
Math 711: Lecture of October 12, 2007

Capturing the contracted expansion from an integral extension

Using the result of the first problem in Problem Set #1, we can now prove that tight
closure has one of the good properties, namely property (3) on p. 15 of the Lecture Notes
from September 5, described in the introduction to the subject in the first lecture.

Recall that if M is a module over a domain D, the torsion-free rank of M is

dimK(K ⊗D M).

We first note a preliminary result that comes up frequently:

Lemma. Let D be a domain with fraction field K, and let M be a finitely generated torsion-
free module over D. Then M can be embedded in a finitely generated free D-module Dh,
where h is the torsion-free rank of M over D. In particular, given any nonzero element
u ∈ M , there is a D-linear map θ : M → D such that θ(u) 6= 0.

Proof. We can choose h elements b1, . . . , bh of M that are linearly independent over K
and, hence, over D. This gives an inclusion map

Db1 + · · ·+ Dbh = Dh ↪→ M.

Let u1, . . . , un generate M . Then each un is a linear combination of b1, . . . , bh over K,
and we may multiply by a common denominator ci ∈ D − {0} to see that ciui ∈ Dh ⊆ M
for 1 ≤ i ≤ n. Let c = c1 · · · cn. Then cui ∈ Dh for all i, and so cM ⊆ Dh. But M ∼= cM
via the map u 7→ cu, and so we have that f : M ↪→ Dh, as required.

If u 6= 0, then f(u) = (d1, . . . , dh) has some coordinate not 0, say dj . Let πj denote
the j th coordinate projection Dh → D. Then we may take θ = π ◦ f . �

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Suppose that R ⊆ S
is an integral extension, and that I is an ideal of R. Then IS ∩R ⊆ I∗.

Proof. Let r ∈ IS ∩ R. It suffices to show that the image of r is in I∗ working modulo
every minimal prime p of R in turn. Let q be a prime ideal of S lying over p: we can
choose such a prime q by the Lying Over Theorem. Then we have R/p ↪→ S/q, and the
image of r in R/p is in I(S/q). We have therefore reduced to the case where R and S are
domains.

Since r ∈ IS, if f1, . . . , fn generate I we can write

r = s1f1 + · · ·+ snfn.
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Hence, we may replace S by R[f1, . . . , fn] ⊆ SW , and so assume that S is module-finite
over R. By the preceding Lemma, S is solid as an R-algebra, and the result now follows
from Problem 1 of Problem Set #1. �

Test elements for reduced algebras essentially of finite type
over excellent semilocal rings

Although we have test elements for F-finite rings, we do not yet have a satisfactory
theory for excellent local rings. In fact, as indicated in the title of this section, we can do
much better. In this section, we want to sketch the method that will enable us to prove
the following result:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Suppose that R is
reduced and essentially of finite type over an excellent semilocal ring B. Then there are
elements c ∈ R◦ such that Rc is regular, and every such element c has a power that is a
completely stable big test element.

We shall, in fact, prove better results in which the hypotheses on Rc are weakened, but
we want to use the Theorem stated to motivate the constructions we need.

The idea of the argument is as follows. We first replace the semilocal ring B by its
completion B̂ with respect to its Jacobson radical. Then R1 = B̂ ⊗B R is essentially of
finite type over B̂, is still reduced, and the map R → R1 is flat with geometrically regular
fibers. It follows that (R1)c is still regular. Thus, we have reduced to the case where B is
a complete semilocal ring. Such a ring is a finite product of complete local rings, and so is
the B-algebra R. The problem can be treated for each factor separately. Therefore, we can
assume that B is a complete local ring. Then B is module-finite over a complete regular
local ring A, and we henceforth want to think about the case where R is essentially of finite
type over a regular local ring (A, m, K). We can choose a coefficient field K ⊆ A such
that the composite map K ↪→ A � A/m is an isomorphism. We know from the structure
theory of complete local rings that A has the form K[[x1, . . . , xn]], where x1, . . . , xn are
formal power series indeterminates over K.

