Math 711: Lecture of October 31, 2007

Discussion: local cohomology. Let y_1, \ldots, y_d be a sequence of elements of a Noetherian ring S and let N be an S-module, which need not be finitely generated. Let J be an ideal whose radical is the same as the radical of $(y_1, \ldots, y_d)S$. Then the d th local cohomology module of N with supports in J, denoted $H^d_J(N)$, may be obtained as

$$\lim_{\longrightarrow \ k} \frac{N}{(y_1^k, \, \dots, \, y_d^k)N}$$

where the map from

$$N_k = \frac{N}{(y_1^k, \dots, y_d^k)N}$$

to N_{k+h} is induced by multiplication by z^h , where $z = y_1 \cdots y_d$, on the numerators. If $u \in N$, $\langle u; y_1^k, \ldots, y_d^k \rangle$ denotes the image of the class of u in N_k in $H_J^d(N)$. With this notation, we have that

$$\langle u; y_1^k, \dots, y_d^k \rangle = \langle z^h u; y_1^{k+h}, \dots, y_d^{k+h} \rangle$$

for every $h \in \mathbb{N}$.

If y_1, \ldots, y_d is a regular sequence on N, these maps are injective. We also know from the seminar that if (S, \mathfrak{n}, L) is a Gorenstein local ring and $\underline{y} = y_1, \ldots, y_d$ is a system of parameters for S, then $H^d_{(\underline{y})}(S) = H^d_{\mathfrak{n}}(S)$ is an injective hull for the residue class field $L = S/\mathfrak{n}$ of S over S. In the sequel, we want to prove a relative form of this result when $R \to S$ is a flat local homomorphism whose closed fiber is Gorenstein.

Theorem. Let $(R, m, K) \to (S, n, L)$ be a flat local homomorphism such that the closed fiber S/mS is Gorenstein. Let dim (R) = n and let dim (S/mS) = d. Let $\underline{y} = y_1, \ldots, y_d \in$ n be elements whose images in S/mS are a system of parameters. Let $E = E_R(K)$ be an injective hull for the residue class field K = R/m of R over R. Then $E \otimes_R H^d_{(\underline{y})}(S)$ is an injective hull for L = S/n over S.

In the case where the rings are of prime characteristic p > 0,

$$\mathcal{F}^{e}_{S}(E \otimes_{R} H^{d}_{(y)}(S)) \cong \mathcal{F}^{e}_{R}(E) \otimes_{R} H^{d}_{(y)}(S),$$

and if $u \in E$ and $s \in S$, then

$$(u \otimes \langle s; y_1^k, \dots, y_d^k \rangle)^q = u^q \otimes \langle s^q; y_1^{qk}, \dots, y_d^{qk} \rangle.$$

Proof. We first give an argument for the case where R is approximately Gorenstein, which is somewhat simpler. We then treat the general case. Suppose that $\{I_t\}$ is a descending

sequence of *m*-primary ideals of *R* cofinal with the powers of *M*. We know that $E = \lim_{\to I} t R/I_t$ for any choice of injective maps $R/I_t \to R/I_{t+1}$. Let $\mathfrak{A}_{t,k} = I_tS + J_k$, where $J_k = (y_1^k, \ldots, y_d^k)S$. For every *k* we may tensor with the faithfully fflat *R*-algebra S/J_k to obtain an injective map $S/\mathfrak{A}_{t,k} \to S/\mathfrak{A}_{t+1,k}$. Since y_1, \ldots, y_d is a regular sequence on S/I_tS for every I_t , we also have an injective map $S/\mathfrak{A}_{t,k} \to S/\mathfrak{A}_{t,k+1}$ induced by multiplication by $z = y_1 \cdots y_d$ on the numerators. The ideals $\mathfrak{A}_{t,k}$ are *n*-prinary irreducible ideals and as t, k both become large, are contained in aribtrarily large powers of \mathfrak{n} . (Once $I_t \subseteq m^s$ and $k \geq s$, we have that $\mathfrak{A}_{t,k} \subseteq m^s S + \mathfrak{n}^s \subseteq \mathfrak{n}^s$.) Thus, we have

$$E_{S}(L) \cong \lim_{t \to t} t_{k} \frac{S}{\mathfrak{A}_{t,k}} = \lim_{t \to t} t_{k} \left(\frac{R}{I_{t}} \otimes_{R} \frac{S}{J_{k}} \right) \cong \lim_{t \to t} k \left(\lim_{t \to t} \left(\frac{R}{I_{t}} \otimes_{R} \frac{S}{J_{k}} \right) \right) \cong \lim_{t \to t} k \left(\left(\lim_{t \to t} \frac{R}{I_{t}} \right) \otimes_{R} \frac{S}{J_{k}} \right) \cong \lim_{t \to t} k \left(E \otimes_{R} \frac{S}{J_{k}} \right) \cong E \otimes_{R} \left(\lim_{t \to t} \frac{S}{J_{t}} \right) \cong E \otimes_{R} H^{d}_{(\underline{y})}(S).$$

We now give an alternative argument that works more generally. In particular, we do not assume that R is approximately Gorenstein. Let E_t denote $\operatorname{Ann}_E m^t$. We first claim that that $E_{t,k}$, which we define as $E_t \otimes_R (S/J_k)$, is an injective hull of L over $S_{t,k} = (R/m^t) \otimes_R (S/J_k)$. By part (f) of the Theorem on p. 2 of the Lecture Notes from October 29, it is Cohen-Macaulay of type 1, since that is true for E_t and for the closed fiber of S/J_k , since S/mS is Gorenstein. Hence, $E_{t,k}$ is an essential extension of L, and it is killed by $\mathfrak{A}_{t,k} = m^t S + J_k$. To complete the proof, it suffices to show that it has the same length as $S_{t,k}$. Let M denote either R/m^t or E_t . Note that M has a filtration with $\ell(M)$ factors, each of which is $\cong K = R/m$. Since S/J_k is R-flat, this gives a filtration of $M \otimes_R S/J_k$ with $\ell(M)$ factors each of which is isomorphic with $K \otimes_R S/J_k = S/(mS+J_k)$.

If $t \leq t'$ we have an inclusion $E_t \hookrightarrow E_{t'}$, and if $k \leq k'$, we have an injection $S/J_k \to S/J_{k'}$ induced by multplication by $z^{k'-k}$ acting on the numerators. This gives injections $E_t \otimes_R S_k \to E_{t'} \otimes S_k$ (since S_k is R-flat) and $E_{t'} \otimes_R S_k \to E_{t'} \otimes_R S'_k$ (since y_1, \ldots, y_d is a regular sequence on $E_{t'} \otimes_R S$). The composites give injections $E_{t,k} \hookrightarrow E_{t',k'}$ and the direct limit over t, k is evidently $E \otimes_K H^d_{(\underline{y})}(S)$. The resulting module is clearly an essential extension of L, since it is a directed union of essential extensions. Hence, it is contained in a maximal essential extension $E_S(L)$ of L over S. We claim that this inclusion is an equality. To see this, suppose that $u \in E_S(L)$ is any element. Then u is killed by $\mathfrak{A} = \mathfrak{A}_{t,k} = m^t S + J_k$ for any sufficiently large choices of t and k. Hence $u \in \operatorname{Ann}_{E_S(L)}\mathfrak{A} = N$, which we know is an injective hull for L over S/\mathfrak{A} . But $E_t \otimes_R S/J_k$ is a submodule of N contained in $E \otimes_R H^d_{(\underline{y})}(S)$, and is already an injective hull for L over S/\mathfrak{A} . It follows, since they have the same length, that we must have that $E_t \otimes_R S/J_k \subseteq N$ is all of N, and so $u \in E_t \otimes_R S/J_k \subseteq E \otimes_R H^d_{(\underline{y})}(S)$.

To prove the final statement about the Frobenius functor, we note that by the first problem of Problem Set #4, one need only calculate $\mathcal{F}_{S}^{e}(H_{(\underline{y})}^{d}(S))$, and this calculation is the precisely the same as in third paragraph of p. 1 of the Lecture Notes from October 24. \Box

We are now ready to prove the analogue for strong F-regularity of the Theorem at the top of p. 5 of the Lecture Notes from October 29, which treated the weakly F-regular case.

Theorem. Let $(R, m, K) \rightarrow (S, n, L)$ be a local homomorphism of local rings of prime characteristic p > 0 such that the closed fiber S/m is regular. Suppose that $c \in R^{\circ}$ is a big test element for both R and S. If R is strongly F-regular, then S is strongly F-regular.

Proof. Let u be a socle generator in $E = E_R(K)$, and let $\underline{y} = y_1, \ldots, y_d \in \mathfrak{n}$ be elements whose images in the closed fiber S/mS form a minimal set of generators of the maximal ideal \mathfrak{n}/mS . Let $z = y_1 \cdots y_d$. Then the image of 1 in $S/(mS + (y_1, \ldots, y_d)S)$ is a socle generator, and it follows that $v = u \otimes \langle 1; y_1, \ldots, y_d \rangle$ generates the socle in $E_S(L) \cong$ $E \otimes_R H^d_{(\underline{y})}(S)$. Since c is a big test element for S, it can be used to test whether v is in the tight closure of 0 in $E \otimes_R H^d_{(\underline{y})}(S)$.

This occurs if and only if for all $q \gg 0$, $c(u \otimes \langle 1; y_1, \ldots, y_d \rangle)^q = 0$ in $\mathcal{F}_R^e(E) \otimes_R H_{(\underline{y})}^d(S)$, and this means that $cu^q \otimes \langle 1; y_1^q, \ldots, y_d^q \rangle = 0$ in $\mathcal{F}_R^e(E) \otimes_R H_{(\underline{y})}^d(S)$. By part (c) of the Theorem on p. 2 of the Lecture Notes from October 29, y_1, \ldots, y_d is a regular sequence on $E \otimes_R S$, from which it follows that the module $\mathcal{F}_R^e(E) \otimes_R (S/(y_1^q, \ldots, y_d^q))$ injects into $\mathcal{F}_R^e(E) \otimes_R H_{(\underline{y})}^d(S)$. Since $\overline{S} = S/(y_1^q, \ldots, y_d^q)S$ is faithfully flat over R, the map $\mathcal{F}_R^e(E) \to \mathcal{F}_R^e(E) \otimes_R S/(y_1^q, \ldots, y_d^q)S$ sending $w \mapsto w \otimes 1$ is injective. The fact that $cu^q \otimes \langle 1; y_1^q, \ldots, y_d^q \rangle = 0$ implies that $cu^q \otimes 1_{\overline{S}}$ is 0 in $\mathcal{F}_R^e(E) \otimes_R \overline{S}$, and hence that $cu^q = 0$ in R. Since this holds for all $q \gg 0$, we have that $u \in 0_E^*$, a contradiction. \Box

The following result will be useful in studying algebras essentially of finite type over an excellent semilocal ring that are not F-finite but are strongly F-regular: in many instances, it permits reductions to the F-finite case.

Theorem. Let R be a reduced Noetherian ring of prime characteristic p > 0 that is essentially of finite type over an excellent semilocal ring B.

- (a) Let \widehat{B} denote the completion of B with respect to its Jacobson radical. Suppose that R is strongly F-regular. Then $\widehat{B} \otimes_B R$ is essentially of finite type over \widehat{B} and is strongly F-regular and faithfully flat over R.
- (b) Suppose that B = A is a complete local ring with coefficient field K. Fix a p-base Λ for K. For all Γ ≪ Λ, let R^Γ = A^Γ ⊗_A R. We nay identify Spec (R^Γ) with X = Spec (R) as topological spaces, and we let Z_Γ denote the closed set in Spec (R) of points corresponding to primes P such that R^Γ_P is not strongly F-regular. Then Z_Γ is the same for all sufficiently small Γ ≪ Λ, and this closed set is the locus in X consisting of primes P such that R_P is not strongly F-regular.

