
Math 711: Lecture of November 5, 2007

The following result is one we have already established in the F-finite case. We can now
extend it to include rings essentially of finite type over an excellent semilocal ring.

Theorem. Let R be a reduced ring of prime characteristic p > 0 essentially of finite
type over an excellent semilocal ring B. Suppose that c ∈ R◦ is such that Rc is strongly
F-regular. Then c has a power that is a completely stable big test element in R.

Proof. If c is a completely stable big test element in a faithfully flat extension of R, then
that is also true for R by part (b) of the Proposition at the bottom of p. 8 of the Lecture
Notes from September 17.

The hypothesis continues to hold if we replace R by B̂⊗B R, and it holds in each factor
of this ring. We may therefore assume that R is essentially of finite type over a complete
local ring A. As usual, choose a coefficient field K for A and a p -base Λ for K. Again,
the hypotheis continues to hold is we replace R by RΓ for Γ � Λ, and RΓ is faithfully flat
over R. But now we are done, since RΓ is F-finite. �

We next want to backtrack and prove that certain rings are approximately Gorenstein
in a much simpler way than in the lengthy and convoluted argument given in the Lecture
Notes from October 24. While the result we prove is much weaker, it does suffice for
the case of an excellent normal Cohen-Macaulay ring, and, hence, for excellent weakly
F-regular rings.

We first note:

Lemma. Let M and N be modules over a Noetherian ring R and let x be a nonzerodivisor
on N . Suppose that M is R-free or, much more generally, that Ext1R(M, N) = 0. Then

(R/xR)⊗R HomR(M, N) ∼= HomR/xR(M/xM, N/xN).

Proof. The right hand module is evidently the same as HomR(M/xM, N/xN), and also the
same as HomR(M, N/xN), since any map M → N/xN must kill xM . Apply HomR(M, )
to the short exact sequence

0 −→ N
x·−→ N −→ N/xN → 0.

This yields a long exact sequence which is, in part,

0 −→ HomR(M, N) x·−→ HomR(M, N) −→ HomR(M, N/xN) −→ Ext1R(M, N) = 0,

and the result follows. �
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Theorem. Let (R, m, K) be an excellent, normal, Cohen-Macaulay ring, or, more gener-
ally, any Cohen-Macaulay local ring whose completion is a Cohen-Macaulay local domain.
Then R is approximately Gorenstein.

Proof. We may replace R by its completion and then R is module-finite over a regular
local ring A ⊆ R. Because R is Cohen-Macaulay, it is free of some rank h as an A-module,
i.e., R ∼= Ah. Then ω = HomA(R, A) is also an R-module, and is also isomorphic to Ah

as an A-module. (We shall see later that ω is what is called a canonical module for R.
Up to isomorphism, it is independent of the choice of A.) Then ω is, evidently, also a
Cohen-Macaulay module over R. We want to see that it has type one. This only uses the
Cohen-Macaulay property of R: it does not use the fact that R is a domain.

From the Lemma above, we see that the calculation of ω commutes with killing a
parameter in A. We may choose a system of parameters for A (and R) that is a minimal
set of generators for the maximal ideal of A. By killing these one at a time, we reduce to
seeing this when A = K is a field and R is a zero-dimensional local ring with coefficient
field K. We claim that in this case, ω = HomK(R, K) is isomorphic with ER(K). In fact,
ω is injective because for any R-module M ,

HomR(M, ω) ∼= HomR(M, HomK(R, K)) ∼= HomK(M ⊗R R, K) ∼= HomK(M, K)

by the adjointness of tensor and Hom. This is, in fact, a natural isomorphism of functors.
Since HomK( , K) is exact, so is HomR( , ω). Thus, ω is a direct sum of copies of
ER(K). But its length is the same as its dimension as a K-vector space, and this is the
same as the dimension of R as a K-vector space, which is the length of R. Thus, ω has
the same length as ER(K), and it follows that ω ∼= ER(K).

We now return to the situation where R is a domain. Since every nonzero element of
R has a nonzero multiple in A, we have that ω is torsion-free as an R-module. Thus,
if w is any nonzero element of ω, we have an embedding R → ω sending 1 7→ w. Let
It = (xt

1, . . . , xt
n), where x1, . . . , xn is a system of parameters for R. Then Itω∩Rw must

have the form Jtw for some m-primary ideal Jt of R. Then

R/Jt
∼= Rw/(Itω ∩Rw) ⊆ ω/Itω.

