
Math 711: Lecture of October 17, 2007

We next want to prove the Theorem stated at the end of the Lecture Notes from October
12. Recall that A = K[[x1, . . . , xn]] and that Γ is cofinite in a fixed p -base Λ for K.

First note that it is clear that K[[x1, . . . , xn]] → Ke[[x1, . . . , xn]] is faithfully flat: every
system of parameters in the former maps to a system of parameters in the extension ring,
and since the extension is regular it is Cohen-Macaulay. Faithful flatness follows from the
Theorem at the top of p. 2 of the Lecture Notes of September 14. Since a direct limit of
flat extensions is flat, it is clear that AΓ is flat over A.

Since (Ke)q ⊆ K, we have that

(AΓ)q ∈ (Ke)q[[xq
1, . . . , xq

n]] ∈ K[[x1, . . . , xn]] = A.

Thus, every Ae = Ke[[x1, . . . , xn]] is purely inseparable over A, and it follows that the
union AΓ is as well. Hence, A → AΓ is local. Note that the maximal ideal in each Ae is
mAe = (x1, . . . , xn)Ae. Every element of the maximal ideal of AΓ is in the maximal ideal
of some Ae, and so in mAe ⊆ mAΓ. Thus, mAΓ = (x1, . . . , xn)AΓ is the maximal ideal of
AΓ. The residue class field of AΓ is clearly the direct limit of the residue class fields Ke,
which is the union

⋃
e Ke = KΓ: this is the gamma construction applied to A = K.

We next want to check that AΓ is Noetherian. Note that AΓ is contained in the regular
ring KΓ[[x1, . . . , xn]] = B, and that each of the maps Ae → B is faithfully flat. Hence,
for every ideal I of Ae, IB ∩Ae = I. The Noetherian property for AΓ now follows from:

Lemma. Let {Ai}i be a directed family of rings and injective homomorphisms whose
direct limit A embeds in a ring B. Suppose that for all i and for every ideal J of any Ai,
JB ∩ Ai = I. Then for every ideal I of A, IB ∩ A = I. Hence, if B is Noetherian, then
A is Noetherian.

Proof. Suppose that u ∈ A, I ⊆ A and u ∈ IB − IA. Then u = f1b1 + · · · + fnbn where
f1, . . . , fn ∈ I and b1, . . . , bn ∈ B. We can choose i so large that u, f1, . . . , fn ∈ Ai, and
let J = (f1, . . . , fn)Ai. Evidently, u ∈ JB∩Ai = J , and, clearly, J ⊆ IA, a contradiction.

For the final statement, let I be any ideal of A. Then a finite subset g1, . . . , gn ∈ I
generates IB. Let I0 = (g1, . . . , gn)A. Then I ⊆ IB ∩ A = I0B ∩ A = I0 ⊆ I, so that
I = I0. �

Since AΓ is Noetherian of Krull dimension n with maximal ideal (x1, . . . , xn)AΓ, we
have that AΓ is regular. To complete the proof of the final Theorem stated in the Lecture
Notes from October 12, it remains only to prove:
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Theorem. AΓ is F -finite.

Proof. Throughout this argument, we write Ke for KΓ
e = K[λ1/q : λ ∈ Γ], and Ae for

Ke[[x1, . . . , xn]]. Let θ1, . . . , θh be the finitely many elements that are in the p -base Λ
but not in Γ. Let M be the set of monomials in θ

1/p
1 , . . . , θ

1/p
h of degree at most p− 1 in

each element, and let N be the set of monomials in x
1/p
1 , . . . , x

1/p
d of degree at most p− 1

in each element. Let
T = MN = {µν : µ ∈M, ν ∈ N}.

We shall complete the proof by showing that T spans (AΓ)1/p as an AΓ-module. First
note that

(AΓ)1/p =
⋃
e

(Ae)1/p,

and for every e,
(Ae)1/p = K1/p

e [[x1/p
1 , . . . , x

1/p
d ]].

