
Math 711: Lecture of October 26, 2007

It still remains to prove the final assertion of the Theorem from p. 3 of the Lecture Notes
of October 22: that if R is F-finite and weakly F-regular, then R is strongly F-regular.
Before doing so, we want to note some consequences of the theory of test elements, and
also of the theory of approximately Gorenstein rings.

Theorem. Let (R, m, K) be a local ring of prime characteristic p > 0.

(a) If R has a completely stable test element, then R̂ is weakly F-regular if and only if R
is weakly F-regular.

(b) If R has a completely stable big test element, then R̂ has the property that every
submodule of every module is tightly closed if and only if R does.

Proof. We already know that if a faithfully flat extension has the relevant property, then
R does. For the converse, it suffices to check that 0 is tightly closed in every finite length
module over R̂ (respectively, in the injective hull E of the residue class field over R̂, which
is the same as the injective hull of the residue class field over R). A finite length R̂-module
is the same as a finite length R-module. We can use the completely stable (big, for part
(b)) test element c ∈ R in both tests, which are then bound to have the same outcome for
each element of the modules. For a module M supported only at m,

Fe

R̂
(M) ∼= Fe

R̂
(R̂⊗R M) ∼= R̂⊗R Fe

R(M) ∼= Fe
R(M). �

Proposition. Let R have a test element (respectively, a big test element) c and let N ⊆ M
be finitely generated (respectively, arbitrary) R-modules. Let d ∈ R◦ and suppose u ∈ M
is such that cuq ∈ N [q] for infinitely many values of q. Then u ∈ N∗

M .

Proof. Suppose that duq ∈ N [q] and that pe1 = q1 < q, so that q = q1q2. Then (duq1)q2 =
dq2−1duq ∈ (N [q1])[q2] = N [q], and it follows that for all q3, (duq1))q2q3 ∈ (N [q1])[q2q3].
Hence, duq1 ∈ (N [q1])∗ in Fe1(M) whenever q1 ≤ q. Hence, if duq ∈ N [q] for arbitrarily
large values of q, then duq ∈ (N [q])∗ in Fe(M) for all q and it follows that cduq ∈ N [q] for
all q, so that u ∈ N∗

M . �

Theorem. Let R be a Noetherian ring of prime characteristic p > 0.

(a) If every ideal of R is tightly closed, then R is weakly F-regular.

(b) If R is local and {It}t is a descending sequence of irreducible m-primary ideals cofinal
with the powers of m, then R is weakly F-regular if and only if It is tightly closed for
all t ≥ 1.
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Proof. (a) We already know that every ideal is tightly closed if and only if every ideal
primary to a maximal ideal is tightly closed, and this is not affected by localization at
a maximal ideal. Therefore, we may reduce to the case where R is local. The condition
that every ideal is tightly closed implies that R is normal and, hence, approximately
Gorenstein. Therefore, it suffices to prove (b). For (b), we already know that R is weakly
F-regular if and only if 0 is tightly closed in every finitely generated R-module that is an
essential extension of K. Such a module is killed by It for some t � 0, and so embeds in
ER/It

(K) ∼= R/It for some t. Since It is tightly closed in R, 0 is tightly closed in R/It,
and the result follows. �

We next want to establish a result that will enable us to prove the final assertion of the
Theorem from p. 3 of the Lecture Notes of October 22.

Theorem. Let (R, m, K) be a complete local ring of prime characteristic p > 0. If R is
reduced and c ∈ R◦, let θq,c : R → R1/q denote the R-linear map such that 1 7→ c1/q. Then
the following conditions are equivalent:

(1) Every submodule of every module is tightly closed.

(2) 0 is tightly closed in the injective hull E = ER(K) of the residue class field K = R/m
of R.

(3) R is reduced, and for every c ∈ R◦, there exists q such that the θq,c splits.

(4) R is reduced, and for some c that has a power which is a big test element for R, there
exists q such that θq,c splits.

(5) R is reduced, and for some c such that Rc is regular, there exists q such that θq,c splits.

Proof. Note that all of the conditions imply that R is reduced.

We already know that conditions (1) and (2) are equivalent. Let u denote a socle
generator in E. Then we have an injection K → E that sends 1 7→ u, and we know that
0 is tightly closed in E if and only if u is in the tight closure of 0 in E. This is the case
if and only if for some c ∈ R◦ (respectively, for a single big test element c ∈ R◦), cuq = 0
in Fe(E) for all q � 0. We may view Fe : R → R as R ⊆ R1/q instead. Then Fe(E) is
identified with R1/q ⊗R E, and R acts via the isomorphism R ∼= R1/q such that r 7→ r1/q.
Then uq corresponds to 1⊗ u, and cuq corresponds to c1/q ⊗ u.

Then u ∈ 0∗E if and only if for every c ∈ R◦ (respectively, for a single big test element
c ∈ R◦), the map K → R1/q ⊗R E that sends 1 7→ c1/q ⊗u is 0 for all q � 0. We may now
apply the functor HomR( , E) to obtain a dual condition. Namely, u ∈ 0∗E if and only if
for every c ∈ R0 (respectively, for a single big test element c ∈ R◦), the map

HomR(R1/q ⊗R E, E) → HomR(K, E)

is 0 for all q � 0. The map is induced by composition with K → R1/q ⊗R E. By the
adjointness of tensor and Hom, we may identify this map with

HomR

(
R1/q, HomR(E, E)

)
→ HomR(K, E).
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This map sends f to the composition of K → R1/q ⊗R E with the map such that s⊗ v 7→
f(s)(v). Since HomR(E, E) ∼= R by Matlis duality and HomR(K, E) ∼= K, we obtain the
map

HomR(R1/q, R) → K

that sends f to the image of f(c1/q) in R/m.

Thus, u ∈ 0∗E if and only if for every c ∈ R0 (respectively, for a single big test element
c ∈ R◦), every f : R1/q → R sends c1/q into m for every q � 0. This is equivalent to the
statement that θq,c : R → R1/q sending 1 → c1/q does not split for every q � 0, since if
f(c1/q) = a is a unit of R, a−1f is a splitting.

Note that if R → R1/q sending 1 7→ c1/q splits, then R → R1/q splits as well: the
argument in the Lecture Notes from September 21 (see pages 4 and 5) applies without any
modification whatsoever. Moreover, the second Proposition on p. 5 of those notes shows
that if one has the splitting for a given q, one also has it for every larger q.

We have now shown that u ∈ 0∗E if and only if for every c ∈ R0 (respectively, for a single
big test element c ∈ R◦), θq,c : R → R1/q sending 1 → c1/q does not split for every q.

Hence, 0 is tightly closed in E if and only if for every c ∈ R0 (respectively, for a single
big test element c ∈ R◦) the map θq,c splits for some q.

We have now shown that conditions (1), (2), and (3) are equivalent, and that (4) is
equivalent as well provided that c is a big test element.

Now suppose that we only know that c has a power that is a big test element. Then
this is also true for any larger power, and so we can choose q1 = pe1 such that cq1 is a test
element. If the equivalent conditions (1) , (2), and (3) hold, then we also know that the
map R → R1/qq1 sending 1 7→ (cq1)1/qq1 = c1/q splits for all q � 0, and we may restrict
this splitting to R1/q. Thus, (1) through (4) are equivalent.

Finally, (5) is equivalent as well, because we know that if c ∈ R◦ is such that Rc is
regular, then c has a power that is a big test element. �

Remark. It is not really necessary to assume that R is reduced in the last three conditons.
We can work with R(e) instead of R1/q, where R(e) denotes R viewed as an R-algebra
via the structural homomorphism Fe. We may then define θq,c to be the R-linear map
R → R(e) such that 1 7→ c. The fact that this map is split for some some c ∈ R◦ and some
q implies that R is reduced: if r is a nonzero nilpotent, we can replace it by a power which
is nonzero but whose square is 0. But then the image of r is rqc = 0, and the map is not
even injective, a contradiction. Once we know that R is reduced, we can identify R(e) with
R1/q and c is identified with c1/q.

We want to apply the preceding Theorem to the F-finite case. We first observe:

Lemma. Let (R, m, K) be an F-finite reduce local ring. Then R̂1/q ∼= R̂1/q ∼= R̂⊗R R1/q

for all q = pe.
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Proof. R1/q is a local ring module-finite over R. Hence, the maximal ideal of R expands to
an ideal primary to the maximal ideal of R1/q, and it follows that R̂1/q is the mR1/q-adic
completion of R1/q. Thus, we have an isomorphism α : R̂1/q ∼= R̂ ⊗R R1/q. Since R is
reduced, so is R1/q. Since R is F-finite, so is R1/q, and R1/q is consequently excellent.
Hence, the completion R̂1/q is reduced. If we use the identification α to write a typical
element of u ∈ R̂1/q as a sum of terms of the form s ⊗ r1/q, where s ∈ R̂ and r ∈ R,
we see that uq ∈ R̂. This shows that we have R̂1/q ⊆ R̂1/q. On the other hand, if
r0, r1, . . . , rk, . . . is a Cauchy sequence in R with limit s, then r

1/q
0 , r

1/q
1 , · · · , r

1/q
k , · · ·

is a Cauchy sequence in R1/q, and its limit is s1/q. This shows that R̂1/q ⊆ R̂1/q. �

From the preceding Theorem we then have:

Corollary. If R is F-finite, then R is strongly F-regular if and only if every submodule of
every module is tightly closed.

Proof. We need only show that if every submodule of every module is tightly closed, then
R is strongly F-regular. We know that both conditions are local on the maximal ideals of
R (cf. problem 6. of Problem Set #3). Thus, we may assume that (R, m, K) is local. We
know that R has a completely stable big test element c. By part (b) of the Theorem on
the first page, R̂ has the property that every submodule of every module is tightly closed:
in particular, 0 is tightly closed in E = E

R̂
(K) ∼= ER(K). By the equivalence of (2) and

(4) in the preceding Theorem, we have that the R̂-linear map θ̂ : R̂ → R̂1/q that sends
1 7→ c1/q splits for some q. This map arises from the R-linear map θ : R → R1/q that
sends 1 7→ c1/q by applying R̂⊗R . Since R̂ is faithfully flat over R, the map θ is split if
and only if θ̂ is split, and so θ is split as well. �

Finally, we can prove the final statement in the Theorem on p. 4 of the Lecture Notes
from October 22.

Corollary. If R is Gorenstein and F-finite, then R is weakly F-regular if and only if R is
strongly F-regular.

Proof. The issue is local on the maximal ideals of R. We have already shown that in
the local Gorenstein case, (R, m, K) is weakly F-regular if and only if 0 is tightly closed
in ER(K). By the Corollary just above, this implies that R is strongly F-regular in the
F-finite case. �

This justifies extending the notion of strongly F-regular ring as follows: the definition
agrees with the one given earlier if the ring is F-finite.

Definition. Let R be a Noetherian ring of prime characteristic p > 0. We define R to be
strongly F-regular if every submodule of every module (whether finitely generated or not)
is tightly closed.


