
Math 711: Lecture of October 19, 2007

Our next goal is to prove the two results stated at the end of the Lecture Notes of
October 17.

Proof of the theorem on preserving the field property for a finite purely inseparable exten-
sion. Recall that L′ is a finite purely inseparable extension of L, and {Li}i is a family of
fields directed by ⊇ whose intersection if L. Fix L0 in the family: we need only consider
fields in the family contained in L0. Let L0 be an algebraic closure of L0. Since L′ is
purely inseparable over L, L′ may be viewed, in a unique way, as a subfield of L0. Choose
a basis b1, . . . , bh for L′ over L. For every i we have a map

Li ⊗L L′ → Li[L′],

where the right hand side is the smallest subfield of L0 containing Li and L′. The image
of this map is evidently a field. Therefore, to prove the Theorem, we need only prove that
the map is an isomorphism whenever i is sufficiently small.

Note that the elements 1⊗ bj span the left hand side as a vector space over Li. Hence,
for every i, the left hand side is a vector space of dimension h over Li. The image of the
map is a ring containing Li and the bj . It therefore contains Lb1+· · ·+Lbn = L′. It follows
that the image of the map is Li[L′], i.e., the map is onto. The image of the map is spanned
by b1, . . . , bh as an Li-vector space. Therefore, the map is an isomorphism whenever
b1, . . . , bh are linearly indpendent over Li. Choose i so as to make the dimension of the
vector space span of b1, . . . , bh over Li as large as possible. Since this dimension must be
an integer in {0, . . . , h}, this is possible. Note that if a subset of the b1, . . . , bh has no
nonzero linear relation over Li, this remains true for all smaller fields in the family.

Call the maximum possible dimension d. By renumbering, if necessary, we may assume
that b1, . . . , bd are linearly independent over Li. We can conclude the proof of the Theorem
by showing that d = h. If not, bd+1 is linearly dependent on b1, . . . , bd, so that there is a
unique linear relation

(∗) bd+1 = c1b1 + · · ·+ cdbd,

where every cj ∈ Li. Since b1, . . . , bh are linearly independent over L, at least one cj0 /∈ L.
Choose Li′ ⊆ Li such that cj0 /∈ Li′ . Then b1, . . . , bd+1 are linearly independent over Li′ :
if there were a relation different from (∗), it would imply the dependence of b1, . . . , bd.
This contradictis that d is maximum. �

Our next objective is to prove part (b) of the Theorem stated at the top of p. 7 of the
Lecture Notes from October 17. We first introduce some terminology. An module C over
B (which in the applications here will be a B-algebra) is called injectively free over B if
for every u 6= 0 in C there is an element f ∈ HomB(C, B) such that f(u) 6= 0. This is
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equivalent to the assumption that C can be embedded in a (possibly infinite) product of
copies of B: if fB = B for every f ∈ HomB(C, B), then

C →
∏

f∈HomB(C, B)

fB

is an injection if and only if C is injectively free over B. It is also quite easy to see that C
is injectively free over B if and only if the natural map

C → HomB

(
Hom(C, B), B

)
from C to its double dual over B is injective.

Note that if C is injectively free over B then C[x1, . . . , xn] is injectively free over
B[x1, . . . , xn], and that C[[x1, . . . , xn]] in injectively free over B[[x1, . . . , xn]]: choose a
nonzero coefficient of u, choose a map C → B which is nonzero on that coefficient, and
then extend it by letting it act on coefficients.

We shall use the notation F((x1, . . . , xn)) for frac (F [[x1, . . . , xn]]) when F is a field.
Note that in case there is just one indeterminates F((x)) = F [[x]][x−1] is the ring of
Laurent power series in x with coefficients in the field F : any given series contains at
most finitely many terms in which the exponent on x is negative, but the largest negative
exponent depends on the series under consideration.

We next observe the following fact:

Lemma. If B ⊆ C are domains, F = frac (B), C is injectively free over B, and x is a
formal indeterminate over C, then(

frac (C[[x]])
)
∩ F((x)) = frac (B[[x]]).

Proof. It suffices to show ⊆: the other inclusion is obvious. Suppose that

u ∈ frac (C[[x]]) ∩ F((x))− {0}.

Then we can write

u = xh(
∞∑

j=0

βjx
j)

where h ∈ Z, the βj ∈ F , and β0 6= 0. All three fields contain the powers of x, and so
we may multiply by x−h without affecting the issue. Thus, we may assume that h = 0.
We want to show that u ∈ frac (B[[x]]). Since u ∈ frac (C[[x]]), there exists v 6= 0 and w
in C[[x]] such that w = vu ∈ C[[x]]. Let v =

∑∞
j=0 cjx

j and w =
∑∞

k=0 c′kxk, where the
cj , c′j ∈ C. Then for each m ≥ 0, we have that

(∗)
∑

j+k=m

cjβk = c′m.
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Choose j0 such that cj0 6= 0 and choose f : C → B, B-linear, such that f(cj0) 6= 0 in B.
Extend f to a map C[[x]] to B[[x]] by letting it act on coefficients. Then we may multiply
the equation (∗) by b to get ∑

j+k=m

cj(bβk) = bc′m,

and now the B-linearity of f implies that∑
j+k=m

f(cj)bβk = bf(c′m).

Now we may use the fact that b is not a zerodivisor in B to conclude that∑
j+k=m

f(cj)βk = f(c′m),

as we wanted to show. These equations show that f(v)u = f(w), and f(v) 6= 0 because
f(cj0) 6= 0. Since f(v), f(w) ∈ B[[x]], we have that u = f(w)/f(v) ∈ frac (B[[x]]), as
required. �

We can now prove part (b) of the Theorem on p. 7 of the Lecture Notes from October
17.

Proof of the theorem on intersections of fraction fields of formal power series rings. We
prove the theorem by induction on n. If n = 1 it follows from the uniqueness of coefficients
in the Laurent expansion of an element of

frac (Kj([[x]]) = Kj [[x]][x−1].

Now assume the result for n− 1 variables. For every j, we have

Kj((x1, . . . , xn)) ⊆ Kj((x1, . . . , xn−1))((xn)).

It follows from the one variable case that⋂
j

Kj((x1, . . . , xn)) ⊆
(⋂

j

Kj((x1, . . . , xn−1))
)
((xn)),

and from the induction hypothesis that⋂
j

Kj((x1, . . . , xn−1)) = K((x1, . . . , xn−1)).

Hence, ⋂
j

Kj((x1, . . . , xn)) ⊆ K((x1, . . . , xn−1))((xn)).
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Fix any element j0 in the index set. Then we have

(∗)
⋂
j

Kj((x1, . . . , xn)) ⊆ Kj0((x1, . . . , xn)) ∩ K((x1, . . . , xn−1))((xn)).

We now want to apply the Lemma from the preceding page. Let B = K[[x1, . . . , xn−1]]
and C = Kj0 [[x1, . . . , xn−1]]. Since Kj0 is K-free, it embeds in a direct sum of copies of K
and, hence, in a product of copies of K. Thus, Kj0 is injectively free over K, and it follows
that C is injectively free over B. The Lemma from p. 2 applied with x = xn then asserts
precisely that

(∗∗) Kj0((x1, . . . , xn)) ∩ K((x1, . . . , xn−1))((xn)) =

frac (C[[x]]) ∩
(
frac (B)

)
((xn)) = frac (B[[xn]]) = K((x1, . . . , xn)).

From (∗) and (∗∗), we have that⋂
i

Ki((x1, . . . , xn)) ⊆ K((x1, . . . , xn)).

The opposite inclusion is obvious. �

Corollary. Let K be a field of characteristic p > 0 and let Λ be a p -base for K. Let A be
the formal power series ring K[[x1, . . . , xn]]. Then⋂

Γ cofinite in Λ

frac (AΓ) = frac (A).

Proof. Since the completion of AΓ is KΓ[[x1, . . . , xn]], we have that

(∗)
⋂

Γ cofinite in Λ

frac (AΓ) ⊆
⋂

Γ cofinite in Λ

frac (KΓ[[x1, . . . , xn]]).

Since ⋂
Γ cofinite in Λ

KΓ = K

by the Lemma on p. 6 of the Lecture Notes from October 17 and part (b) of the Theorem
on p. 7 of the Lecture Notes from October 17 we have that the right hand term in (∗)
is frac (K[[x1, . . . , xn]]). This proves one of the inclusions needed, while the opposite
inclusion is obvious. �

We also want to observe the following:
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Lemma. Let L be any field of characteristic p > 0, and let Ω be any field finitely generated
over L. Then there exists a field Ω′ ⊇ Ω finitely generated over L such that Ω′ is a finite
separable algebraic extension of a pure transcendental extension L′(y1, . . . , yh) of a field
L′ that is a finite purely inseparable algebraic extension of L.

Proof. Let h be the transcendence degree of Ω over L. Then Ω is a finite algebraic extension
of a pure transcendental extension F = K(z1, . . . , zh), where z1, . . . , zh is a transcendence
basis for Ω over L. Suppose that Ω = F [θ1, . . . , θs] where every θj is algebraic over F .
Within the algebraic closure Ω of Ω, we may form F∞[θ1, . . . , θs], where F∞ is the perfect
closure of F in Ω. Since F∞ is perfect, every θi is separable over F∞, and so every θi

satsfies a separable equation over F∞. Let α1, . . . , αN be all the coefficients of these
equations. Then every θi is separable over F [α1, . . . , αN ], and every αj has a qj th power
in F . Hence, we can choose a single q = pe such that αq

j ∈ F = L(z1, . . . , zh) for every j.
Every αq

j can be written in the form

fj(z1, . . . , zh)
gj(z1, . . . , zh)

where fj , gj ∈ L[z1, . . . , zh] and gj 6= 0. Hence, αj can be written as a rational function
in the elements z

1/q
1 , . . . , z

1/q
h in which the coefficients are the q th roots of the coefficients

occurring in fj and gj . Let L′ be the field obtained by adjoining all the q th roots of all
coefficients of all of the fj and gj to L. Let yj = z

1/q
j , 1 ≤ j ≤ h. Then all of the αj are in

L′(y1, . . . , yh), and every θi satsifies a separable equation over L′(y1, . . . , yh). But then
we may take

Ω′ = L′(y1, . . . , yh)[θ1, . . . , θs],

which evdiently contains Ω. �

We are now read to prove the Theorem stated at the top of p. 6 of the Lecture Notes
from October 17.

Proof that frac (AΓ) ⊗A Ω is a field for Γ � Λ. We recall that, as usual, K is a field of
characteristic p > 0, and Λ is p -base for K. Let L = frac (A), and LΓ = frac (AΓ). Let
Ω be a field finitely generated over L. We want to show that for all Γ � Λ, LΓ ⊗L Ω
is a field. Since every element of LΓ has a q th power in L, it is equivalent to show that
this ring is reduced: it is purely inseparable over Ω. As in the preceding Lemma, we can
choose Ω′ ⊇ Ω such that Ω′ is separable over L′(y1, . . . , yh), where L′ is a finite purely
inseparable extension of L and y1, . . . , yh are indeterminates over L′. Since LΓ is flat over
the field L, we have that

LΓ ⊗L Ω ⊆ LΓ ⊗L Ω′,

and so it suffices to consider the problem for Ω′.

By the Corollary on p. 4 and the Theorem stated at the bottom of p. 6 of the Lecture
Notes from October 17 (which is proved on p. 1 of the notes from this lecture), for all Γ � Λ,
we have that LΓ ⊗L L′ is a field. The ring G = LΓ ⊗L L′(y1, . . . , yh) is a localization of
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the polynomial ring (LΓ ⊗L L′)[y1, . . . , yh]. Hence, it is a domain, and therefore a field.
Let F = L′(y1, . . . , yn). Then Ω′ is a finite separable algebraic extension of F , and it
suffices to show that G ⊗F Ω′ is reduced. This follows from the second Corollary on p. 4
of the Lecture Notes of September 19, but we give a separate elementary argument. We
can replace G by its algebraic closure: assume it is algebraically closed. By the theorem
on the primitive element, Ω′ ∼= F [X]/

(
h(X)

)
, where h is a separable polynomial. Then

G ⊗F Ω′ ∼= G[X]/
(
h(X)

)
,

and since h is a separable polynomial, this ring is reduced. �

We have now completed the proof of the Theorem on p. 4 of the Lecture Notes from
October 17 concerning properties we can preserve with the gamma construction for Γ
sufficiently small but cofinite in Λ.


