
Math 711: Lecture of November 12, 2007

Before proceeding further with our treatment of test elements, we note the following
consequence of the theory of approximately Gorenstein rings. We shall need similar split-
ting results in the proof of the generalization, stated in the first Theorem on p. 2, of the
Corollary near the bottom of p. 5 of the Lecture Notes from November 9.

Theorem. Let R be a weakly F-regular ring. Then R is a direct summand of every
module-finite extension ring S. Moreover, if R is a complete local ring as well, R is a
direct summand of R+. In particular, these results hold when R is regular.

Proof. Both weak F-regularity and the issue of whether R → S splits are local on the
maximal ideals of R. Therefore, we may assume that (R, m, K) is local. Since R is
approximately Gorenstein, there is a descending chain {It}t of m-primary irreducible ideals
cofinal with the powers of m. By the splitting criterion in the Theorem at bottom of p. 4
and top of p. 5 of the Lecture Notes from October 24, R is a direct summand of S (or R+

in case R is complete local) if and only if It is contracted for all t. In fact, ItS ∩ R ⊆ I∗t
by the Theorem near the bottom of p. 1 of the Lecture Notes of October 12, and, by
hypothesis, I∗t = It. �

It is an open question whether a locally excellent Noetherian domain R of prime char-
acteristic p > 0 is weakly F-regular if and only if (∗) R is a direct summand of every
module-finite extension ring. The issue is local on the maximal ideals of R, and reduces to
the excellent local case. By the main result of [K. E. Smith, Tight Closure of Parameter
Ideals, Inventiones Math. 115 (1994) 41–60], the tight closure of an ideal generated by
part of a system of parameters is the same as its plus closure. From this result, it is easy
to see that (∗) implies that R is F-rational. In the Gorenstein case, F-rational is equivalent
to F-regular, so that the equivalence of the two conditions holds in the locally excellent
Gorenstein case. We shall prove Smith’s result that tight closure is the same as plus clo-
sure for parameter ideals. The argument depends on the use of local cohomology, and
also utiliuzes general Néron desingularization. We shall also need the main result of [M.
Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras,

Annals of Math. bf 135 (1992) 53–89], that if R is an excellent local domain, then R+

is a big Cohen-Macaulay algebra over R. We shall prove this using a recent idea method
of Huneke and Lyubeznik: cf. [C. Huneke and G. Lyubeznik, Absolute integral closure in
positive characteristic, Advances in Math. 210 (2007) 498–504].

Our next immediate goal is to prove a strengthened version of the Corollary on p. 5 of
the Lecture Notes from November 9. First note that if A is a regular local ring, we can
choose a Z-valued valuation ord that is nonnegative on A and positive on m. For example,
if a 6= 0 we can let ord (a) be the largest integer k such that a ∈ mk. We thus have an
inclusion A ⊆ V where V is a Noetherian discrete valuation ring. Now assume that A is
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complete, and complete V as well. That is, we have a local injection A ↪→ V . We also
have an injection A+ ↪→ V +

For every module-finite extension domain R of A, where we think of R as a subring of
A+, we may form V [R] within V +. V [R] is a complete local domain of dimension one that
contains V . Its normalization, which we may form within V +, is a complete local normal
domain of dimension one, and is therefore a discrete valuation ring VR. The generator of
the maximal ideal of V is a unit times a power of the generator of the maximal ideal of
VR. Hence, ord extends to a valuation on R with values in the abelian group generated

by
1
h

, where h is the order of the generator of the maximal ideal of V in VR. Since A+

is the union of all of these rings R, ord extends to a Q-valued valuation on R+ that is
nonnegative on R+ and postive on the maximal ideal of R+.

If R is any complete local domain, we can represent R as a module-finite extension of
a complete regular local ring A. Hence, we can choose a complete discrete valuation ring
VR and a local injection R → VR, and extend the corresponding Z-valued valuation to a
Q-valued valuation that is nonnegative on R+ and positive on the maximal ideal of R+.

Theorem (valuation test for tight closure). Let (R, m, K) be a complete local do-
main of prime characteristic p > 0 and let ord be a Q-valued valuation on R+ that is
nonnegative on R+ and positive on the maximal ideal of R+. Let N ⊆ M be arbitary
R-modules and u ∈ M . Then the following two conditions are equivalent:

(1) u ∈ N∗
M .

(2) There exists a sequence {vn} of elements of R+ − {0} such that ord (vn) → 0 as
n →∞ and vn ⊗ u is in the image of R+ ⊗R N in R+ ⊗R M for all n.

We need several preliminary results in order to prove this.

The following generalization of colon-capturing can be further generalized in several
ways. We only give a version sufficient for our needs here.

Theorem. Let (R, m, K) be a reduced excellent local ring of prime characteristic p > 0.
Let x1, . . . , xk ∈ m be part of a system of parameters modulo every minimal prime of R.
Let a1, . . . , ak, b1, . . . , bk ∈ N, and assume that ai < bi for all i. Then

(xb1
1 , . . . , xbk

k )∗ :R xa1
1 · · · xak

k = (xb1−a1
1 , . . . , xbi−ai

k )∗.

Proof. Let di = bi − ai. It is easy to see that each xdi
i multiplies xa1

1 · · · xak

k into

(xb1
1 , . . . , xbk

k ) ⊆ (xb1
1 , . . . , xbk

k )∗,

since di + ai = bi for every i. But if I is tightly closed, so is any ideal of the form I :R y.
(This is equivalent to the statement that if 0 is tightly closed in R/I, then it is also tightly
closed in the smaller module y(R/I) ∼= R/(I :R y).) Since

(xd1
1 , . . . , xd

k) ⊆ (xb1
1 , . . . , xbk

k )∗ :R xa1
1 · · · xak

k ,
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we also have
(xd1

1 , . . . , xdk

k )∗ ⊆ (xb1
1 , . . . , xbk

k )∗ :R xa1
1 · · · xak

k

Thus, it suffices to prove the opposite inclusion. By induction on the number of ai that
are not 0, we reduce at once to the case where only one of the ai is not 0, because, quite
generally,

I :R (yz) = (I :R y) :R z.

By symmetry, we may assume that only ak 6= 0. We write xk = x, ak = a, bk = b

and dk = d. Let J = (xb1
1 , . . . , x

bk−1
k−1 ). Suppose xau ∈ (J + xbR)∗. Let c ∈ R◦ be a

test element. Then cxqauq ∈ J [q] + xqbR for all q � 0, and for such q, we can write
cxqauq = jq + xqbrq, where jq ∈ J [q] and rq ∈ R. Then xqa(cuq − rqx

qd) ∈ J∗, and by
the form of colon-capturing already established, we have that cuq − rqx

qd ∈ (J [q])∗, and,
hence,

c2uq − crqx
qd ∈ J [q].

Consequently,
c2uq ∈ J [q] + xqdR = (J + xdR)q

for all q � 0, and so u ∈ (J + xdR)∗, as required. �

Theorem. Let (A, m, K) be a complete regular local ring of characteristic p and let ord
be a Q-valued valuation nonnegative on A+, and positive on the maximal ideal of A+.
Let v ∈ A+−{0} be an element such that ord (v) is strictly smaller than the order of any
element of m (it suffices to check the generators of m). Then the map A → A+ such that
1 7→ v splits, i.e., there is A-linear map θ : A+ → A such that θ(v) = 1.

Proof. Let x1, . . . , xn be minimal generators of m. Since A is complete and Gorenstein, it
suffices, by the Theorem at the top of p. 3 of the Lecture Notes from October 24 to check
that for all t,

xt
1 · · ·xt

nv /∈ (xt+1
1 , . . . , xt+1

n )A+.

Suppose that

xt
1 · · ·xt

nv =
n∑

i=1

six
t+!
i .

Let S = A[v, s1, . . . , si]. In S we have

v ∈ (xt+1
1 , . . . , xt+1

n )S :S xt
1 · · · xt

k,

and so v ∈
(
(x1, . . . , xn)S

)∗, by the preceding Theorem on colon-capturing. But then v is
in the integral closure of (x1, . . . , xn)S, and this contradicts ord (v) < mini ord (xi). �
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Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0 and let
N ⊆ M be R-modules (not necessarily finitely generated). Let u ∈ M . Then the following
conditions are equivalent:

(1) u ∈ N∗
M .

(2) There exist a fixed integer s ∈ N and arbitrarily large integers q such that N [q] :R uq

meets R−ms.

(3) There exist a fixed integer s ∈ N such that N [q] :R uq meets R−ms for all q.

The following two conditons are also equivalent:

(1′) u /∈ N∗
M .

(2′) For all s, N [q] :R uq ⊆ ms for all q � 0.

Proof. Let Jq = (N [q])∗ :R uq, where (N [q])∗ = (N [q])∗Fe(M). Then the sequence of ideals
Jq is descending. To see this, suppose that r ∈ Jpq. Then rupq ∈ (N [pq])∗. Let c be a big
test element for R. Then for all q′ � 0,

crq′upqq′ ∈ N [pqq′],

from which we have c(ruq)pq′ ∈ (N [q])[pq′] since rpq” is a multiple of rq′ . This shows that
ruq ∈ (N [q])∗ as well, and so Jpq ⊆ Jq for every q.

Let J =
⋂

q Jq. We shall show that whether J 6= (0) or J = (0) governs whether u /∈ N∗
M

or u ∈ N∗M .

If J 6= 0 let d ∈ J − {0}. Then duq ∈ (N [q])∗ for all q, and then (cd)uq ∈ N [q] for all q,
and so u ∈ N∗

M .

If J = (0), then by Chevalley’s Lemma (see p. 6. of the Lecture Notes from October
24) we have that for all s the ideal J :[q]⊆ ms for al q � 0, and it follows as well that
N [q] :R uq ⊆ ms for all q � 0,

If u ∈ J we have that c ∈ N [q] :R uq for all q. (3) obviously holds, since we can choose s
such that c /∈ ms, and (3) ⇒ (2). Now suppose (2) holds. If u /∈ N∗

M , we have contradicted
the result of the preceding paragraph. Hence, (1), (2), and (3) are equivalent.

The equivalence of (1′) and (2′) is the contrapositive of the equivalence of (1) and
(2). �


