Math 711: Lecture of November 9, 2007

We note the following fact from field theory:

Proposition. Let \mathcal{K} be a field of prime characteristic p > 0, let \mathcal{L} be a separable algebraic extension of \mathcal{K} , and let \mathcal{F} be a purely inseparable algebraic extension of \mathcal{K} . Then the map $\mathcal{F} \otimes_{\mathcal{K}} \mathcal{L}$ to the compositum $\mathcal{L}[\mathcal{F}]$ (which may be formed within a perfect closure or algebraic closure of \mathcal{L}) such that $a \otimes b \mapsto ab$ is an isomorphism.

Proof. The map is certainly onto. It suffices to show that $\mathcal{F} \otimes_{\mathcal{K}} \mathcal{L}$ is a field: every element has a q th power in \mathcal{L} , and so if the ring is reduced it must be a field, and the injectivity of the map follows. \mathcal{L} is a direct limit of finite separable algebraic extensions of \mathcal{K} , and so there is no loss of generality in assuming that the \mathcal{L} is fnite over \mathcal{K} . The result now follows from the second Corollary on p. 4 of the Lecture Notes from September 19, or the argument given at the bottom of p. 6 of the Lecture Notes from October 19. \Box

This fact is referred to as the *linear disjointness* of separable and purely inseparable field extensions.

In consequence:

Corollary. Let \mathcal{L} be a separable algebraic extension of \mathcal{K} , a field of prime characteristic p > 0. Then for every $q = p^e$, $\mathcal{L}[\mathcal{K}^{1/q}] = \mathcal{L}^{1/q}$.

Proof. We need to show that every element of \mathcal{L} has a q th root in $\mathcal{L}[\mathcal{K}^{1/q}]$. Since \mathcal{L} is a directed union of finite separable algebraic extensions of \mathcal{K} , it suffices to prove the result when \mathcal{L} is a finite separable algebraic field extension of \mathcal{K} . Let $[\mathcal{L} : \mathcal{K}] = d$. The field extension $\mathcal{K}^{1/q} \subseteq \mathcal{L}^{1/q}$ is isomorphic with the field extension $\mathcal{K} \subseteq \mathcal{L}$. Consequently, $[\mathcal{L}^{1/q} : \mathcal{K}^{1/q}] = d$ also. Since $\mathcal{K}^{1/q} \subseteq \mathcal{L}[\mathcal{K}^{1/q}] \subseteq \mathcal{L}^{1/q}$, to complete the proof it suffices to show that $[\mathcal{L}[\mathcal{K}^{1/q}] : \mathcal{K}^{1/q}] = d$ as well. But $\mathcal{L}[\mathcal{K}^{1/q}] \cong \mathcal{K}^{1/q} \otimes_{\mathcal{K}} \mathcal{L}$, and so its dimension as a $\mathcal{K}^{1/q}$ -vector space is the same as the dimension of \mathcal{L} as a \mathcal{K} -vector space, which is d. \Box

We next prove:

Proposition. Let R be module-finite, torsion-free, and generically étale over a regular domain A of prime characteristic p > 0.

- (a) R is reduced.
- (b) For every q, then map $A^{1/q} \otimes_A R \to R[A^{1/q}]$ is an isomorphism. Likewise, $A^{\infty} \otimes_A R \to R[A^{\infty}]$ is an isomorphism.
- (c) For every q, $R[A^{1/q}]$ is faithfully flat over R. Moreover, $R[A^{\infty}]$ is faithfully flat over R.

Proof. Let $\mathcal{K} = \text{frac}(A)$. Then $\mathcal{K} \otimes_A R = \prod_{i=1}^h \mathcal{L}_i$, where every \mathcal{L}_i is a finite separable algebraic extension of \mathcal{K} .

(a) Since R is torsion-free as an A-module, $R \subseteq \mathcal{K} \otimes_A R = \prod_{i=1}^h \mathcal{L}_i$, from which the result follows.

(b) We have an obvious surjection $A^{1/q} \otimes_A R \to R[A^{1/q}]$. Since R is torsion-free over A, each nonzero element $a \in A$ is a nonzerodivisor on R. Since $A^{1/q}$ is A-flat, this remains true when we apply $A^{1/q} \otimes_A _$. It follows that $A^{1/q} \otimes_A R$ is a torsion-free A-module. Hence, we need only check that the map is injective after applying $\mathcal{K} \otimes_A _$: if there is a kernel, it will not be killed. The left hand side becomes $\mathcal{K}^{1/q} \otimes_{\mathcal{K}} \prod_{i=1}^{h} \mathcal{L}_i$ and the right hand side becomes $\prod_{i=1}^{h} \mathcal{L}_i[\mathcal{K}^{1/q}]$. The map is the product of the maps $\mathcal{K}^{1/q} \otimes \mathcal{L}_i \to \mathcal{L}_i[\mathcal{K}^{1/q}]$, each of which is an isomorphism by the Proposition at the top of p. 1.

(c) This is immediate from part (b), since $A^{1/q}$ is faithfully flat over A for every q: this is equivalent to the flatness of $F^e: A \to A$. Since A^{∞} is the directed union of the $A^{1/q}$, it is likewise flat over A, and since it is purely inseparable over A, it is faithfully flat. Hence, $R[A^{\infty}]$ is faithfully flat over R as well, by part (b). \Box

Theorem. Let R be module-finite, torsion-free, and generically étale over a regular domain A of prime characteristic p > 0. Then there exist nonzero elements $c \in A$ such that $cR^{1/p} \subseteq R[A^{1/p}]$. For such an element c, we have that $c^2R^{1/q} \subseteq R[A^{1/q}]$ for all q, and, hence, also that $c^2R^{\infty} \subseteq R[A^{\infty}]$.

Proof. Consider the inclusion $R[A^{1/p}] \subseteq R^{1/p}$, which is a module finite extension: even $A^{1/p} \subseteq R^{1/p}$ is module-finite, because it is isomorphic with $A \subseteq R$. If we apply $\mathcal{K} \otimes_A _$, on the left hand side R becomes $\prod_{i=1}^{h} \mathcal{L}_i$ and $A^{1/p}$ becomes $\mathcal{K}^{1/p}$. Hence, the left hand side becomes

$$(\prod_{i=1}^{h} \mathcal{L}_i)[\mathcal{K}^{1/p}] \cong \prod_{i=1}^{h} \mathcal{L}_i[\mathcal{K}^{1/p}] = \prod_{i=1}^{h} \mathcal{L}_i^{1/p}$$

by the Corollary on p. 1, and the right hand side also becomes $\prod_{i=1}^{h} \mathcal{L}_{i}^{1/p}$. Hence, if we take a finite set of generators for $R^{1/p}$ as an $R[A^{1/p}]$ -module, each generator is multiplied into $R[A^{1/p}]$ by an element $c_i \in A^{\circ}$. The product c of the c_i is the required element.

Now suppose $c \in A^{\circ}$ is such that $cR^{\infty} \subseteq R[^{\infty}]$. Let

$$c_e = c^{1 + \frac{1}{p} + \dots + \frac{1}{p^e}}$$

and note that

$$c_{e+1} = cc_e^{1/p}$$

for $e \geq 1$. We shall show by induction on e that $c_e R^{1/q} \subseteq R[A^{1/q}]$ for every $e \in \mathbb{N}$. Note that $c_0 = c$, and this base case is given. Now suppose that $c_e R^{1/q} \subseteq R[A^{1/q}]$. Taking p th roots, we have that $c_e^{1/p} R^{1/pq} \subseteq R^{1/p}[A^{1/pq}]$. We multiply both sides by c to obtain

$$c_{e+1}R^{1/pq} = cc_e^{1/p}R^{1/pq} \subseteq cR^{1/p}[A^{1/pq}] \subseteq R[A^{1/p}][A^{1/pq}] = R[A^{1/pq}],$$

as required.

Since

$$1 + \frac{1}{p} + \dots + \frac{1}{p^e} \le 1 + \frac{1}{2} + \dots + \frac{1}{2^e} < 2,$$

 c^2 is a multiple of c_e in $A^{1/q}$ and in $R[A^{1/q}]$, and the stated result follows. \Box

Also note:

Lemma. Let R be module-finite, torsion-free, and generically étale over a domain A.

- (a) If A → B is flat, injective homomorphism of domains, then B ⊗_A R is module-finite, torsion-free and generically étale over B.
 In particular, if K → L is a field extension and F is an étale extension of K, then L ⊗_K F is an étale extension of L.
- (b) With the same hypothesis as in the first assertion in part (a), if $c \in R$ is such that $cR^{\infty} \subseteq R[A^{\infty}]$, then $c(B \otimes_A R)^{\infty} \subseteq (B \otimes_A R)[B^{\infty}]$.
- (c) If \mathfrak{q} is a minimal prime of R, then \mathfrak{q} does not meet A and $A \hookrightarrow R/\mathfrak{q}$ is again modulefinite, torsion-free, and generically étale over A.

