
Math 711: Lecture of October 24, 2007

The action of Frobenius on the injective hull of the
residue class field of a Gorenstein local ring

Let (R, m, K) be a Gorenstein local ring of prime characteristic p > 0, and let x1, . . . , xn

be a system of parameters. Let It = (xt
1, . . . , xt

n)R for all t ≥ 1, and let u ∈ R represent
a socle generator in R/I, where I = I1 = (x1, . . . , xn)R. Let y = x1 · · · xn. We have seen
that

E = lim
−→ t R/It

is an injective hull of K = R/m over R, where the map R/It → R/It+1 is induced by
multiplication by y acting on the numerators. Each of these maps is injective. Note that
the map from R/It → R/It+k in the direct limit system is induced by multiplication by
yk acting on the numerators.

Let e ∈ N be given. We want to understand the module Fe(E), and we also want
to understand the q th power map v 7→ vq from E to Fe(E). If r ∈ R, we shall write
〈r; xt

1, . . . , xt
n〉 for the image of r under the composite map R � R/It ↪→ E, where the

first map is the quotient surjection and the second map comes from our construction of E
as the direct limit of the R/It. With this notation,

〈r; xt
1, . . . , xt

n〉 = 〈ykr; xt+k
1 , . . . , xt+k

n 〉

for every k ∈ N.

Since tensor products commute with direct limit, we have that

Fe(E) = lim
−→ t Fe(R/It) = lim

−→ t R/(It)[q] = lim
−→ t R/Itq.

In the rightmost term, the map from R/Itq → R/I(t+1)q = Itq+q is induced by multipli-
cation by tq acting on the numerators. The rightmost direct limit system consists of of a
subset of the terms in the system lim

−→ t R/It, and the maps are the same. The indices that

occur are cofinal in the positive integers, and so we may idenitfy Fe(E) with E. Under
this identification, if v = 〈r; xt

1, . . . , xt
n〉, then vq = 〈rq; xqt

1 , . . . , xqt
n 〉.

We can now prove the assertions in the first paragraph of the Theorem on p. 4 of the
Lecture Notes from October 22.

Proof that 0 is tightly closed in ER(K) for a weakly F-regular Gorenstein local ring. Let
(R, m, K) be a Gorenstein local ring of prime characteristic p > 0. We want to determine
when v = 〈u; x1, . . . , xn〉 is in 0∗ in E. This happens precisely when there is an element
c ∈ R◦ such that cvq = 0 in Fe(E) for all q � 0. But cvq = 〈cuq; xq

1, . . . , xq
n〉, which is 0
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if and only if cuq ∈ Iq = I [q] for all q � 0. Thus, 0 is tightly closed in E if and only if I is
tightly closed in R. This gives a new proof of the result that in a Gorenstein local ring, if
I is tightly closed then R is weakly F-regular. But it also proves that if I is tightly closed,
every submodule of every module is tightly closed. In particular, if R is weakly F-regular
then every submodule over every module is tightly closed. �

It remains to show that when a Gorenstein local ring is F-finite, it is strongly F-regular.
We first want to discuss some issues related to splitting a copy of local ring from a module
to which it maps.

Splitting criteria and approximately Gorestein local rings

Many of the results of this section do not depend on the characteristic.

Theorem. Let (R, m, K) be a local ring and M an R-module. Let f : R → M be an
R-linear map. Suppose that R is complete or that M is finitely generated. Let E denote
an injective hull for the residue class field K = R/m of R. Then R → M splits if and only
if the map E = E ⊗R R → E ⊗R M is injective.

Proof. Evidently, if the map splits the map obtained after tensoring with E (or any other
module) is injective: it is still split. This direction does not need any hypothesis on R
or M . For the converse, first consdider the case where R is complete. Since the map
E ⊗R R → E ⊗R M is injective, if we apply HomR( , E), we get a surjective map. We
switch the order of the modules in each tensor product, and have that

HomR(R⊗E E, E) → HomR(M ⊗R E, E)

is surjective. By the adjointness of tensor and Hom, this is isomorphic to the map

HomR

(
M, HomR(E, E)

)
→ HomR(R, HomR(E, E).

By Matlis duality, we have that HomR(E, E) may be naturally identified with R, since
R is complete, and this yields that the map HomR(M, R) → HomR(R, R) induced by
composition with f : R → M is surjective. An R-linear homomorphism g : M → R that
maps to the identity in HomR(R, R) is a splitting for f .

Now supppose that R is not necessarily complete, but that M is finitely generated.
By part (b) of the Theorem on p. 3 of the Lecture Notes from Septmeber 24, completing
does not affect whether the map splits. The result now follows from the complete case,
because E is the same for R and for R̂, and E ⊗

R̂
(R̂ ⊗R ) is the same as E ⊗R by

the associativity of tensor. �

This result takes a particularly concrete form in the Gorenstein case.
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Theorem (splitting criterion for Gorenstein rings). Let (R, m, K) be a Gorenstein
local ring, and let x1, . . . , xn be a system of parameters for R. Let u ∈ R represent a socle
generator in R/I, where I = (x1, . . . , xn), let y = x1 · · · , yn, and let It = (xt

1, . . . , xt
n)R

for I ≥ 1. Let f : R → M be an R-linear map with f(1) = w ∈ M , and assume either that
R is complete or that M is finitely generated. Then the following conditions are equivalent:

(1) f : R → M is split.

(2) For every ideal J of R, R/J → M/JM is injective, where the map is induced by
applying (R/J)⊗R .

(3) For all t ≥ 1, R/It → M/ItM is injective.

(4) For all t ≥ 1, yt−1uw /∈ ItM .

Moreover, if x1, . . . , xn is a regular sequence on M , then the following two conditions
are also equivalent:

(5) R/I → R/IM is injective.

(6) uw /∈ IM .

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (5) is clear. The map R/It → M/ItM has a nonzero kernel
if and only if the socle element, which is the image of yt−1u, is killed, and this element
maps to yt−1uw. Thus, the statements in (3) and (4) are equivalent for every value of t,
and the equivalence (5) ⇔ (6) is the case t = 1. We know from the preceding Theorem
that R → M is split if and only if E → E ⊗R M is injective, and this map is the direct
limit of the maps R/It → (R/It) ⊗R M by the Theorem on p. 2. This shows that (3)
⇒ (1). Thus, (1), (2), (3), and (4) are all equivalent and imply (5) and (6), while (5)
and (6) are also equivalent. To complete the proof it suffices to show that (6) ⇒ (4)
when x1, . . . , xn is a regular sequence on M . Suppose ytuw ∈ (xt

1, . . . , xt
n)M . Then

uw ∈ (xt
1, . . . , xt

n)M :M yt = (x1, . . . , xn)M by the Theorem on p. 3 of the Lecture Notes
from October 8. �

Remark. If M = S is an R-algebra and the map R → S is the structural homomorphism,
then the condition in part (2) is that every ideal J of R is contracted from S. Similarly,
the condition in (4) (respectively, (5)) is that It (respectively, I) be contracted from S.

We define a local ring (R, m, K) to be approximately Gorenstein if there exists a de-
creasing sequence of m-primary ideals I1 ⊇ I2 ⊇ · · · ⊇ It ⊇ · · · such that every R/It

is a Gorenstein ring (i.e., the socle of every R/It is a one-dimensional K-vector space)
and the It are cofinal with the powers of m. That is, for every N > 0, It ⊆ mN for all
t � 1. Evidently, a Gorenstein local ring is approximately Gorenstein, since we may take
It = (xt

1, . . . , xt
n)R, where x1, . . . , xn is a system of parameters.

Note that the following conditions on an m-primary ideal I in a local ring (R, m, K)
are equivalent:

(1) R/I is a 0–dimensional Gorenstrein.

(2) The socle in R/I is one-dimensional as a K-vector space.
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(3) I is an irreducible ideal, i.e., I is not the intersection of two strictly larger ideals.

Note that (2) ⇒ (3) because when (2) holds, any two larger ideals, considered modul
I, must both contain the socle of R/I. Conversely, if the socle of R/I has dimension 2 or
more, it contains nonzero vector subspaces V and V ′ whose intersection is 0. The inverse
iamges of V and V ′ in R are ideals strictly larger than I whose intersection is I. �

If R itself has dimension 0, the chain It is eventually 0, and so in this case an approxi-
mately Gorenstein ring is Gorenstein. In higher dimension, it turns out to be a relatively
weak condition on R.

Theorem. Let (R, m, K) be a local ring. Then R is approximately Gorenstein if and only
if R̂ is approximately Gorenstein. Moreover, R is approximately Gorenstein provided that
at least one of the following conditions holds:

(1) R̂ is reduced.

