
Math 711: Lecture of October 29, 2007

We want to study flat local homomorphism (R, m, K) → (S, n, L) to obtain informa-
tion about S from corresponding information about the base R and the closed fiber S/mS.
We recall one fact of this type from p. 3 of the Lecture Notes from September 19:

Proposition. Let (R, m, K) → (S, n, L) be a flat local homomorphism of local rings.
Then

(a) dim (S) = dim (R) + dim (S/mS), the sum of the dimensions of the base and of the
closed fiber.

(b) If R is regular and S/mS is regular, then S is regular.

Part (a) is generalized in the Theorem given below. We first want to note the following.

Lemma. Let R a ring, and S a flat R-algebra.

(a) If M is a finitely generated R-module, then

AnnS(S ⊗R M) = (AnnRM)S ∼= S ⊗ (AnnRM).

Hence, if N,N ′ ⊆ W are R-modules with N ′ finitely generated, S⊗R N :S S⊗R N ′ =
(N :R N ′)S.

(b) If I is a finitely generated ideal of R, M is any R-module, and N is a flat R-module,
then then

AnnM⊗RNI ∼= (AnnMI)⊗R N.

Proof. (a) Let u1, . . . , un be generators of M . Then there is a map α : R → Mn that
sends r 7→ (ru1, . . . , run). The kernel of this map is evidently AnnRM , so that

0 −→ AnnRM −→ R
α−→ Mn

is exact. Since S is flat, we may apply S ⊗R to get an exact sequence:

(∗) 0 −→ S ⊗R (AnnRM) −→ S
β−→ (S ⊗R M)n

where the map β = 1S ⊗α sends s ∈ S to s(1⊗u1, . . . , 1⊗un). Since the elements 1⊗uj

generate S⊗R M , the kernel of β is AnnS(S⊗R M), while the kernel is also S⊗R (AnnRM)
by the exactness of the sequence (∗). For the final statement, one may simply observe that
N :R N ′ = AnnR(N + N ′)/N .

(b) Let f1, . . . , fn be generators for I, and consider the map γ : M → Mn such that
u 7→ (f1u, . . . , fnu). Then

0 −→ AnnMI −→ M
γ−→ Mn
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is exact. It follows that

(∗∗) 0 −→ (AnnMI)⊗R N −→ M ⊗R N
δ−→ (M ⊗R N)n

is exact, where δ = γ ⊗ 1N sends u⊗ v 7→ (f1u⊗ v, . . . , fnu⊗ v). Therefore the kernel is
AnnM⊗RNI, but from (∗∗) the kernel is also (AnnMI)⊗R N .

�

Comparison of depths and types for flat local extensions

In the Theorem below, the main case is when N = S, and the reader should keep this
case in mind. When N is an S-module, we refer to N/mN as the closed fiber of N over
R. When we refer to the depth of a finitely generated nonzero module over a local ring, we
always mean the depth on the maximal ideal of the local ring, unless otherwise specified.

Theorem. Let (R, m, K) → (S, n, L) be a local homomorphism of local rings, and let
N be a finitely generated nonzero S-module that is R-flat. Let M be a nonzero finitely
generated R-module. Then:

(a) dim (N) = dim (R) + dim (N/mN).

More generally, dim (M ⊗R N) = dim (M) + dim (N/mN).

(b) N is faithfully flat over R.

(c) If y1, . . . , yk ∈ n form a regular sequence on the closed fiber N/mN , then they form a
regular sequence on W ⊗R N for every nonzero R-module W . In particular, they form
a regular sequence on N/IN for every proper ideal I of R, and on N itself. Moreover,
N/(y1, . . . , yk)N is faithfully flat over R.

(d) depth(M⊗RN) = depth(M)+depth(N/mN). In particular, depth(N) = depth(R)+
depth(N/mN).

(e) N is Cohen-Macaulay if and only if both R and N/mN are Cohen-Macaulay.

More generally, if M is any finitely generated R-module, then M ⊗R N is Cohen-
Macaulay if and only if both M and N/mN are Cohen-Macaulay.

(f) If N is Cohen-Macaulay, then the type of N is the product of the type of R and the
type of N/mN . More generally, if M ⊗R N is Cohen-Macaulay, the type of M ⊗R N
is the product of the type of M and the type of N/mN .

If M is 0-dimensional and N/mN is 0-dimensional, then the socle of M ⊗R N is the
same as the socle of AnnMm⊗K N/mN .

