
Math 711: Lecture of November 9, 2007

We note the following fact from field theory:

Proposition. Let K be a field of prime characteristic p > 0, let L be a separable algebraic
extension of K, and let F be a purely inseparable algebraic extension of K. Then the map
F⊗KL to the compositum L[F ] (which may be formed within a perfect closure or algebraic
closure of L) such that a⊗ b 7→ ab is an isomorphism.

Proof. The map is certainly onto. It suffices to show that F ⊗K L is a field: every element
has a q th power in L, and so if the ring is reduced it must be a field, and the injectivity
of the map follows. L is a direct limit of finite separable algebraic extensions of K, and
so there is no loss of generality in assuming that the L is fnite over K. The result now
follows from the second Corollary on p. 4 of the Lecture Notes from September 19, or the
argument given at the bottom of p. 6 of the Lecture Notes from October 19. �

This fact is referred to as the linear disjointness of separable and purely inseparable
field extensions.

In consequence:

Corollary. Let L be a separable algebraic extension of K, a field of prime characteristic
p > 0. Then for every q = pe, L[K1/q] = L1/q.

Proof. We need to show that every element of L has a q th root in L[K1/q]. Since L
is a directed union of finite separable algebraic extensions of K, it suffices to prove the
result when L is a finite separable algebraic field extension of K. Let [L : K] = d. The
field extension K1/q ⊆ L1/q is isomorphic with the field extension K ⊆ L. Consequently,
[L1/q : K1/q] = d also. Since K1/q ⊆ L[K1/q] ⊆ L1/q, to complete the proof it suffices to
show that [L[K1/q] : K1/q] = d as well. But L[K1/q] ∼= K1/q ⊗K L, and so its dimension as
a K1/q-vector space is the same as the dimension of L as a K-vector space, which is d. �

We next prove:

Proposition. Let R be module-finite, torsion-free, and generically étale over a regular
domain A of prime characteristic p > 0.

(a) R is reduced.

(b) For every q, then map A1/q⊗AR → R[A1/q] is an isomorphism. Likewise, A∞⊗AR →
R[A∞] is an isomorphism.

(c) For every q, R[A1/q] is faithfully flat over R. Moreover, R[A∞] is faithfully flat over
R.
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Proof. Let K = frac (A). Then K ⊗A R =
∏h

i=1 Li, where every Li is a finite separable
algebraic extension of K.

(a) Since R is torsion-free as an A-module, R ⊆ K ⊗A R =
∏h

i=1 Li, from which the
result follows.

(b) We have an obvious surjection A1/q ⊗A R � R[A1/q]. Since R is torsion-free over
A, each nonzero element a ∈ A is a nonzerodivisor on R. Since A1/q is A-flat, this remains
true when we apply A1/q ⊗A . It follows that A1/q ⊗A R is a torsion-free A-module.
Hence, we need only check that the map is injective after applying K ⊗A : if there is a
kernel, it will not be killed. The left hand side becomes K1/q⊗K

∏h
i=1 Li and the right hand

side becomes
∏h

i=1 Li[K1/q]. The map is the product of the maps K1/q ⊗ Li → Li[K1/q],
each of which is an isomorphism by the Proposition at the top of p. 1.

(c) This is immediate from part (b), since A1/q is faithfully flat over A for every q: this
is equivalent to the flatness of F e : A → A. Since A∞ is the directed union of the A1/q, it
is likewise flat over A, and since it is purely inseparable over A, it is faithfully flat. Hence,
R[A∞] is faithfully flat over R as well, by part (b). �

Theorem. Let R be module-finite, torsion-free, and generically étale over a regular do-
main A of prime characteristic p > 0. Then there exist nonzero elements c ∈ A such that
cR1/p ⊆ R[A1/p]. For such an element c, we have that c2R1/q ⊆ R[A1/q] for all q, and,
hence, also that c2R∞ ⊆ R[A∞].

Proof. Consider the inclusion R[A1/p] ⊆ R1/p, which is a module finite extension: even
A1/p ⊆ R1/p is module-finite, because it is isomorphic with A ⊆ R. If we apply K ⊗A ,
on the left hand side R becomes

∏h
i=1 Li and A1/p becomes K1/p. Hence, the left hand

side becomes

(
h∏

i=1

Li)[K1/p] ∼=
h∏

i=1

Li[K1/p] =
h∏

i=1

L1/p
i

by the Corollary on p. 1, and the right hand side also becomes
∏h

i=1 L
1/p
i . Hence, if we

take a finite set of generators for R1/p as an R[A1/p]-module, each generator is multiplied
into R[A1/p] by an element ci ∈ A◦. The product c of the ci is the required element.

Now suppose c ∈ A◦ is such that cR∞ ⊆ R[∞]. Let

ce = c1+ 1
p +···+ 1

pe

and note that
ce+1 = cc1/p

e

for e ≥ 1. We shall show by induction on e that ceR
1/q ⊆ R[A1/q] for every e ∈ N. Note

that c0 = c, and this base case is given. Now suppose that ceR
1/q ⊆ R[A1/q]. Taking p th

roots, we have that c
1/p
e R1/pq ⊆ R1/p[A1/pq]. We multiply both sides by c to obtain

ce+1R
1/pq = cc1/p

e R1/pq ⊆ cR1/p[A1/pq] ⊆ R[A1/p][A1/pq] = R[A1/pq],
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as required.

Since
1 +

1
p

+ · · ·+ 1
pe
≤ 1 +

1
2

+ · · ·+ 1
2e

< 2,

c2 is a multiple of ce in A1/q and in R[A1/q], and the stated result follows. �

Also note:

Lemma. Let R be module-finite, torsion-free, and generically étale over a domain A.

(a) If A ↪→ B is flat, injective homomorphism of domains, then B ⊗A R is module-finite,
torsion-free and generically étale over B.
In particular, if K → L is a field extension and F is an étale extension of K, then
L ⊗K F is an étale extension of L.

(b) With the same hypothesis as in the first assertion in part (a), if c ∈ R is such that
cR∞ ⊆ R[A∞], then c(B ⊗A R)∞ ⊆ (B ⊗A R)[B∞].

(c) If q is a minimal prime of R, then q does not meet A and A ↪→ R/q is again module-
finite, torsion-free, and generically étale over A.

Proof. (a) We prove the second statement first. Since F is a product of finite separable
algebraic extensions of K, we reduce at once to the case where F is a finite separable
algebraic field extension of K, and then F ∼= K[x]/(g), where x is an indeterminate and g
is an irreducible monic polynomial of positive degree over K whose roots in an algebraic
closure of K are mutually distinct. Let g = g1 · · · gs be the factorization of g into monic
irreducible polynomials over L. These are mutually distinct, and any two generate the
unit ideal. Hence, by the Chinese Remainder Theorem,

L ⊗K F ∼= L[x]/(g) ∼=
s∏

j=1

L[x]/(gj),

and every Lj [x]/gj) is a finite separable algebraic extension of L.

It is obvious that B ⊗A R is module-finite over A. By the Lemma on the first page of
the Lecture Notes from October 12, the fact that R is module-finite and torsion-free over
A implies that we have an embedding of R ↪→ A⊕h for some h. Because B is A-flat, we
have injection B ⊗A R ↪→ B⊕h, and so B ⊗A R is torsion-free over B. The fact that the
condition of being generically étale is preserved is immediate from the result of the first
paragraph above, with K = frac (A), L = frac (B), and F = K ⊗A R.

(b) Every element of B ⊗A R)1/q ∼= B1/q ⊗A1/q R1/q is a sum of elements of the form
b1/q ⊗ r1/q, while c(b1/q ⊗ r1/q) = b1/q ⊗ cr1/q. Since cr1/q ∈ R[A∞], it follows that
c(B ⊗A R)1/q ⊆ (B ⊗A R)[A∞][B1/q] ⊆ (B ⊗A R)[B∞].

(c) q cannot meet A◦ because R is torsion-free over A. Thus, q corresponds to one of
the primes of the generic fiber K ⊗A R, which is a product of finite algebraic separable
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field extensions of K. It follows that K ⊗A (R/p) is one of these finite algebraic separable
field extensions. �

We can now prove the result on test elements, which we state again.

Theorem. Let R be module-finite, torsion-free, and generically étale over a regular do-
main A. Let c ∈ R◦ be any element such that cR∞ ⊆ R[A∞]. Then c is a completely
stable big test element for R.

Proof. Let Q be any prime ideal of R, and let P be its contraction to A. Then AP → RP

satisfies the same hypothesis by parts (a) and (b) of the Lemma on p. 3, and so we may
assume that A is local and that Q is a maximal ideal of R. We may now apply B ⊗A ,
where B = Â. By the same Lemma, the hypotheses are preserved. B becomes a product of
complete local rings, one of which is the completion of RQ. The hypotheses hold for each
factor, and so we may assume without loss of generality that (A, m, K) → (R, frac m, L)
is a local map of complete local rings as well. Now suppose that H ⊆ G are R-modules
and u ∈ H∗

G. We may assume, as usual, that G is free. (This is not necessary, but may
help to make the argument more transparent.) We are not assuming, however, that G or
H is finitely generated.

We know that u ∈ H∗
G. Hence, there is an element r of R◦, such that ruq′ ∈ H [q′]

for all q′ � 0. Since r ∈ R◦, dim (R/rR) < dim (R). Since R/rR is a module finite
extension of A/(rR ∩ A), we must have that dim (A/(rR ∩ A) < dim (A), and it follows
that rR ∩ A 6= (0), i.e., that r has a nonzero multiple a ∈ A. Then auq′ ∈ H [q′] for all
q′ � 0. We may take q′ th roots and obtain a1/q′ ∈ R1/q′

H for all q′ � 0. We are using
the notation R1/q′

H for the expansion of H to R1/q′ ⊗R G, i.e., for the image of R1/q′ ⊗H
to R1/q′ ⊗R G.

Let ord denote any valuation on A with values in Z that is nonnegative on A and
positive on m. Then ord extends uniquely to a valuattion on A∞ with values in Z[1/p]
such that ord (b1/q′

) = (1/q′)ord (b) for all b ∈ A◦ and q′.

To complete the argument, we shall prove the following:

(#) Suppose that {δn}n is asequence of elements of A∞ − {0} such that δnu ∈ R∞H
for all n and ord (δn) → 0 as n →∞. Then cuq ∈ H [q] for all q, and so u ∈ H∗

G.

This not only proves that c is a big test element, it also gives a new characterization of
tight closure which is stated as a Corollary of this proof in the sequel.

Moreover, we will have proved that c is a completely stable big test element in every
completed local ring of R, and so it will follow that c is a completely stable big test element
for R.

If the statement (#) is false, fix q such that cuq /∈ H [q]. For every n, we have

δnu ∈ R∞H
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and, hence,
δq
nuq ∈ R∞H [q].

Let S = R[A∞], which we know is flat over R. We multiply by c ∈ R to obtain δq
n(cuq) ∈

SH [q], i.e., that
δq
n ∈ SH [q] :S cuq = (H [q] :R cuq)S,

by the second statement in part (a) of the Lemma on p. 1 of the Lecture Notes from
October 29 and the flatness of S over R. Since cuq /∈ H [q], H [q] :R cuq is a proper ideal J
of R, amd so δq

n ∈ JR[A∞] for all n. Now J is contained in some maximal ideal M of R.
M contains a minimal prime q of R. By part (c) of the Lemma on p. 3, A injects into R,
where R is module-finite domain extension of A generically étale over A, and m = JR is
a proper ideal of R. We can map R[A∞] onto R[A∞] Then for all n, δq

n ∈ mR[A∞] ∩A∞.
Let d denote the torsion-free rank of R over A. By the Lemma at the bottom of p. 5 of
the Lecture Notes from November 7, we have that

q ord (δn) = ord (δq
n) ≥ 1

d!
for all n, and so

ord δn ≥
1

qd!
for all n. Since q and d are both fixed and n → ∞, this contradicts the assumption that
ord (δn) → 0 as n →∞. �

Remark. The Theorem also holds when the regular ring A is not assumed to be a domain,
if the hypothesis that R be torsion-free over A is taken to mean that every element of A◦

is a nonzero divisor on R, and the condition that R be generically étale over A is taken to
mean that Rp is étale over Ap for every minimal prime p of A. In this case, A is a finite
product of regular domains, there is a corresponding product decomposition of R, and
each factor of R is module-finite, torsion-free, and generically étale over the corresponding
factor of A. The result follows at once from the results for the individual factors. �

In the course of the proof of the Theorem we have demonstrated the following:

Corollary. Let (A, m, K) be a complete regular local ring, let R be module-finite, torsion-
free and generically étale over A, and let ord by a Z-valued valuation on A nonnegative
on A and positive on m. Extend ord to a Z[1/p]-valued valuation on A∞. Let N ⊆ M by
R-modules and let u ∈ M . Then the following two conditions are equivalent:

(1) u ∈ N∗
M .

(2) There exists an infinite sequence of elements {δn}n of A∞−{0} such that ord (δn) → 0
as n →∞ and for all n, δn ⊗ u is in the image of R∞ ⊗R N in R∞ ⊗R M . �

This result is surprising: in the standard definition of tight closure, the δn are all q th
roots of a single element c. Here, they are permitted to be entirely unrelated. We shall
soon prove a better result in this direction, in which the multipliers are allowed to be
arbitrary elements of R+ whose orders with respect to a valuation are approaching 0.


