
Math 711: Lecture of November 14, 2007

We continue to develop the preliminary results needed to prove the Theorem stated on
p. 2 of the Lecture Notes from November 12. Only one more is needed.

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0, and
let ord be a Q-valued valuation nonnegative R+ and positive on the maximal ideal of R+.
Then there exist an integer s ≥ 1 and a positive rational number δ such that if v ∈ R+

and ord (v) < δ, then there exists an R-linear map φ : R+ → R such that φ(v) ∈ R−ms.

Proof. R is module-finite over a complete regular local ring A. Note that we may identify
R+ = A+. Let δ be the minimum value of ord on a finite set of generators of the maximal
mA of A.

The module ω = HomA(R, A) is a finitely generated A-module, but also has the struc-
ture of an R-module. Evidently, it is a finitely generated R-module. ω is torsion-free over
A since its elements are functions with values in A. Since every nonzero element of R has
a nonzero multiple in A, it is also torsion-free over R. Let K = frac (A). Then K⊗A R = L
is the fraction field of R: let h be its degree, i.e., the torsion-free rank of R over A. Then

K ⊗A ω ∼= HomK(K ⊗A R, K) ∼= HomcK(L,K)

also has dimension d as a K-vector space. Hence, as an L-vector space, it must have
dimension 1. Therefore, ω is a rank one torsion-free R-module, and so there exists an
isomorphism ω ∼= J ⊆ R, where J is a nonzero ideal of R. Now mAR is primary to m, and
so mk ⊆ mAR for some k. We may apply the Artin-Rees Lemma to J ⊆ R to conclude
that

ms ∩ J = msR ∩ J ⊆ mkJ

for s sufficiently large. Choose one such value of s. Then

ms ∩ J ⊆ mkJ ⊆ (mAR)J = mAJ.

We shall prove that the desired conclusion holds for the values of δ and s that we have
chosen. We may think of R+ as A+ and apply the Theorem on p. 3 of the Lecture Notes
from November 12 to choose an A-linear map θ : R+ → A such that θ(v) = 1. We then
have an induced map

HomA(R, R+) θ∗−→ HomA(R, A)

which is R-linear, and hence a composite map

R+ µ−→ HomA(R, R+) θ∗−→ HomA(R, A)
∼=−→ J

⊆−→ R
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where the first map µ is the map that takes u ∈ R+ to the map fu : R → R+ such
that fu(r) = ur for all r ∈ R. Note that µ is R-linear using the R-module structure on
HomA(R, R+) that comes from R, since r′u maps to fr′u and

fr′u(r) = r′ur = u(r′r) = fu(r′r) = (r′fu)(r).

Call the composite map φ.

We shall prove that φ has the required property. First note that (θ∗◦µ)(v) ∈ HomA(R, A)
is very special: its value on 1 is θ(v·1) = θ(v) = 1. Thus, it is a splitting of the inclusion map
A ↪→ R. But this means that (θ∗◦µ)(v) /∈ mAHom(R, A), for maps in mAHomA(R, A) can
only take on values that are in mA. It follows that φ(v) /∈ mAJ ⊆ R. Since ms∩J ⊆ mAJ ,
it also follows that φ(v) /∈ ms, as required. �

We are now ready to prove the first Theorem stated on p. 2 of the Lecture Notes from
November 12.

Proof of the valuation test for tight closure. We may assume without loss of generality
that M = G is free, that N = H ⊆ G, and that u ∈ G. We fix a basis for G, and identify
Fe(G) ∼= G. We identify H with its image 1 ⊗ H ⊆ R+ ⊗R G, and write R+H for
〈R+ ⊗R H〉 which we may think of as all R+-linear combinations of elements of H in
R+ ⊗R G. We shall simply write wg for w ⊗ g when w ∈ R+ and g ∈ G.

Suppose that we have vnu ∈ R+H for all n and ord (vn) → 0. Choose s and δ as in the
preceding Theorem. Fix q, and choose n so large that ord (vn) < δ/q, so that ord (vq

n) < δ.
Choose an R-linear map φ : R+ → R such that φ(vq

n) ∈ R −ms. Then tensoring with
G yields an R-linear map R+ ⊗R G → G such that wg 7→ φ(w)g for every w ∈ R+ and
g ∈ G.

Since vnu ∈ R+H, we may apply Fe to obtain that

vq
nuq ∈ R+H [q].

We may now apply φ⊗ 1G and conclude that

φ(vq
n)uq ∈ H [q],

where φ(vq
n) ∈ R −ms. Hence, for every q, H [q] :R uq meets R −ms. By the Theorem at

the top of p. 4 of the Lecture Notes from November 12, u ∈ H∗
G, as required. �

Capturing normalizations using discriminants

Consider A → R where A is a normal or possibly even regular Noetherian domain and
R is module-finite, torsion-free, and generically étale over A. In this situation, we know
that R is reduced. It has a normalization R′ in its total quotient ring T . Under these
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hypotheses, T may be identified with K⊗A R, which is a finite product of finite separable
algebraic field extensions L1× · · ·×Lh of K. R′ is the product of the normalizations R′

i of
the domains Ri = R/pi obtained by killing a minimal prime pi of R. There is one minimal
prime for each Li, namely, the kernel of the composite homomorphism

R → K⊗A R ∼=
h∏

i=1

Li � Li,

and Li is the fraction field of the domain Ri.

We want to develop methods of finding elements c ∈ R◦ that “capture” the normaliza-
tion R′ in the sense that cR′ ⊆ R. Moreover, we want a construction such that c continues
to have this property after a flat injective base change A ↪→ B of regular domains. We
shall see that whenever we have such an element c ∈ R◦, it is a big completely stable test
element.

There are two methods for constructing such elements c. One is to take c to be a
discriminant for R over A: we explain this idea in the immediate sequel. The other is to
use the Lipman-Sathaye Jacobian Theorem.

The use of discriminants is much more elementary, and we explore this method first.

Discussion: discriminants. Let A be a normal Noetherian domain and let R be a
module-finite torsion-free generically étale extension of A. Let K = frac (A) and

T = K ⊗A R ∼=
h∏

i=1

Li,

where the Li are finite separable algebraic field extensions of K. We first note that we
have a trace map TraceT /K : T → K that is K linear. Such a map is defined whenever T is
a K-algebra that is finite-dimensional as as K-vector space. The trace of λ ∈ T is defined
to be the trace of the linear transformation fλ : T → T that sends α 7→ λα. To calculate
the trace, one takes a basis for T over K, finds the matrix of multiplication by λ, and then
takes the sum of the diagonal entries of the matrix. The trace is independent of how one
chooses the K-basis for T . We summarize thes properties as follows.

Proposition. Let T be a K-algebra that is finite-dimensional as a K-vector space. Then
TraceT /K : T → K is a K-linear map.

If K′ is any field extension of K and T ′ = K′ ⊗K T , then

TraceT ′/K′ = 1K′ ⊗K TraceT /K,

i.e., if β ∈ K′ and λ ∈ T , then

TraceT ′/K′(β ⊗ λ) = β TraceT /K(λ).
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Proof. The previous discussion established the first statement, while the second statement
is a consequence of the following two observations. First, if θ1, . . . , θn is a basis for T over
K, then the images 1⊗θ1, . . . , 1⊗θn of these elements in K′⊗KT form a basis for K′⊗KT
over K′. Second, If the matrix for multiplication by λ with respect to the basis θ1, . . . , θn

is M, the matrix for multiplication by β ⊗ λ with respect to the basis 1⊗ θ1, . . . , 1⊗ θn

is βM, from which the stated result is immediate. �

Because A is normal, the restriction of the trace map to R takes values in A, not just
in K. One may argue as follows: a normal Noetherian domain is the intersecftion of the
discrete valuation domains V of the form AP ⊆ K, where P is a height one prime of A.
Thus, we may make a base change from A to such a ring V , and it suffices to prove the
result when A = V is a Noetherian discrete valuation ring. In this case, because R is
torsion-free, it is free, and we may choose a free basis for R over V . This will also be a
basis for L over K. If we compute trace using this basis, all entries of the matrix are in V ,
and so it is obvious that the trace is in V .

We note that when T =
∏h

i=1 Li is a finite product of finite separable algebraic field
extensions, the map B : T ×T → K that sends (λ, λ′) 7→ TraceT /K(λλ′) is a nondegenerate
symmetric bilinear form. This is a well known characterization of separability of finite
algebraic field extensions if there is only one Li. See the Lecture Notes from December 3
from Math 614, Fall 2003, pp. 4–6. In the general case, choose a basis for each Li and use
the union as a basis for T . It follows at once that

TraceT /K(λ1, . . . , λh) =
h∑

i=1

TraceTi/K(λi),

since the matrix of multiplication by (λ1, . . . , λh) is the direct sum of the matrices of
multiplciation by the individual λi. To show non-degeneracy, consider a nonzero element
λ = (λ1, . . . , λh). Then some λi is not 0: by renumbering, we may assume that λ1 6= 0.
Since TraceL1/K yields a nondegenerate bilinear form on L1, we can choose λ′1 ∈ L1 such
that

TraceL1/K(λ′1λ1) 6= 0.

Let λ′ ∈ L be the element (λ′1, 0, . . . , 0). Then

TraceT /K(λ′λ) = TraceL1/K(λ′1λ1) 6= 0.

By a discriminant for R over A we mean an element of A obtained as follows: choose
θ = θ1, . . . , θn ∈ R whose images in L are a basis for T over K, and let

D = Dθ = det
(
TraceL/K(θiθj)

)
.

Since every θiθj ∈ R, the matrix has entries in A, and the determinant is in A. Since the
corresponding bilinear form is nondegenerate, D is a nonzero element of A. The following
result is very easy.
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Proposition. Let R be module-finite, torsion-free, and generically étale over a normal
Noetherian domain A. Let A ↪→ B be a flat injective map of normal Noetherian domains.

(a) B → B ⊗A R is module-finite, torsion-free, and generically étale.

(b) If the images of θ1, . . . , θn ∈ R in K⊗A R are a K basis for K⊗A R, then their images
θ′ = 1⊗ θ1, . . . , 1⊗ θn in B⊗A R are a basis for frac (B)⊗B (B⊗A R) over frac (B).

(c) The image of the discriminant Dθ in B is the discriminant Dθ′ of the basis θ′ =
1⊗ θ1, . . . , 1⊗ θn for the extension B → B ⊗A R.

Proof. We have already proved part (a): this is part (a) of the Lemma on p. 3 of the
Lecture Notes from November 9. Part (b) is obvious, and part (c) follows from part (b),
the definition of the discriminant, and the second statement of the Proposition on p. 3. �

The key property of discriminants for us is:

Theorem. Let R be module-finite, torsion-free, and generically étale over a normal Noe-
therian doman A with fraction field K. Let θ1, . . . , θn ∈ R give a K-vector space basis for
T = K ⊗A R. Let R′ denote the normalization of R in its total quotient ring A ⊗A R.
Then Dθ, the discriminant of θ1, . . . , θn, is a nonzero element of A such that DθR

′ ⊆ R.
In consequence, R′ is module-finite over R.

Proof. Let s ∈ R′. Then s ∈ K ⊗R, and so we can write s uniquely in the form

(#) s =
n∑

j=1

αjθj ,

where the αi ∈ K. For every θi we have that

θis =
n∑

j=1

αiθiθj .

Let Trace denote TraceT /K, and apply the K-linear operator Trace to both sides of the
equation. Since θis is integral over R, its trace ai is in A. This gives n equations

ai =
n∑

j=1

αjTrace(θiθj), 1 ≤ i ≤ n.

Let M denote the matrix
(
Trace(θiθj)

)
, which has entries in A. Then these equations give

a matrix equation  a1
...

an

 = M

 α1
...

αn

 .
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Let adj(M) denote the classical adjoint of M, the transpose of the matrix of cofactors.
Then adj (M)M = DIn where D = det(M) = Dθ, and In is the size n identity matrix.
Note that adj(M) has entries in A. Then Dα1

...
Dαn

 = DIn

 α1
...

αn

 = adj (M)M

 α1
...

αn

 = adj (M)

 a1
...

an

 ,

and the rightmost column matrix clearly has entries in A. Hence, every Dαi ∈ A, and it
follows from the displayed formula (#) on the preceding page that Ds ∈ R. Since s ∈ R′

was arbitrary, we have proved that DR′ ⊆ R, as requried.

The final statement follows because R′ ∼= DR′ ⊆ R as A-modules, and so R′ is finitely
generated over A and, hence, over R. �


