
Math 711: Lecture of November 16, 2007

We next observe:

Lemma. Let A be a regular Noetherian domain of prime characteristic p > 0, and let
A → R be module-finite, torsion-free, and generically étale. Then for every q, R1/q is
contained in the normalization of R[A1/q].

Proof. Fix q = pe, and let
S = R[A1/q] ∼= A1/q ⊗A R.

Since every element of R1/q has its q th power in R ⊆ S, the extension is integral. Let
K = frac (A). We can write

K ⊗A R =
h∏

i=1

Li

where every Li is finite separable algebraic extension field frac (A) = K. Then

K ⊗A R1/q = K1/q ⊗A1/q R1/q,

since R1/q contains A1/q and inverting every element of A − {0} makes every element of
A1/q − {0} invertible. Hence,

K ⊗A R1/q ∼=
h∏

i=1

L1/q
i .

This is the total quotient ring of R1/q. On the other hand,

K ⊗A (A1/q ⊗A R) ∼= K1/q ⊗K (K ⊗A R) ∼= K1/q ⊗K
h∏

i=1

Li
∼=

h∏
i=1

(K1/q ⊗K Li) ∼=
h∏

i=1

L1/q
i

where the rightmost isomorphism follows from the Corollary on p. 1 of the Lecture Notes
from November 9. Thus, R1/q is contained in the total quotient ring of R[A1/q]. �

We can now show that discriminants yield test elements.

Theorem. Let A be a regular Noetherian domain of prime characteristic p > 0, and
let A → R be module-finite, torsion-free, and generically étale. Let K = frac (A), let
θ = θ1, . . . , θn be elements of R that form a basis for T = K ⊗K R, and let D = Dθ ∈ A◦

be the discriminant. Then D is a competely stable big test element for R.

Moreover, if A → B is an injective flat homomorphism of regular domains, then the
image of D in B ⊗A R is a completely stable big test element for B ⊗A R.

1



2

Proof. It follows from the Lemma above and the Theorem on p. 5 of the Lecture Notes
of November 14 that DR1/q ⊆ R[A1/q] for all q, Hence, by the Theorem on p. 4 of the
Lecture Notes of November 9, D is a completely stable big test element for R.

The final statement now follows because, by parts (a) and (b) of the Lemma on p. 3 of
the Lecture Notes from November 9 and the Proposition at the top of p. 5 of the Lecture
Notes from November 14, the hypotheses are preserved by the base change from A to
B. �

We next want to show that the Lipman-Sathaye Jacobian Theorem produces test ele-
ments in an entirely similar way: it also provides elements that “capture” the normalization
of an extension of A and are stable under suitable base change.

Test elements using the Lipman-Sathaye Jacobian Theorem

Until further notice, A denotes a Noetherian domain with fraction field K, and R denotes
an algebra essentially of finite type over A such that R is torsion-free and generically étale
over A, by which we mean that T = K⊗R S is a finite product of finite separable algebraic
field extensions of K. Note that T may also be described as the total quotient ring of S.
We shall denote by R′ the integral closure of R in T .

We shall write JR/A for the Jacobian ideal of R over A. If R is a finitely generated
A-algebra, so that we may think of R as

A[X1, . . . , Xn]/(f1, . . . , fh),

then JR/A is the ideal of R generated by the images of the size n minors of the Jacobian
matrix (∂fj/∂xi) under the surjection A[X] → R. This turns out to be independent of
the presentation, as we shall show below. Moreover, if u ∈ R, then JRu/A = JR/ARu.
From this one sees that when R is essentially of finite type over A and one defines JS/R

by choosing a finitely generated subalgebra R0 of R such that R = W−1R0 for some
multiplicative system W of R0, if one takes JR/A to be JR0/AR, then JR/A is independent
of the choices made. We shall consider the definition in greater detail later. We use
Jacobian ideals to state the following result, which we shall use without proof here.

Theorem (Lipman-Sathaye Jacobian theorem). Let A be regular domain with frac-
tion field K and let R be an extension algebra essentially of finite type over A such that
R is torsion-free and generically étale over A. Let T = K ⊗A R and let R′ be the integral
closure1 of R in L. If θ ∈ T is such that θJR′/A ⊆ R′ then θJR/AR′ ⊆ R.