This is spanned over K
1/p
e [[x1, . . . , xd]] byN . Also observe that K

1/p
e is spanned over K by

products of monomials in N and monomials in the elements λ1/qp for λ ∈ Γ, and the latter
are in Ke+1. Hence, K

1/p
e is spanned byN over Ke+1, and it follows that K

1/p
e [[x1, . . . , xn]]

is spanned by N over Ke+1[[x1, . . . , xn]] = Ae+1. Hence, A
1/p
e is spanned by T = MN

over Ae+1, as claimed. �

Note that AΓ ⊆ KΓ[[x1, . . . , xn]], but these are not, in general, the same. Any single
power series in AΓ has all coefficients in a single Ke. When the chain of fields Ke is infinite,
we can choose ce ∈ Ke+1 −Ke for every for every e ≥ 0, and then

∞∑
e=0

cex
e ∈ KΓ[[x]]−K[[x]]Γ.

Complete tensor products, and an alternative view

of the gamma construction

Let (R, m, K) be a complete local ring with coefficient field K ⊆ R. When R = A =
K[[x1, . . . , xn]], we may enlarge the residue class field K of A to L by considering instead
L[[x1, . . . , xn]]. This construction can be done in a more functorial way, and one does not
need the ring to be regular.

Consider first the ring RL = L ⊗K R. This ring need not be Noetherian, and will
not be complete except in special cases, e.g., if L is finite algebraic over K. However,
RL/mRL

∼= L, so that mRL is a maximal ideal of this ring, and we may form the (mRL)-
adic completion of RL. This ring is denoted L⊗̂KR, and is called the complete tensor
product of L with R over K. Of course, we have a map R → RL → L⊗̂KR.
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Note that
L⊗̂KR = lim

←− t
L⊗K R

mt(L⊗K R)
∼= lim
←− t

(
L⊗K

R

mt

)
.

In case R = K[[x]], where x = x1, . . . , xn are formal power series indeterminates, this
yields

lim
←− t L⊗K

(K[[x]]
(x)t

) ∼= lim
←− t L⊗K

(K[x]
(x)t

) ∼= lim
←− t

L[x]
(x)t

∼= L[[x]],

which gives the result we wanted.

Now suppose that we have a local map (R, m, K) → (S, n, K) of complete local rings
such that S is module-finite over R, i.e., over the image of R: we are not assuming that
the map is injective. For every t, we have a map R/mtR → S/mtS and hence a map
L⊗K R/mtR → L⊗K S/mtS. This yields a map

(∗) lim
←− t L⊗K R/mtR → lim

←− t L⊗K S/mtS.

The map R/mS → S/mS is module-finite, which shows that S/mS has Krull dimension
0. It follows that mR is primary to n, so that the ideals mtR are cofinal with the power
of n. Therefore the inverse limit on the right in (∗) is the same as lim

←− t L⊗K R/ntR, and

we see that we have a map L⊗̂KR → L⊗̂KS.

We next note that when R → S is surjective, so is the map L⊗̂KR → L⊗̂KS. First
note that RL → SL is surjective, and that mRL maps onto nSL. Second, each element
σ of the completion of SL with respect to n can be thought of as arising from the classes
modulo successive powers of n of the partial sums of a series

s0 + s1 + · · ·+ st + · · ·

such that st ∈ ntSL = mtSL for all t ∈ N. Since mtRL maps onto ntSL, we can left this
series to

r0 + r1 + · · ·+ rt + · · ·

where for every t ∈ N, rt ∈ mtRL and maps to st. The lifted series represents an element
of the completion of RL that maps to σ.

Since every complete local ring R with coefficient field K is a homomorphic image of a
ring of the form K[[x1, . . . , xn], it follows that L⊗̂KR is a homomorphic image of a ring
of the form L[[x1, . . . , xn]], and so L⊗̂KR is a complete local ring with coefficient field L.

Next note that when R → S is a module-finite (not necessarily injective) K-homomorphism
of local rings with coefficient field K, we have a map

(L⊗̂KR)⊗R S → L⊗̂KS,

since both factors in the (ordinary) tensor product on the left map to L⊗̂KS. We claim
that this map is an isomorphism. Since, as noted above, mS is primary to n, and both
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sides are complete in the m-adic topology, it suffices to show that the map induces an
isomorphism modulo the expansions of mt for every t ∈ N. But the left hand side becomes(

L⊗K (R/mt)
)
⊗R S ∼= L⊗K (S/mtS),

which is exactly what we need.

It follows that L⊗̂KR is ffaithfully flat over R: we can represent R as a module-finite
extension of a complete regular local ring A with the same residue class field, and then
L⊗̂KR = (L⊗̂KA) ⊗A R, so that the result follows from the fact that L⊗̂A is faithfully
flat over A.

With this machinery available, we can construct RΓ, when R is complete local with
coefficient field K and Γ is cofinite in a p -base Λ for K, as

⋃
e Ke⊗̂KR. If R is regular this

agrees with our previous construction.

If A, R are complete local both with coefficient field K, and A → R is a local K-algebra
homomorphism that is module-finite (not necessarily injective), then we have

Ke⊗̂KR = (Ke⊗̂KA)⊗A R

for all e. Since tensor commutes with direct limit, it follows that

RΓ ∼= AΓ ⊗A R.

In particular, this holds when A is regular. It follows that RΓ is faithfully flat over R.

Properties preserved for small choices of Γ

Suppose that Λ is a p -basse for a field K of characteristic p > 0. We shall say that
a property holds for all sufficiently small cofinite Γ ⊆ Λ or for all Γ � Λ if there exists
Γ0 ⊆ Λ, cofinite in Λ, such that the property holds for all Γ ⊆ Γ0 that are cofinite in Λ.

We are aiming to prove the following:

Theorem. Let B be a complete local ring of prime characteristic p > 0 with cooefficient
field K, let Λ be a p -base for K, and and let R an algebra essentially of finite type over
B. For Γ cofinite in Λ, let RΓ denote BΓ ⊗B R.

(a) If R is a domain, then RΓ is a domain for all Γ � Λ.

(b) If R is reduced, then RΓ is reduced for all Γ � Λ.

(c) If P ⊆ R is prime, then PRΓ is prime for all Γ � Λ.

(d) If I ⊆ R is radical, then IRΓ is radical for all Γ � Λ.

We shall also prove similar results about the behavior of the singular locus. We first
note:
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Lemma. Let M be an R-module, let P1, . . . , Ph be submodules of M , and let S be a flat
R-module. Then the intersection of the submodules S ⊗R Pi for 1 ≤ i ≤ h is

(P1 ∩ · · · ∩ Ph)⊗R M.

Here, for P ⊆ M , we are identifying S ⊗R P with its image in S ⊗R M : of course, the
map S ⊗R P → S ⊗R M is injective.

Proof. By a straightforward indcution on h, this comes down to the intersection of two
submodules P and Q of the R-module M . We have an exact sequence

0 −→ P ∩Q −→ M
f−→ (M/P ⊕M/Q)

where the rightmost map f sends u ∈ M to (u + P )⊕ (u + Q). Since S is R-flat, applying
S ⊗R yields an exact sequence

0 −→ S ⊗R (P ∩Q) −→ S ⊗R M
1S⊗f−−−→

(
S ⊗R (M/P )

)
⊕

(
S ⊗R (M/Q)

)
.

The rightmost term may be identified with

(S ⊗R M)/(S ⊗R P )⊕ (S ⊗R M)/(S ⊗R Q),

from which it follows that the kernel of 1S ⊗ f is the intersection of S ⊗R P and S ⊗R Q.
Consequently, this intersection is given by S ⊗R (P ∩Q). �

We next want to show that part (a) of the Theorem stated above implies the other
parts.

Proof that part (a) implies the other parts of the Theorem. Part (c) follows from part (a)
applied to (R/P ), since

(R/P )Γ = BΓ ⊗B (R/P ) ∼= RΓ/PRΓ.

To prove that (a) ⇒ (d), let I = P1 ∩ · · · ∩ Pn be the primary decomposition of the
radical ideal I, where the Pi are prime. Since BΓ is flat over B, RΓ is flat over R. Hence,
IRΓ, which may be identified with RΓ ⊗R I, is the intersection of the ideals RΓ ⊗R Pi,
1 ≤ i ≤ h, by the Lemma above. By part (a), we can choose Γ cofinite in Λ such that
every RΓ ⊗R Pi is prime, and for this Γ, IRΓ is radical.

Finally, (c) is part (d) in the case where I = (0). �

It remains to prove part (a). Several preliminary results are needed. We begin by
replacing B by its image in the domain R, taking the image of K as a coefficient ring.
Thus, we may assume that B ↪→ R is injective. Then B is a module-finite extension of a
subring of the form K[[x1, . . . , xn]] with the same coefficient field, by the structure theory
of complete local rings. We still have that R is essentially of finite type over A. Moreover,
BΓ ∼= AΓ⊗AB, from which it follows that RΓ ∼= AΓ⊗RA. Therefore, in proving part (a) of
the Theorem, it suffices to consider the case where B = A = K[[x1, . . . , xn]] and A ⊆ R.
For each Γ cofinite in Λ ⊆ K, let LΓ denote the fraction field of AΓ. Let L denote the
fraction field of A. Let Ω be any field finitely generated over R that contains the fraction
field of R. To prove part (a) of the Theorem stated on p. 4, it will suffice to prove the
following:
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Theorem. Let K be a field of characteristic p with p -base Λ. Let A = K[[x1, . . . , xn]],
and let L, AΓ and LΓ be defined as above for every cofinite subset Γ of Λ. Let Ω be any
field finitely generated over L. Then for all Γ � Λ, LΓ ⊗L Ω is a field.

We postpone the proof of this result. We first want to see (just below) that it implies
part (a) of the Theorem stated on p. 4. Beyond that, we shall need to prove some auxiliary
results first.

To see why the preceding Theorem implies part (a) of the Theorem on page 4, choose
Ω containing the fraction field of R (we can choose Ω = frac (R), for example). Since
AΓ is A-flat, we have an injection AΓ ⊗A R ↪→ AΓ ⊗A Ω. Thus, it suffices to show that
this ring is a domain. Since the elements of A − {0} are already invertible in Ω, we have
that Ω ∼= frac (A) ⊗A Ω. Since AΓ is purely inseparable over A, inverting the nonzero
elements of A inverts all nonzero elements of AΓ. Moreover, the tensor product of two
frac (A)-modules over frac (A) is the same as their tensor product over A. Hence,

AΓ ⊗A Ω ∼= AΓ ⊗A frac (A)⊗A Ω ∼= frac (AΓ)⊗frac(A) Ω = LΓ ⊗L Ω.

It is now clear that Theorem above implies part (a) of the Theorem on p. 4.

In order to prove the Theorem above, we need several preliminary results. One of them
is quite easy:

Lemma. Let K be a field of characteristic p > 0 and let Λ be a p -base for K. The
family of subfields KΓ as Γ runs through the cofinite subsets of Λ is directed by ⊇, and the
intersection of these fields is K.

Proof. K∞ has as a basis 1 and all monomials

(#) λα1
1 · · · λαt

t

where t is some positive integer, λ1, . . . , λt are mutually distinct elements of Λ, and the αj

are positive rational numbers in (0, 1) whose denominators are powers of p. If u were in the
intersection and not in K it would have a unique representation as a K-linear combination
of these elements, including at least one monomial µ as above other than 1. Choose λ ∈ Λ
that occurs in the monomial µ with positive exponent. Choose Γ cofinite in Λ such that
λ /∈ Γ. Then the monomial µ is not in KΓ, which has a basis consisting of 1 and all
monomials as in (#) such that the λj occurring are in Γ. It follows that u /∈ KΓ. �

We shall also need the following result, as well as part (b) of the Theorem stated after
it.

Theorem. Let L be a field of characteristic p > 0, and let L′ be a finite purely inseparable
extension of L. Let {Li}i be a family of fields directed by ⊇ whose intersection is L. Then
there exists j such that for all i ≤ j, Li ⊗ L′ is a field.
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Theorem. Let {Ki}i be a nonempty family of subfields of an ambient field K0 such that
the family is directed by ⊇, and has intersection K. Let x1, . . . , xn be formal power series
indeterminates over these fields. Then

(a)
⋂
i

frac (Ki[x1, . . . , xn]) = frac (K[x1, . . . , xn]).

(b)
⋂
i

frac (Ki[[x1, . . . , xn]]) = frac (K[[x1, . . . , xn]]).

We note that part (a) is easy. Choose an arbitrary total ordering of the monomials in
the variables x1, . . . , xn. Let f/g be an element of the intersection on the left hand side
written as the ratio of polynomials f, g 6= 0 in K0[x1, . . . , xn], where f and g are chosen so
that GCD(f, g) = 1. Also choose g so that the greatest monomial occurring has coefficient
1. This representation is unique. If the same element is also in frac (Ki[x1, . . . , xn]), it
can be represented in the same way working over Ki, and the two representations must be
the same. Hence, all coefficients of f and of g must be in all of the Ki, i.e., in K which
shows that f/g ∈ frac (K[x1, . . . , xn]), as required.

We shall have to work a great deal harder to prove part (b).