We know that R has the form W−1R0 where R0 is finitely generated as an A-algebra.
It is not hard to see that if (W−1R0)c is regular, then there exists w ∈ W such that(
(R0)w

)
c

is regular. If we show that cN is a completely stable big test element for (R0)w,
this is automatically true for every further localization as well, and so we have it for
W−1R0 = R. This enables us to reduce to the case where R is finitely generated over
A = K[[x1, . . . , xn]]. The key to proving the Theorem above is then the following result.

Theorem. Let K be a field of characteristic p > 0, let (A, m, K) denote the regular local
ring K[[x1, . . . , xn]], and let R be a reduced finitely generated A-algebra. Suppose that Rc

is regular. Then A has an extension AΓ such that

(1) A → AΓ is faithfully flat and local.
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(2) AΓ is purely inseparable over A.

(3) The maximal ideal of AΓ is mAΓ.

(4) AΓ is F-finite.

(5) AΓ ⊗A R is reduced.

(6) (AΓ ⊗A R)c is regular.

It will take quite an effort to prove this. However, once we have this Theorem, the
rest of the argument for the Theorem on p. 2 is easy. The point is that RΓ = AΓ ⊗A R is
faithfully flat over R and is F-finite and reduced by (4) and (5) above, Moreover, we still
have that (RΓ)c is regular, by part (6). It follows that cN is a completely stable big test
element for RΓ by the Theorem at the bottom of p. 4 of the Lecture Notes from October
1, and then we have the corresponding result for R.

This motivates the task of proving the existence of extensions A → AΓ with properties
stated above. The construction depends heavily on the behavior of p -bases for fields of
prime characteristic p > 0.

Properties of p -bases

We begin by recalling the notion of a p -base for a field K of characteristic p > 0. As
usual, if q = pe we write

Kq = {cq : c ∈ K},

the subfield of K consisting of all elements that are q th powers. It will be convenient to
call a polynomial in several variables e-special, where e ≥ 1 is an integer, if every variable
occurs with exponent at most pe − 1 in every term. This terminology is not standard.

Let K be a field of characteristic p > 0. Finitely many elements λ1, . . . , λn in K
(they will turn out to be, necessarily, in K −Kp) are called p -independent if the following
three equivalent conditions are satisfied:

(1) [Kp[λ1, . . . , λn] : Kp] = pn.

(2) Kp ⊆ K[λ1] ⊆ Kp[λ1, λ2] ⊆ · · · ⊆ Kp[λ1, λ2, . . . , λn] is a strictly increasing tower of
fields.

(3) The pn monomials λa1
1 · · ·λan

n such that 0 ≤ aj ≤ p− 1 for all j with 1 ≤ j ≤ n are a
Kp-vecctor space basis for K over Kp.

Note that since every λj satisfies λp
j ∈ Kp, in the tower considered in part (2) at each

stage there are only two possibilities: the degree of λj+1 over Kp[λ1, . . . , λj ] is either 1,
which means that

θj+1 ∈ Kp[λ1, . . . , λj ],

or p. Thus, K[λ1, . . . , λn] = pn occurs only when the degree is p at every stage, and this
is equivalent to the statement that the tower of fields is strictly increasing. Condition (3)
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clearly implies condition (1). The fact that (2) ⇒ (3) follows by mathematical induction
from the observation that

1, λj+1, λ2
j+1, . . . , λp−1

j+1

is a basis for Lj+1 = Kp[λ1, . . . , λj+1] over Lj = K[λ1, . . . , λj ] for every j, and the fact
that if one has a basis C for Lj+1 over Lj and a basis B for Lj over Kp then all products
of an element from C with an element from B form a basis for Lj+1 over Kp.

Every subset of a p -independent set is p -independent. An infinite subset of K is called
p -independent if every finite subset is p -independent.