In particular, we may take θ = 1. Thus, if c ∈ JR/A, then cR′ ⊆ R.

In other words, elements of JR/A “capture” the integral closure of R: as in the case
of discriminants, this will enable us to prove the existence of completely stable big test
elements.

1One can show that R′ is module-finite over R.
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In constructing test elements, we shall only use the Theorem in the case where R
is module-finite over A as well. In this case, we already know from our treatment of
discriminants that R′ is module-finite over R. The result that R′ is module-finite over R
in the more general situation is considerably more difficult: see the Theorem at the bottom
of p. 1 of the Lecture Notes from October 4 from Math 711, Fall 2006.

The Lipman-Sathaye Theorem is proved in [J. Lipman and A. Sathaye, Jacobian ideals
and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981) 199–222], although it is
assumed that R is a domain in that paper. The argument works without essential change
in the generality stated here. See also [M. Hochster, Presentation depth and the Lipman-
Sathaye Jacobian theorem, Homology, Homotopy and Applications (International Press,
Cambridge, MA) 4 (2002) 295–314] for this and further generalizations. As mentioned
earlier, the proof of the Jacobian Theorem is given in the Lecture Notes from Math 711,
Fall 2006, especially the Lecture Notes from September 25, 27, and 29, as well as the
Lectures of October 2, 4, 6, 9, 11, and 13.

We note that the hypotheses of the Lipman-Sathaye are stable under flat base change.

Proposition. Let R be essentially of finite type, torsion-free, and generically étale over
the regular domain A, and let A ↪→ B be a flat injective homomorphism to a regular domain
B. Then B ⊗A R is essentially of finite type, torsion-free, and generically étale over B.

Morever, J(B⊗AR)/B = JR/A(B ⊗A R).

Proof. The proof that B⊗A R is essentially of finite type over B is completely straightfor-
ward. The proof that the extension remains generically étale is the same as in the Lemma
on p. 3 of the Lecture Notes from Novermber 9. The proof that B⊗A R is torsion-free over
B needs to be modified slightly. R is a directed union of finitely generated torsion-free
A-modules N . Each such N is a submodule of a finitely generated free A-module. Hence,
each B ⊗A N is a submodule of a finitely generated free B-module. Since B ⊗A R is the
directed union of these, it is torsion-free over B.

The proof of the last statement reduces at once to the case where R is finitely generated
over A. Suppose that

R = A[x1, . . . , xn]/(f1, . . . , fm).

Then
B ⊗A R ∼= B[x1, . . . , xn]/(f1, . . . , fm)

(the ideal in the denominator now an ideal of a larger ring, but it has the same generators).
The result is now immediate form the definition. �
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Why the Jacobian ideal is well-defined

We next want to explain why the Jacobian ideal is well-defined. We assume first that R
is finitely generated over A. Suppose that R = A[x1, . . . , xn]/I. To establish independence
of the presentation we first show that the Jacobian ideal is independent of the choice of
generators for the ideal I. Obviously, it can only increase as we use more generators. By
enlarging the set of generators still further we may assume that the new generators are
obtained from the orginal ones by operations of two kinds: multiplying one of the original
generators by an element of the ring, or adding two of the original generators together. Let
us denote by ∇f the column vector consisting of the partial derivatives of f with respect to
the variables. Since ∇(gf) = g∇f +f∇g and the image of a generator f in R is 0, it follows
that the image of ∇(gf) in R is the same as the image of g∇f when f ∈ I. Therefore, the
minors formed using ∇(gf) as a column are multiples of corresponding minors using ∇f
instead, once we take images in R. Since ∇(f1 + f2) = ∇f1 +∇f2, minors formed using
∇(f1 + f2) as a column are sums of minors from the original matrix. Thus, independence
from the choice of generators of I follows.

Now consider two different sets of generators for R over A. We may compare the
Jacobian ideals obtained from each with that obtained from their union. This, it suffices
to check that the Jacobian ideal does not change when we enlarge the set of generators
f1, . . . , fs of the algebra. By induction, it suffices to consider what happens when we
increase the number of generators by one. If the new generator is f = fs+1 then we may
choose a polynomial h ∈ A[X1, . . . , Xs] such that f = h(f1, . . . , fs), and if g1, . . . , gh

are generators of the original ideal then g1, . . . , gh, Xs+1−h(X1, . . . , Xs) give generators
of the new ideal. Both dimensions of the Jacobian matrix increase by one: the original
matrix is in the upper left corner, and the new bottom row is (0 0 . . . 0 1). The result is
then immediate from

Lemma. Consider an h + 1 by s + 1 matrix M over a ring R such that the last row is
(0 0 . . . 0 u), where u is a unit of R. Let M0 be the h by s matrix in the upper left corner
of M obtained by omitting the last row and the last column. Then Is(M0) = Is+1(M).

Proof. If we expand a size s + 1 minor with respect to its last column, we get an R-linear
combination of size s minors of M0. Therefore, Is+1(M) ⊆ Is(M0). To prove the other
inclusion, consider any s by s submatrix ∆0 of M0. We get an s+1 by s+1 submatrix ∆
of M by using as well the last row of M and the appropriate entries from the last column
of M. If we calculate det(∆) by expanding with respect to the last row, we get, up to
sign, u det(∆0). This shows that Is(M0) ⊆ Is+1(M). �
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This completes the argument that the Jacobian ideal JR/A is independent of the pre-
sentation of R over A.

We next want to observe what happens to the Jacobian ideal when we localize S at one
(or, equivalently, at finitely many) elements. Consider what happens when we localize at
u ∈ R, where u is the image of h(X1, . . . , Xs) ∈ A[X1, . . . , Xs], where we have chosen an
A-algebra surjection A[X1, . . . , Xs] � R. We may use 1/u as an additional generator, and
introduce a new variable Xs+1 that maps to 1/u. We only need one additional equation,
Xs+1h(X1, . . . , Xs) − 1, as a generator. The original Jacobian matrix is in the upper
left corner of the new Jacobian matrix, and the new bottom row consists of all zeroes
except for the last entry, which is h(X1, . . . , Xs). Since the image of this entry is u and
so invertible in R[u−1], the Lemma above shows that the new Jacobian ideal is generated
by the original Jacobian ideal. We have proved:

Proposition. If R is a finitely presented A-algebra and S is a localization of R at one
(or finitely many) elements, JS/A = JR/AS. �

If R is essentially of finite type over A, and R0 ⊆ R, R1 ⊆ R are two finitely generated
A-subalgebras such that R = W−1

0 R0 and R = W−1
1 R1, then JR0/AR = JR1/AR. Thus,

we may define JR/A to be JR0/AR for any choice of such an R0.

To see why JRi/AR does not depend on the choice of i = 0, 1, first note that each
generator of R1 is in (R0)w for some w ∈ W1. Hence, we can choose w ∈ W1 such that
R1 ⊆ (R0)w. Replacing R0 by (R0)w does not affect JR0/AR, by the Proposition above.
Therefore, we can assume that R1 ⊆ R0. Similarly, we can choose y in W1 such that each
generator of R0 is in (R1)y. Then (R0)y = (R1)y and replacing Ri by (Ri)y does not affect
JRi/AR. �

|

We now obtain the existence of test elements.

Theorem (existence of test elements via the Lipman-Sathaye theorem). Let R be
a domain module-finite and generically smooth over the regular domain A of characteristic
p. Then every element c of J = J (R/A) is such that cR1/q ⊆ A1/q[R] for all q, and, in
particular, cR∞ ⊆ A∞[R]. Thus, if c ∈ J ∩R◦, it is a completely stable big test element.

Moreover, if A ↪→ B is a flat injective homomorphism of A into a regular domain B,
the image of c is a completely stable big test element for B ⊗A R.

Proof. Since A1/q[R] ∼= A1/q ⊗A R, the image of c is in J (A1/q[R]/A1/q), and so the
Lipman-Sathaye theorem implies that c multiplies the normalization S′ of S = A1/q[R]
into A1/q[R]. But R1/q ⊆ S′ by the Lemma on p. 1. �
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Geometrically reduced K-algebras

Let K be a field, and let R be a K-algebra. For the purpose of this discussion, we do
not need to impose any finiteness condition on R.

Proposition. The following conditions on R are equivalent.

(1) For every finite purely inseparable extension L of K, L⊗K R is reduced.

(2) K∞ ⊗K R is reduced, where K∞ is the perfect closure of K.

(3) K ⊗K R is reduced, where K is an algebraic closure of K.

(4) For some field L containing K∞, L⊗K R is reduced.

(5) For every field extension L of K, L⊗K R is reduced.

Proof. If K ⊆ L ⊆ L′ are field extensions, then L′ ⊗K R = L′ ⊗L (L ⊗K R) is free and,
in particular, faithfully flat over R. Hence, L⊗K R ⊆ L′ ⊗K R, and L⊗K R is reduced if
L′ ⊗K R is reduced. Hence (5) ⇒ (3) ⇒ (2) ⇒ (4) ⇒ (2) ⇒ (1), while (1) ⇒ (2) because
K∞⊗K R is the directed union of the rings L⊗K R as L runs though the subfields of K∞

that are finite algebraic over R. Thus, it will suffice to show that (2) ⇒ (5).

For a fixed field extension L of K, L⊗K R is reduced if and only if L⊗K R0 is reduced
for every finitely generated K-subalgebra R0 of R. Hence, to prove the equivalence of (2)
and (5), it suffices to consider the case where R is finitely generated over K. In either case,
R itself is reduced. Let W be the multiplicative system of all nonzerodivisors in R. These
are also nonzerodivisors in L ⊗K R, and W−1(L ⊗K R) ∼= L ⊗K (W−1R). Therefore, in
proving the equivalence of (2) and (5), we may replace R by its total quotient ring, which
is a product of fields finitely generated as fields over K. Thus, we may assume without
loss of generality that R is a field finitely generated over K. In this case, L ⊗K R is a
zero-dimensional Noetherian ring, and so L⊗K R is reduced if and only if it is regular, and
the result follows from our treatment of geometric regularity: see page 2 of the Lecture
Notes from September 19. �

We define R to be geometrically reduced over K if it satisfies the equivalent conditions
of this Proposition. If R is essentially of finite type over K or if R is Noetherian and L is
a finitely generated field extension of K, L⊗K R will be Noetherian. Our main interest is
in the case where R is finitely generated over K.

|
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The Jacobian ideal of a finitely generated K-algebra

Let R be a finitely generated K-algebra such that the quotient by every minimal prime
has dimension d. Suppose that R = K[x1, . . . , xn]/I. Then we define the Jacobian ideal
JR/K as the ideal generated by the images of the n−d size minors of the matrix

(
∂fi/∂xj)

in R. This ideal is independent of the choice of presentation: the argument is the same
as in the treatment of JR/A on p. 3. If K is algebraically closed, this ideal defines the
singular locus. We give the argument.

Theorem. Let K be an algebraically closed field. Let R be a finitely generated K-algebra
such that the quotient by every minimal prime has dimension d. For a given prime ideal
P of R, RP is regular if and only if P does not contain JR/K .

Proof. We first consider the case where P = m is maximal. By adjusting the constant
terms, we can pick generators for R that are in m. Then we can write R = K[x1, . . . , xn]/I
and assume without loss of generality that m = (x1, . . . , xn)R. Let f1, . . . , fm generate
I. Then Rm is regular if and only if Rm/m2Rm has K-vector space dimension d. Since
R/m2 is already local, R/m2 ∼= Rm/m2Rm, and m/m2 ∼= mRm/m2Rm. The K-vector
space dimension of m/m2 is n− r, where r is the K-vector space dimension of the K-span
V of the linear forms that occur in the fj : in fact, m/m2 is the quotient of Kx1+ · · ·+Kxn

by V . The K-vector space V is isomorphic with the column space of the matrix(
∂fj

∂xi

)
|(0,... ,0) ,

where the partial derivative entries are evaluated at the origin: the j th column corresponds
to the vector of coefficients of the linear form occurring in fj . Thus, the ring Rm is regular
if and only if the evaluated matrix has rank n− d: the rank cannot be larger than n− d,
since Rm has dimension d. This will be the case if and only if some n− d size minor does
not vanish at the origin, and this is equivalent to the statement that JR/K is not contained
in m.

In the general case, if P does not contain J , let f ∈ J − P . Choose a maximal ideal of
Rf that contains PRf . The quotient Rf/PRf is K, and so this maximal ideal corresponds
to a maximal ideal m of R containing P and not containing f . Since Rm is regular, so is
its localization RP .

Now suppose that P contains JR/K but RP is regular. Then PRP is generated by
height (P ) elements, and we can choose f ∈ R−P such that PRf is generated by height (P )
elements. Choose a maximal ideal of (R/P )f such that the localization at this maximal
ideal is regular. This will correspond to a maximal ideal m of R containing P and not f .
Since PRm is generated by height (P ) elements (f is inverted in this ring) and m(R/P )m
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is generated by by dim
(
(R/P )m

)
elements, mRm is generated by dim (Rm) elements, and

so Rm is regular. But this contradicts JR/K ⊆ P ⊆ m. �

|

We want to use the Lipman-Sathaye Theorem to produce specific test elements for
finitely generated algebras over a field. We need some preliminary results.

Lemma. Let X → Y be a morphism of affine varities over an algebraically closed field
K such that the image of X is dense in Y . Then the image of every Zariski dense open
subset U of X contains a dense Zariski open subset of Y .

Proof. The morphism corresponds to a map of domains finitely generated over K. If the
map has a kernel P , the image of the morphism would be contained in V(P ), a proper
closed set. Hence, we have an injection of domains A → B, and B is finitely generated over
K and, hence, over A. U contains an open subset of X of the form X−V(f), where f 6= 0,
and so we might as well assume that U = X −V(f). This amounts to replacing B by Bf ,
which is still finitely generated over A. After localizing A at one element a ∈ A − {0},
we have that Ba is a module-finite extension of a polynomial ring C over Aa, by Noether
normalization over a domain. Then Spec (Ba) → Spec (C) and Spec (C) → Spec (Aa) are
both surjective, so that the image of the morphism contains Y − V(a). �

Theorem. Let K be an algebraically closed field and R a finitely generated K-algebra of
dimension d. Let x = x1, . . . , xn be generators of R over K, and let GL(n, K) act so that
γ replaces these generators by the entries of the column

γ

 x1
...

xn

 .

We use γ(x) to denote this sequence of n elements of R, which also generates R over K,
and use γi(x) to denote its i th entry.

(a) There is a dense Zariski open subset U of GL(n, K) such that for all γ ∈ U , R is
module-finite over the ring generated over K by γi1(x), . . . , γid

(x) for every choice
of d mutually distinct indices i1, . . . , id in {1, . . . , n}. Moreover, for every choice of
the d elements, γi1(x), . . . , γid

(x) are algebraically independent over K.

(b) Assume in, addition, that R is reduced, and that the quotient of R by every minimal
prime has dimension d. Then there is a dense Zariski open subset U0 of GL(n, K)
such that, in addition, R is torsion-free and generically étale over the polynomial ring
K[γi1(x), . . . , γid

(x)] for every choice of i1, . . . , id in {1, . . . , n}.

Proof. (a) This is a variant of Noether normalization. It suffices to show that there is
a dense Zariski open subset such that R is module-finite over K[γ1(x), . . . , γd(x)]. By
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symmetry, we obtain a dense open subset for each of the
(

n

d

)
possible choices of i1, . . . , id,

and we may intersect them all.

In this paragraph we allow K to be any infinite field, not necessarily algebraically closed.
Note that if n > d there is a nontrivial polynomial relation F (X1, . . . , Xn) on x1, . . . , xn

over K, i.e., F (x1, . . . , xn) = 0. Let y = y1, . . . , yn be the image of x under γ. Then
δ = γ−1 maps y to x, and the elements y have the relation F

(
δ(Y )

)
= 0. Let h = deg(F )

and let G be the degree h > 0 form in F . The key point is that for δ in a dense open set
of GL(n, K) (γ = δ−1 will also vary in a dense open set), G

(
δ(Y )

)
will be monic in every

Yi. To see this for, for example, Yn, it suffices to see that G does not become 0 when we
specialize all the Yj for j < n to 0. But this yields a power of Yn times the value of G
on the n th column of δ, and the polynomial G obviously vanishes only on a proper closed
subset of GL(n, K). Hence, for every j, yj is integral over the subring generated by the
other yi.

From now on we assume that K itself is algebraically closed. If we enlarge K by
adjoining n2 algebraically indeterminates t

(1)
ij , and let K1 = K(t(1)ij : i, j), we may carry

through the procedure of the preceding paragraph over K1, letting the matrix
(
t
(1)
ij

)−1 act,

so that δ =
(
t
(1)
ij

)
. It is clear that G does not vanish on the n th column of δ, which is a

matrix of indeterminates. Let y(1) denote the image of x.

If n− 1 > d, we continue in this way, next adjoining (n− 1)2 indeterminates t
(2)
ij to K1

to produce a field K2, and letting the matrix
(
t
(2)
ij

)−1 act. This matrix is in GL(n−1, K2),
but we view it as an element of GL(n, K2) by taking its direct sum with a 1× 1 identity
matrix. Thus, it acts on y(1) to produce a new sequence of generators y(2) for K2 ⊗K R

over K2. We now have that y
(2)
n−1 and y

(2)
n are integral over the ring K2[y

(2)
1 , . . . , y

(2)
n−2].

We iterate this procedure to produce a sequence of fields Kh and sets of generators
y(h), 1 ≤ h ≤ n − d. Once Kh and y(h) have been constructed so that Kh ⊗K R is
integral over K[yh

1 , . . . , yh
n−h], we construct the next field and set of generators as follows.

Enlarge the field Kh to Kh+1 by introducing (n − h + 1)2 new indeterminates t
(h+1)
ij ,

view the matrix
(
t
(h+1)
ij

)−1, which is a priori in GL(n − h + 1, Kh+1), as an element of
GL(n, Kh+1) by taking its direct sum with an identity matrix of size h − 1, and let its
inverse act on y(h) to produce y(h+1). We will then have that Kh+1 ⊗K R is integral

over Kh+1[y
(h+1)
1 , . . . , y

(h+1)
n−h−1]. Thus, we eventually construct a field Kn−d such that

Kn−d⊗K R is module-finite over Kn−d[y
(n−d)
1 , . . . , y

(n−d)
d ]. Let K[t] denote the polynomial

ring in all the indeterimates t
(h)
ij that we have adjoined to K in forming Kn−d. Thus, Kn−d

is the fraction field K(t) of the polynomial ring K[t]. It follows that each of the original
generators xj satisfies a monic polynomial with coefficients in K(t)[y(n−d)

1 , . . . , y
(n−d)
d ].

We can choose a single polynomial H = H(t) ∈ K[t]−{0} that is a common denominator
for all of the coefficients in K(t) occurring in these monic equations of integral dependence
for the various xj , and such that all the y

(h)
i are elements of K[t][1/H] ⊗K R. It follows
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that K[t][1/H]⊗K R is module-finite over K[t][1/H][y(n−d)
1 , . . . , y

(n−d)
d ].

We want to specialize the variables t
(h)
ij to elements of K in such a way that, first, the

matrices
(
t
(h)
ij

)
specialize to invertible matrices, and, second, H does not vanish. Such

values of t
(h)
ij correspond to points over K of the open set in

G = GL(n− d + 1, K)× · · · ×GL(n, K)

where H does not vanish. (Here, each GL(s, K) for s ≤ n is thought of a subgroup of
GL(n, K) by identifying η ∈ GL(s, K) with the direct sum of η and a size n− s identity
matrix.) Call this point (γ(n−d+1), . . . , γ(n)). For any such point, the result of specializing
all of the t

(h)
ij in the equations of integral dependence for the xj shows that R is module-

finite over the ring generated over K by the images of yn−d
1 , . . . , yn−d

d . These images are
the first d coordinates of γ(x), where γ = γ(n−d+1) · · · γ(n). The map of G → GL(n, K) is
surjective. By the preceding Lemma, the image of G−V(H) contains a dense open subset
U of GL(n, K), which completes the proof of part (a).

