-rational rings

Definition: F-rational rings. We shall say that a local ring (R, m, K) is F-rational if it
is a homomorphic image of a Cohen-Macaulay ring and every ideal generated by a system
of parameters is tightly closed.

We first note:

Theorem. An F-rational local ring is Cohen-Macaulay, and every ideal generated by part
of a system parameters is tightly closed. Hence, an F -rational local ring is a normal
domain.

Proof. Let x1, . . . , xk be part of a system of parameters (it may be the empty sequence)
and let I = (x1, . . . , xk). Let x1, . . . , xn be a system of parameters for R, and for every
t ≥ 1 let Jt = (x1, . . . , xk, xt

k+1, . . . , xt
n)R. Then for all t, I ⊆ Jt and Jt is tightly closed,

so that I∗ ⊆ Jt and I∗ ⊆
⋂

t Jt = I, as required. In particular, (0) and principal ideals
generated by nonzerodivisors are tightly closed, so that R is a normal domain, by the
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Theorem on the top of p. 5 of the Lecture Notes from September 17. In particular, R
is equidimensional, and by part (a) of the Theorem on colon-capturing from p. 9 of the
Lecture Notes from October 5, we have that for every k, 0 ≤ k ≤ n− 1,

(x1, . . . , xk) :R xk+1 ⊆ (x1, . . . , xk)∗ = (x1, . . . , xk),

so that R is Cohen-Macaulay. �

Theorem. Let (R, m, K) be a reduced local ring of prime characteristic p > 0. If R is
Cohen-Macaulay and the ideal I = (x1, . . . , xn) generated by one system of parameters
is tightly closed, then R is F-rational, i.e., every ideal generated by part of a system of
parameters is tightly closed.

Proof. Let It = (xt
1, . . . , xt

n)R. We first show that all of the ideals It are tightly closed. If
not, suppose that u ∈ (It)∗ − It. Since (It)∗/It has finite length, u has a nonzero multiple
v that represents an element of the socle of I∗t /It, which is contained in the socle of R/It.
Thus, we might as well assume that u = v represents an element of the socle in R/It. By
the last statement of the Proposition on p. 8, , we can choose z representing an element
of the socle in R/I such that the class of v mod I has the form [xt−1

1 · · ·xt−1
n z]. Then

xt−1
1 · · ·xt−1

n z also represents an element of I∗− I. Hence, we can choose c ∈ R◦ such that
for all q � 0,

c(xt−1
1 · · ·xt−1

n z)q ∈ I
[q]
t = Itq,

i.e., cxtq−q
1 · · ·xtq−q

n zq ∈ Itq, which implies that

czq ∈
(
(xq

1)
t, . . . , (xq

n)t
)

:R (xq
1)

t−1 · · · (xq
n)t−1.

By the Theorem on p. 3 applied to the regular sequence xq
1, . . . , xq

n, the right hand side is
(xq

1, . . . , xq
n) = I [q], and so

czq ∈ I [q]

for all q � 0. This shows that z ∈ I∗ = I, contradicting the fact that z represents a
nonzero socle element in R/I.

Now consider any system of parameters y1, . . . , yn. For t � 0, (xt
1, . . . , xt

n)R ⊆
(y1, . . . , yn)R. Then there is an injectiion R/y1, . . . , yn)R ↪→ R/(xt

1, . . . , xt
n)R by the

Theorem at the bottom of p. 5. Since 0 is tightly closed in the latter, it is tightly closed
in R/(y1, . . . , yn)R, and so (y1, . . . , yn)R is tightly closed in R. �

We shall see soon that under mild conditions, if (R, m, K) is a local ring of prime
characteristic p > 0 and a single ideal generated by a system of parameters is tightly
closed, then R is F-rational: we can prove that R is Cohen-Macaulay even though we are
not assuming it.