A maximal p -independent subset of K, which will necessarily be a subset of K −Kp,
is called a p -base for K. Zorn’s Lemma guarantees the existence of a p -base, since the
union of a chain of p -independent sets is p -independent. If Λ is a x-base, then K = Kp[Λ],
for if there were an element θ′ of K −Kp[Θ], it could be used to enlarge the p -base. The
empty set is a p -base for K if and only if K is perfect. If K is not perfect, a p -base for K
is never unique: one can change an element of it by adding an element of Kp.

From the condition above, it is easy to see that Λ is a p -base for K if and only if every
element of K is uniquely expressible as a polynomial in the elements of Λ with coefficients
in Kp such that the exponent on every λ ∈ Λ is at most p − 1: this is equivalent to the
assertion that the monomials in the elements of Λ of degree at most p− 1 in each element
are a basis for K over Kp. Another equivalent statement is that every element of K is
uniquely expressible as as 1-special polynomial in the elements of Λ with coefficients in
Kp.

If q = pe, then the elements of Λq = {λq : λ ∈ Λ} are a p -base for Kq over Kpq: in
fact we have a commutative diagram:

K
F q

−−−−→ Kqx x
Kp −−−−→

F pq
Kpq

where the vertical arrows are inclusions and the horizontal arrows are isomorphisms: here,
F q(c) = cq. In particular, Λp = {λp : λ ∈ Λ} is a p -base for Kp, and it follows by
multiplying the two bases together that the monomials in the elements of Λ of degree at
most p2− 1 are a basis for K over Kp2

. By a straightforward induction, the monomials in
the elements of Λ of degree at most pe − 1 in each element are a basis for K over Kpe

for
every e ≥ 1. An equivalent statement is that every element of K can be written uniquely
as an e-special polynomial in the elements of Λ with coefficients in Kpe

.

By taking p th roots, we also have that K1/p = K[λ1/p : λ ∈ Λ]. It is also true that for
any h distinct elements λ1, . . . , λh of the p -base and for all q, [Kq[λ1, . . . , λh] : Kq] = qh

and that K1/q = K[λ1/q : λ ∈ Λ]. It follows that the monomials of the form

(∗) λα1
i1
· · ·λαh

ih
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where every α is a rational number in [0, 1) that can be written with denominator dividing
q is a basis for K1/q over K.

Hence, with K∞ =
⋂

q K1/q, we have

Proposition. With K a field of prime characteristic p > 0 and Λ a p -base as above, the
monomials of the form displayed in (∗) with λ1, . . . , λh ∈ Λ and with the denominators of
the αi ∈ [0, 1) allowed to be arbitrary powers of p form a basis for K∞ over K. �

The gamma construction for complete regular local rings

Let K be a fixed field of characteristic p > 0 and let Λ be a fixed p -base for K.
Let A = K[[x1, . . . , xn]] be a formal power series ring over K. We shall always use Γ to
indicate a subset of Λ that is cofinite, by which we mean that Λ − Γ is a finite set. For
every such Γ we define a ring AΓ as follows.

Let Ke (or KΓ
e if we need to be more precise) denote the field K[λ1/q : λ ∈ Γ], where

q = pe as usual. Then K ⊆ Ke ⊆ K1/q, and the q th power of every element of Ke is in
K. We define

AΓ =
⋃
e

Ke[[x1, . . . , xn]].

We refer to AΓ as being obtained from A by the gamma construction.

Our next objective is to prove the following:

Theorem. Consider the local ring (A,m, K) obtained from a field K of characteristic
p > 0 by adjoining n formal power series indeterminiates x1, . . . , xn. That is, A =
K[[x1, . . . , xn]] and m = (x1, . . . , xn)A. Fix a p -base Λ for K, let Γ be a cofinite subset
of Λ, and let AΓ be defined as above. Then A ↪→ AΓ is a flat local homomorphism, and
the ring AΓ is regular local ring of Krull dimension n. Its maximal ideal is mAΓ and its
residue class field is KΓ =

⋃
e KΓ

e . Moreover, AΓ is purely inseparable over A, and AΓ is
F-finite.

It will take some work to prove all of this.


