Math 711: Lecture of October 26, 2007

It still remains to prove the final assertion of the Theorem from p. 3 of the Lecture Notes
of October 22: that if R is F-finite and weakly F-regular, then R is strongly F-regular.
Before doing so, we want to note some consequences of the theory of test elements, and
also of the theory of approximately Gorenstein rings.

Theorem. Let (R, m, K) be a local ring of prime characteristic p > 0.

(a) If R has a completely stable test element, then R is weakly F-regular if and only if R
15 weakly F-regular.

(b) If R has a completely stable big test element, then R has the property that every
submodule of every module is tightly closed if and only if R does.

Proof. We already know that if a faithfully flat extension has the relevant property, then
R does. For the converse, it suffices to check that 0 is tightly closed in every ﬁmte length
module over R (respectively, in the injective hull E of the residue class field over R which
is the same as the injective hull of the residue class field over R). A finite length R-module
is the same as a finite length R-module. We can use the completely stable (big, for part
(b)) test element ¢ € R in both tests, which are then bound to have the same outcome for
each element of the modules. For a module M supported only at m,

F&(M) = F&(R@r M) = Rog FR(M) = FR(M). O

Proposition. Let R have a test element (respectively, a big test element) ¢ and let N C M
be finitely generated (respectively, arbitrary) R-modules. Let d € R° and suppose u € M
is such that cu? € N9 for infinitely many values of q. Then u € Ny,

Proof. Suppose that du? € N9 and that p® = ¢ < ¢, so that ¢ = q1¢2. Then (du?)? =
d®=tdu? ¢ (Nlahlel = Nld | and it follows that for all g3, (dud))®% ¢ (Nlal)le=as],
Hence, du® € (Nlah* in Fe1 (M) whenever ¢; < q. Hence, if du? € N4 for arbitrarily
large values of ¢, then du? € (N9)* in F¢(M) for all ¢ and it follows that cdu? € N9 for
all ¢, so that w € Ny,. O

Theorem. Let R be a Noetherian ring of prime characteristic p > 0.

(a) If every ideal of R is tightly closed, then R is weakly F-regular.

(b) If R is local and {1}, is a descending sequence of irreducible m-primary ideals cofinal
with the powers of m, then R is weakly F-regular if and only if I} s tightly closed for
allt > 1.
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Proof. (a) We already know that every ideal is tightly closed if and only if every ideal
primary to a maximal ideal is tightly closed, and this is not affected by localization at
a maximal ideal. Therefore, we may reduce to the case where R is local. The condition
that every ideal is tightly closed implies that R is normal and, hence, approximately
Gorenstein. Therefore, it suffices to prove (b). For (b), we already know that R is weakly
F-regular if and only if 0 is tightly closed in every finitely generated R-module that is an
essential extension of K. Such a module is killed by I; for some ¢ > 0, and so embeds in
Er/r,(K) = R/I; for some t. Since I is tightly closed in R, 0 is tightly closed in R/,
and the result follows. [J

We next want to establish a result that will enable us to prove the final assertion of the
Theorem from p. 3 of the Lecture Notes of October 22.

Theorem. Let (R, m, K) be a complete local ring of prime characteristic p > 0. If R is
reduced and c € R°, let 0. : R — RY? denote the R-linear map such that 1 +— c'/9. Then
the following conditions are equivalent:

(1) Every submodule of every module is tightly closed.

(2) 0 1is tightly closed in the injective hull E = Er(K) of the residue class field K = R/m
of R.

(3) R is reduced, and for every c € R°, there exists ¢ such that the 0, . splits.

(4) R is reduced, and for some c that has a power which is a big test element for R, there
exists q such that 0, . splits.

(5) R is reduced, and for some c such that R, is reqular, there exists q such that 8, . splits.

Proof. Note that all of the conditions imply that R is reduced.

We already know that conditions (1) and (2) are equivalent. Let u denote a socle
generator in . Then we have an injection K — E that sends 1 — wu, and we know that
0 is tightly closed in E if and only if w is in the tight closure of 0 in E. This is the case
if and only if for some ¢ € R° (respectively, for a single big test element ¢ € R°), cu? =0
in F¢(E) for all ¢ > 0. We may view F¢ : R — R as R C R'9 instead. Then F¢(E) is
identified with R/? @ p E, and R acts via the isomorphism R 2 R'/? such that r — /9.
Then u? corresponds to 1 ® u, and cud corresponds to ¢!/¢ @ w.

Then u € 0% if and only if for every ¢ € R° (respectively, for a single big test element
¢ € R°), the map K — RY9®p E that sends 1 — ¢'/?®@u is 0 for all ¢ > 0. We may now
apply the functor Homp(_, E) to obtain a dual condition. Namely, u € 0}, if and only if
for every ¢ € R° (respectively, for a single big test element ¢ € R°), the map

Homp(RY? @R E, E) — Homp(K, E)

is 0 for all ¢ > 0. The map is induced by composition with K — RY? @pr E. By the
adjointness of tensor and Hom, we may identify this map with

Homp (R'?, Homg(E, E)) — Homg(K, E).
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This map sends f to the composition of K — R ®p E with the map such that s ® v —
f(s)(v). Since Hompg(E, E) = R by Matlis duality and Hompg(K, F) = K, we obtain the
map

Hompg(RY?, R) — K
that sends f to the image of f(c'/9) in R/m.

Thus, u € 0% if and only if for every ¢ € RY (respectively, for a single big test element
¢ € R°), every f: R4 — R sends ¢'/? into m for every ¢ > 0. This is equivalent to the
statement that 0,.: R — R4 sending 1 — ¢'/% does not split for every ¢ > 0, since if
f(c'/) = a is a unit of R, a1 f is a splitting.

Note that if R — R sending 1 — c¢!/9 splits, then R — R9 splits as well: the
argument in the Lecture Notes from September 21 (see pages 4 and 5) applies without any
modification whatsoever. Moreover, the second Proposition on p. 5 of those notes shows
that if one has the splitting for a given ¢, one also has it for every larger q.

We have now shown that u € 0% if and only if for every ¢ € R? (respectively, for a single
big test element ¢ € R°), 0, : R — R'/% sending 1 — ¢'/? does not split for every q.

Hence, 0 is tightly closed in E if and only if for every ¢ € R° (respectively, for a single
big test element ¢ € R°) the map 0, . splits for some q.

We have now shown that conditions (1), (2), and (3) are equivalent, and that (4) is
equivalent as well provided that c is a big test element.

Now suppose that we only know that ¢ has a power that is a big test element. Then
this is also true for any larger power, and so we can choose ¢; = p°! such that c?' is a test
element. If the equivalent conditions (1) , (2), and (3) hold, then we also know that the
map R — RY99" sending 1 — (cql)l/qq1 = c!/4 splits for all ¢ > 0, and we may restrict
this splitting to R'/9. Thus, (1) through (4) are equivalent.

Finally, (5) is equivalent as well, because we know that if ¢ € R° is such that R, is
regular, then ¢ has a power that is a big test element. [

Remark. It is not really necessary to assume that R is reduced in the last three conditons.
We can work with R(®) instead of R4, where R(®) denotes R viewed as an R-algebra
via the structural homomorphism F¢. We may then define 6, . to be the R-linear map
R — R'®) such that 1 — c. The fact that this map is split for some some ¢ € R° and some
q implies that R is reduced: if r is a nonzero nilpotent, we can replace it by a power which
is nonzero but whose square is 0. But then the image of r is 7%¢ = 0, and the map is not
even injective, a contradiction. Once we know that R is reduced, we can identify R(¢) with
R and ¢ is identified with ¢'/4.

We want to apply the preceding Theorem to the F-finite case. We first observe:

Lemma. Let (R, m, K) be an F-finite reduce local ring. Then RYa = Ri/a R&r RY1
for all g = p°.
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Proof. R4 is a local ring module-finite over R. Hence, the maximal ideal of R expands to

—

an ideal primary to the maximal ideal of R4, and it follows that R'/4 is the mR/?-adic

—

completion of R'/4. Thus, we have an isomorphism « : R1/4 = R ®@pr RY4. Since R is
reduced, so is R'/?. Since R is F-finite, so is R, and RY? is consequently excellent.

—

Hence, the completion R/9 is reduced. If we use the identification o to write a typical

—

element of u € R/9 as a sum of terms of the form s ® r/9, where s € Rand r € R,

we see that u¢ € R. This shows that we have R1/4 C RY4. On the other hand, if

. ) c e 1 1 1
7o, T1, -+, Tk, - .. is a Cauchy sequence in R with limit s, then ro/q, rl/q, ceey rk/q,

is a Cauchy sequence in RY/9, and its limit is s!/9. This shows that RY/9 C R/4. O
From the preceding Theorem we then have:

Corollary. If R is F-finite, then R is strongly F-reqular if and only if every submodule of
every module is tightly closed.

Proof. We need only show that if every submodule of every module is tightly closed, then
R is strongly F-regular. We know that both conditions are local on the maximal ideals of
R (cf. problem 6. of Problem Set #3). Thus, we may assume that (R, m, K) is local. We
know that R has a completely stable big test element c¢. By part (b) of the Theorem on
the first page, R has the property that every submodule of every module is tightly closed:
in particular, 0 is tightly closed in £ = E5(K) = Eg(K). By the equivalence of (2) and

(4) in the preceding Theorem, we have that the R-linear map 0:R — m that sends
1 — '/ gplits for some ¢. This map arises from the R-linear map 6 : R — R4 that
sends 1 — ¢!/9 by applying R® R _ . Since Ris faithfully flat over R, the map 6 is split if
and only if 0 is split, and so @ is split as well. [J

Finally, we can prove the final statement in the Theorem on p. 4 of the Lecture Notes
from October 22.

Corollary. If R is Gorenstein and F-finite, then R is weakly F-reqular if and only if R is
strongly F-reqular.

Proof. The issue is local on the maximal ideals of R. We have already shown that in
the local Gorenstein case, (R, m, K) is weakly F-regular if and only if 0 is tightly closed
in Fr(K). By the Corollary just above, this implies that R is strongly F-regular in the
F-finite case. [

This justifies extending the notion of strongly F-regular ring as follows: the definition
agrees with the one given earlier if the ring is F-finite.

Definition. Let R be a Noetherian ring of prime characteristic p > 0. We define R to be
strongly F-regular if every submodule of every module (whether finitely generated or not)
is tightly closed.