Proof. We use induction on dim (R) to prove the first statement. If J is the nilradical of
R, we may make a base change and replace R, S, and N by R/J , S/JS, and N/JN . The
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dimensions of R and N do not change, and the closed fiber does not change. Thus, we
may assume that R is reduced. If dim (R) = 0, then R is a field, m = 0, and the result is
obvious. If dim (R) > 0 then m contains a nonzerodivisor x, which is also a nonzerodivisor
on N , because N is R-flat. We may make a base change to R/xR. The dimensions of
R and N decrease by one, and the closed fiber does not change. Hence, the validity of
the statement in (a) is not affected by this base change. The result now follows from the
induction hypothesis.

To prove the second statement, note that M has a finite filtration whose factors are
cyclic modules R/Ij , and so M ⊗R N has a corresponding filtration whose factors are the
(R/Ij)⊗R N . Thus, we can reduce to the case where M = R/I. But this case follows from
what we have already proved by base change from R to R/I.

(b) To see that a flat module N is faithfully flat over any ring R, it suffices to see that
Q⊗R N 6= 0 for every nonzero R-module Q. If u ∈ Q is a nonzero element, then Ru ↪→ Q,
and so it suffices to see that Ru⊗R N 6= 0 when Ru 6= 0. But Ru ∼= R/I for some proper
ideal I of R, and Ru⊗R M ∼= Q/IQ. Thus, it suffices to see that IQ 6= Q for every proper
ideal I of R. Since any proper ideal I is contained in a maximal ideal, it suffices to see
that mQ 6= Q when m is maximal in R. In the local case, there is only one maximal ideal
to check. In the situation here, mN ⊆ nN 6= N by Nakayama’s Lemma, since N is finitely
generated and nonzero.

(c) By a completely straightforward induction on k, part (c) reduces at once to the
case where k = 1. (Note that an important element in making this inductive proof work
is that we know that N/y1N is again R-flat.)

Write y for y1. To see that N/yN is R-flat, it suffices by the local criterion for flatness,
p. 1 of the Lecture Notes from October 1, to show that Tor1R(R/m, N/yN) = 0. The short
exact sequence

(∗) 0 −→ N
y·−→ N −→ N/yN −→ 0

yields a long exact sequence part of which is

0 = TorR
1 (R/m, N) −→ TorR

1 (R/m, N/yN) −→ N/mN
y·−→ N/mN

where the 0 on the left is a consequence of the fact that N is R-flat. Since y is not a
zerodivisor on N/mN , we have that TorR

1 (R/m, N/yN) = 0. Faithful flatness is then
immediate from part (b).

Note that if M 6= 0, we have that M ⊗R (N/yN) 6= 0 because N/yN is faithfully
flat over R. To show that y is not a zerodivisor on M ⊗R N , we may use the long exact
sequence for Tor arising from the short exact sequence (∗) displayed above when one applies
M ⊗R . The desired result follows because TorR

1 (M, N/yN) = 0.

(d) We use induction on depth(M) + depth(N/mN). Suppose that both depths are
0. Because depth(M) = 0, m is an associated prime of M , and there is an injection
R/m ↪→ M . We may apply ⊗R N to obtain an injection N/mN ↪→ M ⊗R N . Since
depth(N/mN) = 0, there is an injection S/n ↪→ N/mN , and the composite

S/n ↪→ N/mN ↪→ M ⊗R N
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shows that depth(M ⊗R N) = 0, as required. If depth(M) > 0 we may choose x ∈ m not
a zerodivisor on M . Then x is not a zerodivisor on M ⊗R N because N is R-flat. We may
replace M by M/xM . The depths of M and M ⊗R N decrease by 1, while the closed fiber
does not change. The result now follows from the induction hypothesis. Finally, suppose
depth(N/mN) > 0. Choose y ∈ n not a zerodivisor on N/mN . Then we may replace N by
N/yN . This module is still flat over R by part (c). The depths of N and N/mN decrease
by one, while M is unaffected. Again, the result follows from the induction hypothesis.

(e) M ⊗R N is Cohen-Macaulay if and only if dim (M ⊗R N) = depth(M ⊗R N), and
by parts (a) and (c), we have that

dim (M⊗RN)−depth(M⊗RN) = dim (M)+dim (N/mN)−
(
depth(M)+depth(N/mN)

)
=

(
dim (M)−depth(M)

)
+(dim (N/mN)−depth(N/mN)

)
.

The last sum is 0 if and only if both summands vanish, since both summands are nonneg-
ative. This proves (e).

(f) Choose a maximal regular sequence x1, . . . , xh ∈ m on M . This is also a regular
sequence on M ⊗R N , and so we may replace M by M/(x1, . . . , xh)M . Both types are
unaffected by this replacement. Similarly, we may choose y1, . . . , yk ∈ n that form a
maximal regular sequence on N/mN , and replace N by N/(y1, . . . , yk)N . Hence, we have
reduced to the case where M and N/mN both are 0-dimensional.

We next want to establish the final statement, from which the calculation of the type
will follow. We have that Annn(M ⊗R N) ⊆ Annm(M ⊗R N) ∼= (AnnMm)⊗R N , by part
(b) of the Lemma from p. 1. Since m kills the module AnnMm, this tensor product may
be identified with (AnnMm)⊗R (N/mN) ∼= (AnnMm)⊗K (N/mN). Then AnnMn ∼= Ks

where s is the type of M , and this module is (N/mN)⊕s. Clearly the socle is the direct
sum of s copies of the socle in N/mN , whose dimension over L is the type of N/mN , and
the statement about the product of the types is immediate. �

Corollary. Let (R, m, K) → (S, n, L) be a flat local homomorphism of local rings.

(a) S is Gorenstein if and only if R and S/mS are both Gorenstein.

(b) If I is an irreducible m-primary ideal in R and y1, . . . , yk ∈ n have images that are
a system of parameters in S/mS, then for every integer t, IS + (yt

1, . . . , yt
k)S is an

irreducible m-primary ideal of S.

Proof. Part (a) is immediate from parts (e) and (f) of the preceding Theorem, since the
type of S is the product of the types of R and S/mS, and so the type of S will be 1 if and
only if and only if both R and S/mS are of type 1.

For part (b), make a base change to R/I, which is 0-dimensional Gorenstein ring.
Thus, S/IS is Gorenstein, the images of yk

1 , . . . , yk
t are a system of parameters and, hence,

a maximal a regular sequence. Thus, the quotient of S/I by the ideal they generate is a
0-dimensional Gorenstein ring. �

We can now prove:
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Theorem. Let (R, m, K) → (S, n, L) be a flat local homomorphism of local rings of
prime characteristic p > 0 such that the closed fiber S/m is regular. Suppose that c ∈ R◦

is a test element for both R and S. If R is weakly F-regular, then S is weakly F-regular.

Proof. It suffices to show that a sequence of irreducible ideals cofinal with the powers of
n is tightly closed. Since R is weakly F-regular, it is normal, and, hence, approximately
Gorenstein. Given t, choose I ⊆ mt that is m-primary and irreducible. Let u ∈ m represent
a socle generator in R/I. Choose y1, . . . , yk whose images in the regular local ring S/mS
are a minimal set of generators of the maximal ideal. Then (y1 · · · yk)t−1 represents a
socle generator in (S/mS)/(yt

1, . . . , yt
k)(S/mS). It follows from part (f) of the preceding

Theorem that
wt = (y1 · · · yk)t−1u

represents a socle generator in

S/
(
(IS + (yt

1, . . . , yt
k)S

)
;

this ideal is irreducible by the preceding Corollary. Note that IS + (yt
1, . . . , yt

k)S ⊆ nt. It
will therefore suffice to prove that every ideal J of the form IS + (yt

1, . . . , yt
k)S is tightly

closed, and for this it suffices to check that wt is not in the tight closure. Since c is a test
element for both rings, if wt were in the tight closure of J we would have

c(
(
y1 · · · yk)t−1u

)q ∈ I [q]S + (yqt
1 , . . . , yqt

k )S

for all q � 0. By part (c) of the Theorem on p. 2, y1, . . . , yk is regular sequence on
S/I [q]S. Hence, modulo I [q]S, cuq is in

(yqt
1 , . . . , yqt

k )(S/I [q]S) :S/I[q]S ytq−q
1 · · · ytq−q

k = (yq
1, . . . , yq

k)(S/I [q]S),

and so
cuq ∈ IqS + (yq

1, . . . , yq
k)S

for all q � 0. Now work modulo (yq
1, . . . , yq

k)S instead. Since T = S/(yq
1, . . . , yq

k)S
is faithfully flat over R by the part (c) of the Theorem on p. 2, we may think of R as a
subring of T . But then we have that cuq ∈ I [q]T ∩R = I [q] for all q � 0, and so u ∈ I∗R = I,
a contradiction, because u represents a socle generator in R/I. �

We next want to prove a corresponding result for strong F-regularity: this works in
just the same way, except that we need to assume that c is a big test element. However,
the proof involves some understanding of the injective hull of the residue class field of S
in this situation.