Proof. (a) We prove the second statement first. Since \mathcal{F} is a product of finite separable algebraic extensions of \mathcal{K} , we reduce at once to the case where \mathcal{F} is a finite separable algebraic field extension of K, and then $\mathcal{F} \cong \mathcal{K}[x]/(g)$, where x is an indeterminate and g is an irreducible monic polynomial of positive degree over \mathcal{K} whose roots in an algebraic closure of \mathcal{K} are mutually distinct. Let $g = g_1 \cdots g_s$ be the factorization of g into monic irreducible polynomials over \mathcal{L} . These are mutually distinct, and any two generate the unit ideal. Hence, by the Chinese Remainder Theorem,

$$\mathcal{L} \otimes_{\mathcal{K}} \mathcal{F} \cong \mathcal{L}[x]/(g) \cong \prod_{j=1}^{s} \mathcal{L}[x]/(g_j),$$

and every $\mathcal{L}_i[x]/g_i$ is a finite separable algebraic extension of \mathcal{L} .

It is obvious that $B \otimes_A R$ is module-finite over A. By the Lemma on the first page of the Lecture Notes from October 12, the fact that R is module-finite and torsion-free over A implies that we have an embedding of $R \hookrightarrow A^{\oplus h}$ for some h. Because B is A-flat, we have injection $B \otimes_A R \hookrightarrow B^{\oplus h}$, and so $B \otimes_A R$ is torsion-free over B. The fact that the condition of being generically étale is preserved is immediate from the result of the first paragraph above, with $\mathcal{K} = \operatorname{frac}(A)$, $\mathcal{L} = \operatorname{frac}(B)$, and $\mathcal{F} = \mathcal{K} \otimes_A R$.

(b) Every element of $B \otimes_A R$)^{1/q} $\cong B^{1/q} \otimes_{A^{1/q}} R^{1/q}$ is a sum of elements of the form $b^{1/q} \otimes r^{1/q}$, while $c(b^{1/q} \otimes r^{1/q}) = b^{1/q} \otimes cr^{1/q}$. Since $cr^{1/q} \in R[A^{\infty}]$, it follows that $c(B \otimes_A R)^{1/q} \subseteq (B \otimes_A R)[A^{\infty}][B^{1/q}] \subseteq (B \otimes_A R)[B^{\infty}]$.

(c) \mathfrak{q} cannot meet A° because R is torsion-free over A. Thus, \mathfrak{q} corresponds to one of the primes of the generic fiber $\mathcal{K} \otimes_A R$, which is a product of finite algebraic separable

field extensions of \mathcal{K} . It follows that $\mathcal{K} \otimes_A (R/\mathfrak{p})$ is one of these finite algebraic separable field extensions. \Box

We can now prove the result on test elements, which we state again.

Theorem. Let R be module-finite, torsion-free, and generically étale over a regular domain A. Let $c \in \mathbb{R}^{\circ}$ be any element such that $c\mathbb{R}^{\infty} \subseteq \mathbb{R}[A^{\infty}]$. Then c is a completely stable big test element for R.

Proof. Let Q be any prime ideal of R, and let P be its contraction to A. Then $A_P \to R_P$ satisfies the same hypothesis by parts (a) and (b) of the Lemma on p. 3, and so we may assume that A is local and that Q is a maximal ideal of R. We may now apply $B \otimes_{A_{-}}$, where $B = \widehat{A}$. By the same Lemma, the hypotheses are preserved. B becomes a product of complete local rings, one of which is the completion of R_Q . The hypotheses hold for each factor, and so we may assume without loss of generality that $(A, m, K) \to (R, \operatorname{frac} m, L)$ is a local map of complete local rings as well. Now suppose that $H \subseteq G$ are R-modules and $u \in H_G^*$. We may assume, as usual, that G is free. (This is not necessary, but may help to make the argument more transparent.) We are not assuming, however, that G or H is finitely generated.

We know that $u \in H_G^*$. Hence, there is an element r of R° , such that $ru^{q'} \in H^{[q']}$ for all $q' \gg 0$. Since $r \in R^\circ$, dim $(R/rR) < \dim(R)$. Since R/rR is a module finite extension of $A/(rR \cap A)$, we must have that dim $(A/(rR \cap A) < \dim(A))$, and it follows that $rR \cap A \neq (0)$, i.e., that r has a nonzero multiple $a \in A$. Then $au^{q'} \in H^{[q']}$ for all $q' \gg 0$. We may take q' th roots and obtain $a^{1/q'} \in R^{1/q'}H$ for all $q' \gg 0$. We are using the notation $R^{1/q'}H$ for the expansion of H to $R^{1/q'} \otimes_R G$, i.e., for the image of $R^{1/q'} \otimes H$ to $R^{1/q'} \otimes_R G$.

Let ord denote any valuation on A with values in \mathbb{Z} that is nonnegative on A and positive on m. Then ord extends uniquely to a valuation on A^{∞} with values in $\mathbb{Z}[1/p]$ such that $\operatorname{ord}(b^{1/q'}) = (1/q')\operatorname{ord}(b)$ for all $b \in A^{\circ}$ and q'.

To complete the argument, we shall prove the following:

(#) Suppose that $\{\delta_n\}_n$ is asequence of elements of $A^{\infty} - \{0\}$ such that $\delta_n u \in R^{\infty} H$ for all n and ord $(\delta_n) \to 0$ as $n \to \infty$. Then $cu^q \in H^{[q]}$ for all q, and so $u \in H^*_G$.

This not only proves that c is a big test element, it also gives a new characterization of tight closure which is stated as a Corollary of this proof in the sequel.

Moreover, we will have proved that c is a completely stable big test element in every completed local ring of R, and so it will follow that c is a completely stable big test element for R.

If the statement (#) is false, fix q such that $cu^q \notin H^{[q]}$. For every n, we have

$$\delta_n u \in R^\infty H$$

and, hence,

$$\delta_n^q u^q \in R^\infty H^{[q]}$$

Let $S = R[A^{\infty}]$, which we know is flat over R. We multiply by $c \in R$ to obtain $\delta_n^q(cu^q) \in SH^{[q]}$, i.e., that

$$\delta_n^q \in SH^{[q]} :_S cu^q = (H^{[q]} :_R cu^q)S_{\cdot}$$

by the second statement in part (a) of the Lemma on p. 1 of the Lecture Notes from October 29 and the flatness of S over R. Since $cu^q \notin H^{[q]}$, $H^{[q]} :_R cu^q$ is a proper ideal Jof R, amd so $\delta_n^q \in JR[A^\infty]$ for all n. Now J is contained in some maximal ideal \mathcal{M} of R. \mathcal{M} contains a minimal prime \mathfrak{q} of R. By part (c) of the Lemma on p. 3, A injects into \overline{R} , where \overline{R} is module-finite domain extension of A generically étale over A, and $\mathfrak{m} = J\overline{R}$ is a proper ideal of \overline{R} . We can map $R[A^\infty]$ onto $\overline{R}[A^\infty]$ Then for all $n, \, \delta_n^q \in \mathfrak{m}\overline{R}[A^\infty] \cap A^\infty$. Let d denote the torsion-free rank of \overline{R} over A. By the Lemma at the bottom of p. 5 of the Lecture Notes from November 7, we have that

$$q \operatorname{ord} (\delta_n) = \operatorname{ord} (\delta_n^q) \ge \frac{1}{d!}$$

for all n, and so

$$\operatorname{ord} \delta_n \ge \frac{1}{qd!}$$

for all *n*. Since *q* and *d* are both fixed and $n \to \infty$, this contradicts the assumption that $\operatorname{ord}(\delta_n) \to 0$ as $n \to \infty$. \Box

Remark. The Theorem also holds when the regular ring A is not assumed to be a domain, if the hypothesis that R be torsion-free over A is taken to mean that every element of A° is a nonzero divisor on R, and the condition that R be generically étale over A is taken to mean that $R_{\mathfrak{p}}$ is étale over $A_{\mathfrak{p}}$ for every minimal prime \mathfrak{p} of A. In this case, A is a finite product of regular domains, there is a corresponding product decomposition of R, and each factor of R is module-finite, torsion-free, and generically étale over the corresponding factor of A. The result follows at once from the results for the individual factors. \Box

In the course of the proof of the Theorem we have demonstrated the following:

Corollary. Let (A, m, K) be a complete regular local ring, let R be module-finite, torsionfree and generically étale over A, and let ord by a \mathbb{Z} -valued valuation on A nonnegative on A and positive on m. Extend ord to a $\mathbb{Z}[1/p]$ -valued valuation on A^{∞} . Let $N \subseteq M$ by R-modules and let $u \in M$. Then the following two conditions are equivalent:

- (1) $u \in N_M^*$.
- (2) There exists an infinite sequence of elements $\{\delta_n\}_n$ of $A^{\infty} \{0\}$ such that $\operatorname{ord}(\delta_n) \to 0$ as $n \to \infty$ and for all $n, \ \delta_n \otimes u$ is in the image of $R^{\infty} \otimes_R N$ in $R^{\infty} \otimes_R M$.

This result is surprising: in the standard definition of tight closure, the δ_n are all q th roots of a single element c. Here, they are permitted to be entirely unrelated. We shall soon prove a better result in this direction, in which the multipliers are allowed to be arbitrary elements of R^+ whose orders with respect to a valuation are approaching 0.