Since ω/Itω is an injective hull of the residue class field for R/It, it is an essential extension
of its socle. Therefore, R/Jt is an essential extension of its socle as well. Consequently,
Jt ⊆ R is irreducible and m-primary. It will now suffice to show that the ideals Jt are
cofinal with the powers of m.

By the Artin-Rees Lemma there exists a constant integer a ∈ N such that

mN+aω ∩Rw ⊆ mN (Rw) = mNw

for all N . But then JN+a ⊆ mn, since IN+a ⊆ mN+a. �

We next want to prove some additional results on openness of loci, such as the Cohen-
Macaulay locus. The following fact is very useful.
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Lemma on openness of loci. Let X = Spec (R), where R is a Noetherian ring. Then
S ⊆ X is open if and only if the following two conditions hold:

(1) If P ⊆ Q and Q ∈ S then P ∈ S.

(2) For all P ∈ S, S ∩ V(P ) is open in V(P ).

The second condition can be weakened to:

(2◦) For all P ∈ S, S contains an open neighborhood of P in V(P ).

Proof. It is clear that (1), (2), and (2◦) are necessary for S to be open. Since (2◦) is weaker
than (2), and it suffices to show that (1) and (2◦) imply that S is open. Suppose otherwise.
Since R has DCC on prime ideals, if S is not open there exists a minimal element P of S
that has no open neighborhood entirely contained in S. For all primes Q strictly contained
in P , choose an open neighborhood UQ of Q contained entirely in S. Let U be the union
of these open sets: the U is an open set contained entirely in S, and contains all primes Q
strictly smaller than P .

Let Z = X − U , which is closed. It follows that Z has finitely many minimal elements,
one of which must be P . Call them P = P0, P1, . . . , Pk. Then

Z = V(P0) ∪ · · · V(Pk).

Finally, choose U ′ open in X such that P ∈ U ′ and U ′ ∩ V(P ) ⊆ S. We claim that

U ′′ = U ∪ U ′ −
(
V(P1) ∪ · · · ∪ V(Pk)

)
is the required neighborhood of P . It is evidently an open set that contains P . Suppose
that Q ∈ U ′′. If Q ∈ U then Q ∈ S. Otherwise, Q is in

X − U = V(P ) ∪ V(P1) ∪ · · · ∪ V(Pk),

and this implies that Q ∈ V(P ). But Q must also be in U ′, and U ′ ∩ V(P ) ⊆ S. �

We can use this to show:

Theorem. Let R be an excellent ring. Then the Cohen-Macaulay locus

{P ∈ Spec (R) : RP is Cohen-Macaulay}

is Zariski open.

Proof. It suffices to estabish (1) and (2) of the preceding Lemma. We know (1) because
if P ⊆ Q then RP is a localization of the Cohen-Macaulay ring RQ. Now suppose that
RP is Cohen-Macaulay. Choose a maximal regular sequence in PRP . After multiplying
by suitable units in RP , we may assume that this regular sequence consists of images of
elements x1, . . . , xd ∈ P . We can choose ci ∈ R − P that kills the annihilator of xi+1 in
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R/(x1, . . . , xi), 0 ≤ i ≤ d − 1. Let c be the product of the ci. Then we may replace R
by Rc (we may make finitely many such replacements, each of which amounts to taking a
smaller Zariski open neighborhood of P ).

Then x1, . . . , xd is a regular sequence in P , and is therefore a regular sequence in Q
and in QRQ for all primes Q ⊇ P . Hence, in considering property (2), it suffices to work
with R1 = R/(x1, . . . , xd)R: whether RQ is Cohen-Macaulay or not is not affected by
killing a regular sequence. Consequently, we need only show that if P is a minimal prime
of an excellent ring R, then there exists c /∈ P such that Rc is Cohen-Macaulay. We may
assume by localizing at one element in the other minimal primes but not in P that P is
the only minimal prime of R.

First, we may localize at one element c /∈ P such that (R/P )c is a regular domain,
because R/P is an excellent domain: the localization at the prime ideal (0) is a field, and,
hence, regular, and so (0) has a Zariski open neighborhood that is regular. Henceforth, we
assume that R/P is regular. It would suffice in the argument that follows to know that it
is Cohen-Macaulay.