(2) R is excellent and reduced.

(3) R has depth at least 2.

(4) R is normal.

The fact that the condition holds for R if and only it holds for R̂ is obvious. Moreover,
(2) ⇒ (1) and (4) ⇒ (3). We shall say more about why the Theorem given is true in the
sequel. For a detailed treatment see [M. Hochster, Cyclic purity versus purity in excellent
Noetherian rings, Trans. Amer. Math. Soc. 231 (1977) 463–488.], which gives the following
precise characterization: a local ring of dimension at least one is approximately Gorenstein
if and only if R has positive depth and there is no associated prime P of the completion
R̂ such that dim (R̂/P ) = 1 and (R̂/P )⊕ (R̂/P ) embeds in R̂.

Before studying characterizations of the property of being approximately Gorenstein
further, we want to note the folliwing.

Propositon. Let (R, m, K) be an approximately Gorenstein local ring and let {It}t be
a descending chain of m-primary irreducible ideals cofinal with the powers of m. Then
an injective hull E = ER(K) is an increasing union

⋃
t AnnIt

E, and AnnEIt
∼= R/It, so

that E is the direct limit of a system in which the modules are the R/It and the maps are
injective.

Proof. Since every element of E is killed by a power of m, every element of E is in AnnEIt

for some t. We know that AnnEIt is an injective hull for K over R/It. Since R/It is
0-dimensional Gorenstein, this ring itself is an injective hull over itself for K. �

This yields:

Theorem. Let (R, m, K) be an approximately Gorenstein local ring and let {It}t be a
descending chain of m-primary irreducible ideals cofinal with the powers of m. Let ut ∈ R
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represent a socle generator in R/It. Let f : R → M be an R-linear map with f(1) = w ∈
M . Then the following conditions are equivalent:

(1) f : R → M splits over R.

(2) For all t ≥ 1, R/It → M/ItM is injective.

(3) For all t ≥ 1, utw /∈ ItM .

Proof. Since E = ER(K) is the direct limit of the R/It, we may argue exactly as in the
proof of the Theorem at the top of p 3. �

|

When is a ring approximately Gorenstein?

To prove a sufficient condition for a local ring to be approximately Gorenstein, we want
to introduce a corresponding notion for modules. Let (R,m, K) be local and let M be
a finitely generated R-module. We shall say that N ⊆ M is cofinite if M/N is killed by
power of m. (The reader should be aware that the term “cofinite module” is used by some
authors for a module with DCC.) The following two conditions on a cofinite submodule
are then equivalent, just as in the remark at the bottom of p. 3 and top of p. 4.

(1) The socle in M/N is one-dimensional as K-vector space.

(2) N is in irreducible submodule of M , i.e., it is not the intersection of two strictly larger
submodules of M .

We shall say that M has small cofinite irreducibles if for every positive integer t there
is an irreducible cofinite submodule N of M such that N ⊆ mtM . Thus, a local ring R is
approximately Gorenstein if and only if R itself has small cofinite irreducibles.

Note the the question of whether (R, m, K) is approximately Gorenstein or whether
M has small cofinite irreducibles is unaffected by completion: there is a bijection between
the cofinite submodules N of M and those of M̂ given by letting N correspond to N̂ . The
point is that if N ′ is cofinite in M̂ , M̂/N ′ is a finitely generated R-module (in fact, it has
finite length) and M → M̂/N ′ is surjective, since M/mtM ∼= M̂/mtM̂ for all t, so that
N ′ is the completion of N ′ ∩M . Moreover, when N and N ′ correspond, M/N ∼= M̂/N ′

since M/N is already a complete R-module. In particular, irreducibility is preserved by
the correspondence.

We have already observed that Gorenstein local rings are approximately Gorenstein.
We next note:



6

Proposition. Let (R, m, K) be a local ring. If M is a finitely generated R-module that
has small cofinite irreducibles, then every nonzero submodule of M has small cofinite irre-
ducibles.

Proof. Suppose that N ⊆ M is nonzero. By the Artin-Rees lemma there is a constant
c ∈ N such that mtM ∩N ⊆ mt−cN for all t ≥ c. If Mt+c is cofinite in M and such that
Mt+c ⊆ mt+cM and M/Mt+c has a one-dimensional socle, then Nt = Mt+c ∩N is cofinite
in N , contained in mtN (so that N/Nt is nonzero) and has a one-dimensional socle, since
N/Nt embeds into M/Mt+c. �

Before giving the main result of this section, we note the following fact, due to Chevalley,
that will be needed in the argument.

Theorem (Chevalley’s Lemma). Let M be a finitely generated module over a complete
local ring (R,m, K) and let {Mt}t denote a nonincreasing sequence of submodules. Then⋂

t Mt = 0 if and only if for every integer N > 0 there exists t such that Mt ⊆ mNM .

Proof. The “if” part is clear. Suppose that the intersection is 0. Let Vt,N denote the image
of Mt in M/mNM . Then the Vt,N do not increase as t increases, and so are stable for
all large t. Call the stable image VN . Then the maps M/mN+1M → M/mNM induce
surjections VN+1 � VN . The inverse limit W of the VN may be identified with a submodule
of the inverse limit of the M/mNM , i.e. with a submodule of M , and any element of W
is in ⋂

t,N

(Mt + mNM) =
⋂
t

(⋂
N

(Mt + mNM)
)

=
⋂
t

Mt.

If any VN0 is not zero, then since the maps VN+1 � VN are surjective for all N , the inverse
limit W of the VN is not zero. But VN is zero if and only if Mt ⊆ mNM for all t � 0. �

The condition given in the Theorem immediately below for when a finitely generated
module of positive dimension over a complete local ring has small cofinite irreducibles is
necessary as well as sufficient: we leave the necessity as an exercise for the reader. The
proof of the equivalence is given in [M. Hochster, Cyclic purity versus purity in excellent
Noetherian rings, Trans. Amer. Math. Soc. 231 (1977) 463–488.]

Theorem. Suppose that M is a finitely generated module over a complete local ring
(R,m, K) such that dim M ≥ 1. Suppose that m is not an associated prime of M and
that if P is an associated prime of M such that dim R/P = 1 then R/P ⊕ R/P is not
embeddable in M . Then M has small cofinite irreducibles.

Proof. We use induction on dim M . First suppose that dim M = 1. We represent the ring
R as a homomorphic image of a complete regular local ring S of dimension d. Because
R is catenary and dim M = 1, the annihilator of M must have height d − 1. Choose
part of a system of parameters x1, . . . , xd−1 in the annihilator. Now view M as a module
over R′ = S/(x1, . . . , xd−1). We change notation and simply write R for this ring. Then
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R is a one-dimensional complete local ring, and R is Gorenstein. It follows that R has
small cofinite irreducibles, and we can complete the argument, by the Proposition on the
preceding page, by showing that M can be embedded in R. Note that for any minimal
prime p in R, Rp is a (zero-dimensional) Gorenstein ring. (In fact, any localization of a
Gorenstein local ring at a prime is again Gorenstein: but we have not proved this here.
However, in this case, we may view Rp as the quotient of the regular ring Sq, where q is
the inverse image of p in S, by an ideal generated by a system of parameters for Sq, and
the result follows.)

To prove that we can embed M in R, it suffices to show that if W = R◦, then W−1M
can be embedded in W−1R. One then has M ⊆ W−1M ⊆ W−1R, and the values of the
injective map M ↪→ W−1R on a finite set of generators of M involve only finitely many
elements of W . Hence, one can multiply by a single element of W , and so arrange that
M ↪→ W−1R actually has values in R.

But W−1R is a finite product of local rings Rp as p runs through the minimal primes
of R, and so it suffices to show that if p is a minimal prime of R in the support of M , then
Mp embeds in Rp. Now, Mp has only pRp as an associated prime, and since only one copy
of R/p can be embedded in M , only one copy of κp = Rp/pRp can be embedded in Mp.
Thus, Mp is an essential extension of a copy of κp. Thus, it embeds in the injective hull of
the residue field of Rp, which, since Rp is a zero-dimensional Gorenstein ring, is the ring
Rp itself.

Now suppose that dim M = d > 1 and that the result holds for modules of smaller
dimension. Choose a maximal family of prime cyclic submodules of M , say Ru1, . . . , Rus,
such that AnnRui is a prime Qi for every i and the sum N = Ru1⊕· · ·⊕Rus is direct. Then
M is an essential extension of N : if v ∈ M , it has a nonzero multiple rv that generates
a prime cyclic module, and if this prime cyclic module does not meet N we can enlarge
the family. Since M is an essential extension of N , M embeds in the injective hull of N ,
which we may identify with the direct sum of the Ei = ER(Rui). Note that a prime ideal
of R may occur more than once among the Qi, but not if dim (R/Qi) = 1, and R/m does
not occur. Take a finite set of generators of M . The image of each generator only involves
finitely many elements from a given Ei. Let Mi be the submodule of Ei generated by
these elements. Then Mi ⊆ Ei, so that Ass (Mi) = Qi, and Mi is an essential extension of
R/Qi. What is more M ⊆ ⊕s

i=1Mi.

By the Propositiion at the bottom of p. 5, it suffices to show that this direct sum,
which satisfies the same hypotheses as M , has small cofinite irreducibles. Thus, by we
need only consider the case where M =

⊕s
i=1 Mi as described. We assume that, for i ≤ h,

Ass Mi = {Qi} with dim (R/Qi) = 1 and with the Qi mutually distinct, while for i > h,
dim (R/Qi) > 1, and these Qi need not all be distinct. Now choose primes P1, . . . , Ps

such that, for every i, dim R/Pi = 1, such that P1, . . . , Ps are all distinct, and such that
for all i, Pi ⊇ Qi. We can do this: for 1 ≤ i ≤ h, the choice Pi = Qi is forced. For i > h
we can solve the problem recursively: simply pick Pi to be any prime different from the
others alreaday selected and such that Pi ⊇ Qi and dim R/Pi = 1. (We are using the fact
that a local domain R/Q of dimension two or more contains infinitely many primes P such
that dim R/P = 1. To see this, kill a prime to obtain a ring of dimension exactly two. We
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then need to see that there are infinitely many height one primes. But if there are only
finitely many, their union cannot be the entire maximal ideal, and a minimal prime of an
element of the maximal ideal not in their union will be another height one prime.)

Fix a positive integer t. We shall construct a submodule N of M contained in mtM
and such that M/N is cofinite with a one-dimensional socle. We shall do this by proving
that for every i there is a submodule Ni of Mi with the following properties:

(1) Ni ⊆ mtMi

(2) Ass Mi/Ni = {Pi} and Mi/Ni is an essential extension of R/Pi.

It then follows that M = M/(
⊕

i Ni) is a one-dimensional module with small cofinite
irreducibles, and so we can choose N ⊆ mtM such that M/N has finite length and a
one-dimensional socle. We can take N to be the inverse image of N in M . This shows
that the problem reduces to the construction of the Ni with the two properties listed.

If i ≤ h we simply take Ni = 0. Now suppose that i > h. To simplify notation we write
M , Q and P for Mi, Qi and Pi, respectively. Let Dk ⊆ M be the contraction of P kMP to
M ⊆ MP . Since

⋂
k P kMP = 0 (thinking over RP ), we have that

⋂
k Dk = 0. Since M is

complete, by Chevalley’s Lemma, we can choose k so large that Dk ⊆ mtM .

We shall show that the completion of MP over the completion of RP satisfies the hy-
pothesis of the Theorem. But then, since MP and its completion have dimension strictly
smaller than M , it follows from the induction hypothesis that, working over RP , MP has
small cofinite irreducibles. Consequently, we may choose a cofinite irreducible N ′ ⊆ P kMP ,
and the contraction of N ′ to M will have all of the properties that we want, since it will
be contained in Dk ⊆ mtM .

Thus, we need only show that the completion of MP over the completion of RP satisfies
the hypothesis of the Theorem. Since Ass (M) = {Q}, we have that Ass (MP ) = {QRP },
and so PRP is not an associated prime of MP . Thus, the depth of MP is at least one,
and this is preserved when we complete. By Problem 2(b) of Problem Set #3, Ass (M̂P )
is the same as the set of associated primes of the completion of RP /QRP , which we may
identify with R̂P /QR̂P . Since this ring is reduced, the primes q that occur are minimal
primes of QR̂P . For such a prime q,

Ann
M̂P

q ⊆ Ann
M̂P

Q ∼= R̂P ⊗RP
AnnMP

QRP ,

since R̂P is flat over RP . From the hypothesis, we know that AnnMP
QRP has torsion free

rank one over RP /QRP , and so it embeds in RP /QRP . It follows that Ann
M̂P

q embeds in

R̂P /QR̂P . Since this ring is reduced with q as one of the minimal primes, its total quotient
ring is a product of fields. Hence, it is not possible to embed the direct sum of two copies
of (R̂P /QR̂P )/q in R̂P /QR̂P . This completes the proof of the Theorem. �

|