In particular, if R is strongly F-regular, then for all $\Gamma \ll \Lambda$, R^{Γ} is strongly F-regular.

Proof. (a) Since $B \to \widehat{B}$ is faithfully flat with geometrically regular fibers, the same is true for $R \to \widehat{B} \otimes_B R$. Choose $c \in R^\circ$ such that R_c is regular. Then we also have that

 $(\widehat{B} \otimes_B R)_c$ is regular. Hence, c has a power that is a completely stable big test element in both rings. Let Q be any prime ideal of $S = \widehat{B} \otimes_B R$ and let P be its contraction to R. We may apply the preceding Theorem to the map $R_P \to S_Q$, and so S_Q is strongly F-regular for all Q. It follows that S is strongly F-regular.

(b) For all choices of $\Gamma' \subseteq \Gamma$ cofinite in Λ , we have that $R \subseteq R^{\Gamma'} \subseteq R^{\Gamma}$, and that the maps are faithfully flat and purely inseparable. Since every R^{Γ} is F-finite, we know that every Z_{Γ} is closed. Since the map $R^{\Gamma'} \subseteq R^{\Gamma}$ is faithfully flat, Z_{Γ} decreases as Γ decreases. We may choose Γ so that $Z = Z_{\Gamma}$ is minimal, and, hence, minimum, since a finite intersection of cofinite subsets of Λ is cofinite.

We shall show that Z must be the set of primes P in Spec (R) such that R_P is strongly F-regular. If Q is a prime of R^{Γ} not in Z_{Γ} lying over P in R, the fact that $R_P \to R_Q^{\Gamma}$ is faithfully flat implies that P is not in Z. Thus, $Z \subseteq Z_{\Gamma}$. If they are not equal, then there is a prime P of R such that R_P is strongly F-regular but R_Q^{Γ} is not strongly F-regular, where Q is the prime of R^{Γ} corresponding to P. Choose $\Gamma' \subseteq \Gamma$ such that $Q' = PR^{\Gamma'}$ is prime. It will suffice to prove that $S = R_{Q'}^{\Gamma'}$ is strongly F-regular, for this shows that $Z_{\Gamma'} \subseteq Z_{\Gamma} - \{P\}$ is strictly smaller than Z_{Γ} . Since S is F-finite, we may choose a big test element c_1 for S. Then c_1 has a q_1 th power c in R_P for some q_1 , and c is still a big test element for S. The closed fiber of $R_P \to S$ is S/PS = S/Q', a field. Hence, by the preceding Theorem, S is strongly F-regular. \Box

Using this result, we can now prove:

Theorem. Let R be reduced and essentially of finite type over an excellent semilocal ring B. Then the strongly F-regular locus in R is Zariski open.

Proof. We first consider the case where B = A is a complete local ring. Choose a coefficient field K for A and a p-base Λ for it. Then the result is immediate from part (b) of the preceding Theorem by comparison with R^{Γ} for any $\Gamma \ll \Lambda$.

In the general case, let $S = \widehat{B} \otimes_B R$. Since \widehat{B} is a finite product of complete local rings, S is a finite product of algebras essentially of finite type over a complete local ring, and so the non-strongly F-regular locus is closed. Let J denote an ideal of S that defines this locus.

Now consider any prime ideal P of R such that R_P is strongly F-regular. Let W = R - P. Then we may apply part (a) of the preceding Theorem to $R_P \to \hat{B} \otimes_B R_P$ to conclude that $\hat{B} \otimes_R R_P = W^{-1}S$ is strongly F-regular. It follows that W must meet J: otherwise, we can choose a prime Q of S containing J but disjoint from W, and it would follow that S_Q is strongly F-regular even though $J \subseteq Q$, a contradiction. Choose $c \in W \cap J$. Then S_c is strongly F-regular, and since $R_c \to S_c$ is faithfully flat, so is R_c . Thus, the set of primes of R not containing c is a Zariski open nieghborhood of P that is contained in the strongly F-regular locus. \Box