Finally, choose a filtration P = P1 ⊇ · · · ⊇ Pn = (0) such that every Pi/Pi+1 is killed
by P . We can do this because P is nilpotent. (If Pn = 0, we may take Pi = P i, 1 ≤ i ≤ n.
Alternatively, we may take Pi = AnnP Pn−i.) Second, we can localize at one element
c ∈ R − P such that each of the (R/P )-modules Pi/Pi+1, 1 ≤ i ≤ n − 1, is free over
R/P . Here, we are writing R for the localized ring. We claim that the ring R is now
Cohen-Macaulay.

To see this, suppose that we take any local ring of R. Then we may assume that
(R, m, K) is local with unique minimal prime P , that R/P is Cohen-Macaulay, and that
P has a finite filtration whose factors are free (R/P )-modules: all this is preserved by
localization. Let x1, . . . , xh be a system of parameters for R. The images of these elements
form a system of parameters in R/P . Then x1, . . . , xd is a regular sequence on R/P . But
P has a finite filtration in which the factors are free (R/P )-modules, and so does R: one
additional factor, R/P , is needed. Since x1, . . . , xd is a regular sequence on every factor
of this filtration, by the Proposition near the bottom of the first page of the Lecture Notes
from October 8, it is a regular sequence on R. Hence, R is Cohen-Macaulay. �

|

Remark. It is also true that if M is a finitely generated module over an excellent ring R,
then

{P ∈ Spec (R) : MP is Cohen-Macaulay}

is Zariski open in Spec (R). This comes down to establishing property (2), and we may
make the same initial reduction as in the ring case, killing a regular sequence in P on M
whose image in PRP is a maximal regular sequence on MP . Therefore may assume that
P is minimal in the support of M , and, after one further localization, that P is the only
minimal prime in the support of M . We may assume as above that R/P is regular: again R
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is Cohen-Macaulay suffices for the argument. We have PnM = 0 for some n, and we may
construct a filtration M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = 0 such that evey Mi/Mi+1 is killed by
P . We may then localize once more such that every Mi/Mi+1 becomes (R/P )-free over
the localization. The rest of the argument is the same as in the case where M = R. �

There are several ways to prove that the type of a Cohen-Macaulay module cannot
increase when one localizes. In particular, a Gorenstein ring remains Gorenstein when one
localizes. One way is to make use of canonical modules. Here, we give a proof that is, in
some sense, more elementary. Part of the argument is left as an exercise.

Theorem. Let M be a module over a local ring (R, m, K), and let P be any prime of R.
Then the type of MP is at most the type of M .

Proof. We shall reduce to the case where R is a complete local domain of dimension one,
M is a finitely generated torsion-free module, and P = (0), so that the type of MP is its
dimension as a vector space over frac (R). We leave this case as an exercise: see Problem
5 of Problem Set #4.

Let S be the completion of R, and let Q be a minimal prime of PS, which will lie over
P . The closed fiber of RP → SQ is 0-dimensional because Q is minimal over PS, and so
MP ⊗RP

SQ is Cohen-Macaulay and its type is the product of the type of MP and the
type of SQ/PSQ. This shows that the type of MP is at most the type of MP ⊗RP

SQ
∼=

M ⊗R SQ = (M̂)Q. Since M and M̂ have the same type, it will suffice to show that type
can not increase under localization in the complete case.

Second, we can choose a saturated chain of primes joining P to Q, and successively
localize at each in turn. Thus, we can also reduce to the case where dim (R/Q) = 1. Third,
we can choose a maximal regular sequence on M in Q, and replace M by its quotient by
this sequence. Thus, there is no loss of generality in assuming the Q is minimal in the
support of M . We may also replace R by R/AnnRM and so assume that M is fatihful.
Let N = AnnMQ. Let x be a system of parameters for R: it only has one element. In
particular, x /∈ Q. Then x is not a zerodivisor on M , since M is Cohen-Macaulay, nor on
N , since N ⊆ M . But x is also is not a zerodivisor on M/N , for if xu ∈ N , then xuQ = 0,
which implies that uQ = 0, and so u ∈ N . It follows that when we apply (R/xR) ⊗R

to the short exact sequence

0 → N → M → M/N → 0

we get an exact sequence. Hence, N/xN → M/xM is injective, which shows that the type
of N is at most the type of M . However, NQ ⊆ MQ is evidently the socle in MQ, and so
the type of MQ is the same as the type of NQ. It follows that is suffices to show that the
type of NQ is at most the type of N . Here, N is a torsion-free module over R/Q, and so
we have reduced to the case described in the first paragraph. �
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