(b) Since R has pure dimension d, when it is represented as a finite module over a
polynomial ring of dimension d, it must be torsion-free: if there were a torsion element u,
Ru would be a submodule of R of dimension strictly smaller than d, and R would have an
associated prime Q with dim (R/Q) < d. But R is reduced, so that all associated primes
are minimal, and these have quotients of dimension d.

To show that there is an open set U0 such that R is generically étale over every
K[γi1(x), . . . , γid

(x)] it suffices to show this for R/p for each minimal prime p of R:
we can then intersect the finitely many open sets for the various minimal primes. Thus,
we may assume that R is a domain of dimension d.

We want each d element subset of the image of x1, . . . , xn, call it y1, . . . , yn, to be
such that R is generically étale over every polynomial ring in the d elements of the chosen
subset. It suffices to get such an open set for y1, . . . , yd: by symmetry, there will be
an open set of every d element subset of y1, . . . , yn, and we may intersect these. This
condition is precisely that y1, . . . , yd be a separating transcendence basis for the fraction
field L of R over K. The fact that K is algebraically closed implies that L has some
separating transcendence basis over K, by the Theorem on p. 4 of the Lecture Notes from
September 19. There are now several ways to argue. To give a specific one, we may
apply, for example, Theorem 5.10 (d) of [E. Kunz, Kähler differentials, Friedr. Vieweg
& Sohn, Braunschweig, 1986], which asserts that a necessary and sufficient condition for
y1, . . . , yd to be a separating transcendence basis is that the differentials of these elements
dy1, . . . , dyd in the module of Kähler differentials ΩL/K

∼= Ld be a basis for ΩL/K as an
L-vector space. Since the differentials of the original variables span ΩL/K over L, it is clear
that the set of elements of GL(n, K) for which all d element subsets of the new variables
have differentials that span ΩL/K contains a Zariski dense open set. �
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Theorem (test elements for affine K-algebras via the Lipman-Sathaye theo-
rem). Let K be a field of characteristic p and let R be a finitely generated d-dimensional
geometrically reduced K-algebra such that the quotient by every minimal prime has di-
mension d. Then JR/K is generated by its intersection with R◦, and the elements in this
intersection are completely stable big test elements for R.

Proof. Let L be an algebraic closure of K. From the definition, JR/K expands to give
J(L⊗KR)/L. Since L⊗K R is reduced, its localization at any minimal prime is a field and,
in particular, is regular. It follows that JR/K expands to an ideal of L ⊗K R that is not
contained in any minimal prime of L⊗K R, and so JR/K cannot be contained in a minimal
prime of R. It follows from the Lemma on p. 10 of the Lecture Notes from September 17
that it is generated by its intersection with R◦. To show that the specified elements are
completely stable big test elements, it suffices to prove this after making a base change to
L ⊗K R, by part (b) of the Proposition at the bottom of p. 8 of the Lecture Notes from
September 17. Hence, we may assume without loss of generality that K is algebraically
closed.

The calculation of the Jacobian ideal is independent of the choice of indeterminates. We
are therefore free to make a linear change of coordinates, which corresponds to choosing
an element of G = GL(n, K) ⊆ Kn2

to act on the one-forms of K[x1, . . . , xn]. For a dense
Zariski open set U of G ⊆ Kn2

, if we make a change of coordinates corresponding to an
element γ ∈ U ⊆ G then, for every choice of d of the (new) indeterminates, if A denotes
the K-subalgebra of R that these d new indeterminates generate, by parts (a) and (b) of
the Theorem above, the two conditions listed below will hold:

(1) R is module-finite over A (and the d chosen indeterminates will then, per force, be
algebraically independent) and

(2) R is torsion-free and generically étale over A.

Now suppose that a suitable change of coordinates has been made, and, as above, let A
be the ring generated over K by some set of d of the elements xi. Then the n−d size minors
of (∂fj/∂xi) involving the n−d columns of (∂fj/∂xi) that correspond to the variables not
chosen as generators of A precisely generate JR/A. The result is now immediate from the
Theorem on p. 8: as we vary the set of d variables, so that A varies as well, every n − d
size minor occurs as a generator of some J (R/A) �


