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Summary of Local Cohomology Theory

The following material and more was discussed in seminar but not in class. We give a
summary here.

Let I be an ideal of a Noetherian ring R and let M be any R-module, not necessarily
finitely generated. We define

Hj
I (M) = lim

−→ t Extj
R(R/It, M).

This is called the i th local cohomology module of M with support in I.

H0
I (M) = lim

−→ t HomR(R/It, M)

which may be identified with
⋃

t AnnMIt ⊆ M . Every element of Hj
I (M) is killed by a

power of I. Evidently, if M is injective then Hj
I (M) = 0 for j ≥ 1. By a taking a direct

limit over t of long exact sequences for Ext, we see that if

0 → M ′ → M → M ′′ → 0

is exact there is a functorial long exact sequence for local cohomology:

0 → H0
I (M ′) → H0

I (M) → H0
I (M ′′) → · · · → Hj

I (M ′) → Hj
I (M) → Hj

I (M ′′) → · · · .

It follows that Hj
I ( ) is the j th right derived functor of H0

I ( ). In the definition we may
use instead of the ideals It any decreasing sequence of ideals cofinal with the powers of I.
It follows that if I and J have the same radical, then Hi

I(M) ∼= Hi
J(M) for all i.

Theorem. Let M be a finitely generated module over the Noetherian ring R, and I and
ideal of R. Then Hi

I(M) 6= 0 for some i if and only if IM 6= M , in which case the least
integer i such that Hi

I(M) 6= 0 is depthIM .

Proof. IM = M iff I + AnnRM = R, and every element of every Hj
I (M) is killed by some

power IN of I and by AnnRM : their sum must be the unit ideal, and so all the local
cohomology vanishes in this case.
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Now suppose that IM 6= M , so that the depth d is a well-defined integer in N. We use
induction on d. If d = 0, some nonzero element of M is killed by I, and so H0

I (M) 6= 0. If
d > 0 choose an element x ∈ I that is not a zerodivisor on M , and consider the long exact
sequence for local cohomology arising from the short exact sequence

0 −→ M
x−→ M −→ M/xM → 0.

From the induction hypothesis, Hj
I (M/xM) = 0 for j < d − 1 and Hd−1

I (M/xM) 6= 0.
The long exact sequence therefore yields the injectivity of the map

Hj+1
I (M) x−→ Hj+1

I (M)

for j < d− 1. But every element of Hj+1
I (M) is killed by a power of I and, in particular,

by a power of x. This implies that Hj+1
I (M) = 0 for j < d− 1. Since

0 = Hd−1
I (M) → Hd−1

I (M/xM) → Hd
I (M)

is exact, Hd−1
I (M/xM), which we know from the induction hypothesis is not 0, injects

into Hd
I (M). �

If A• and B• are two right complexes of R-modules with differentials d and d′, the total
tensor product is the right complex whose n th term is⊕

i+j=n

Ai ⊗R Bj

and whose differential d′′ is such that d′′(ai ⊗ bj) = d(ai)⊗ bj + (−1)iai ⊗ d′(bj).

Now let f = f1, . . . , fn generate an ideal with the same radical as I. Let C•(f∞; R)
denote the total tensor product of the complexes 0 → R → Rfj

→ 0, which gives a complex
of flat R-modules:

0 → R →
⊕

j

Rfj →
⊕

j1<j2

Rfj1fj2
→ · · · →

⊕
j1<···<jt

Rfj1 ···fjt
→ · · · → Rf1···fn → 0.

The differential restricted to Rg where g = fj1 · · · fjt
takes u to the direct sum of its images,

each with a certain sign, in the rings Rgfjt+1
, where jt+1 is distinct from j1, . . . , jt.

Let
C•(f∞; M) = C•(f∞; R)⊗R M,

which looks like this:

0 → M →
⊕

j

Mfj →
⊕

j1<j2

Mfj1fj2
→ · · · →

⊕
j1<···<jt

Mfj1 ···fjt
→ · · · → Mf1···fn → 0.
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We temporarily denote the cohomology of this complex as H•f (M). It turns out to be the
same, functorially, as H•

I (M). We shall not give a complete argument here but we note
several key points. First,

H0
f (M) = Ker (M →

⊕
j

Mfj )

is the same as the submodule of M consisting of all elements killed by a power of fj for
every j, and this is easily seen to be the same as H0

I (M). Second, by tensoring a short
exact sequence of modules

0 → M ′ → M → M ′′ → 0

with the complex C•(f∞; R) we get a short exact sequence of complexes. This leads to a
functorial long exact sequence for H•f ( ). These two facts imply an isomorphism of the

functors H•
I ( ) and H•f ( ) provided that we can show that Hj

f (M) = 0 for j ≥ 1 when
M is injective. We indicate how the argument goes, but we shall assume some basic facts
about the structure of injective modules over Noetherian rings.

First note that if one has a map R → S and an S-module M , then if g is the image of f
in S, we have H•

f (M) = H•
g (M). This has an important consequence for local cohomology

once we establish that the two theories are the same: see the Corollary below.

Every injective module over a Noetherian ring R is a direct sum of injective hulls E(R/P )
for various primes P . E(R/P ) is the same as the injective hull of the reisdue class field of
the local ring RP . This, we may assume without loss of generality that (R, m, K) is local
and that M is the injective hull of K. This enables to reduce to the case where M has
finite length over R, and then, using the long exact sequence, to the case where M = K,
since M has a finite filtration such that all the factors are K. Thus, we may assume that
M = K. The complex C•(f∞; R) is then a tensor product of complexs of the the form
0 → R → R → 0 and 0 → R → 0 → 0. If we have only the latter the complex has no
terms in higher degree, while if there are some of the former we get a cohomogical Koszul
complex K•(g1, . . . , gn;K) where at least one gj 6= 0. But then (g1, . . . , gn)K = K kills
all the Koszul cohomology. Thus, we get vanishing of higher cohomology in either case. It
follows that H•f ( ) and H•

I ( ) are isomorphic functors, and we drop the first notation,
except in the proof of the Corollary just below.

Corollary. If R → S is a homomorphism of Noetherian rings, M is an S-module, and
RM denotes M viewed as an R-module via restriction of scalars, then for every ideal I of
R, H•

I (RM) ∼= H•
IS(M).

Proof. Let f1, . . . , fn generate I, and let g1, . . . , gn be the images of these elements in S:
they generate IS. Then we have

H•
I (RM) ∼= H•f (RM) ∼= H•g(M) ∼= H•

IS(M) . �
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We note that the complex 0 → R → Rf → 0 is isomorphic to the direct limit of the
cohomological Koszul complexes K•(f t;R), where the maps between consecutive complexes
are given by the identity on the degree 0 copy of R and by multiplication by f on the degree
1 copy of R — note the commutativity of the diagram:

0 −−−−→ R
ft+1

−−−−→ R −−−−→ 0

id

x xf

0 −−−−→ R
ft

−−−−→ R −−−−→ 0

.

Tensoring these Koszul complexes together as f runs through f1, . . . , fn, we see that

C•(f∞; M) = lim
−→ tK•(f t

1, . . . , f t
n; M).

Hence, whenever f1, . . . , fn generate I up to radicals, taking cohomology yields

H•
I (M) ∼= lim

−→ t H•(f t
1, . . . , f t

n; M).

When R is a local ring of Krull dimension d and x1, . . . , xd is a system of parameters,
this yields

Hd
m(R) = lim

−→ t R/(xt
1, . . . , xt

d)R.

Likiewise, for every R-module M ,

Hd
m(M) = lim

−→ t M/(xt
1, . . . , xt

d)M ∼= Hd
m(R)⊗R M.

We next recall that when (R, m, K) is a complete local ring and E = ER(K) is an
injective hull of the residue class field (this means that K ⊆ E, where E is injective, and
every nonzero submodule of E meets K), there is duality between modules with ACC
over R and modules with DCC: if M satsifies one of the chain conditions then M∨ =
HomR(M, E) satisfies the other, and the canonical map M → M∨∨ is an isomorphism in
either case. In particular, when R is complete local, the obvious map R → HomR(E,E)
is an isomorphism. An Artin local ring R with a one-dimensional socle is injective as a
module over itself, and, in this case, ER(K) = R. If R is Gorenstein and x1, . . . , xd is
a system of parameters, one has that each Rt = R/(xt

1, . . . , xt
d)R is Artin with a one-

dimensional socle, and one can show that in this case ER(K) ∼= Hd
M (R). When R is local

but not complete, if M has ACC then M∨ has DCC, and M∨∨ is canonically isomorphic
with M̂ . If M has DCC, M∨ is a module with ACC over R̂, and M∨∨ is canonically
isomorphic with M .

We can make use of this duality theory to gain a deeper underrstanding of the behavior
of local cohomology over a Gorenstein local ring.
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Theorem (local duality over Gorenstein rings). Let (R, m, K) be a Gorenstein local
ring of Krull dimension d, and let E = Hd

m(R), which is also an injective hull for K. Let
M be a finitely generated R-module. Then for every integer j, Hj

m(M) = Extd−j
R (M, R)∨.

Proof. Let x1, . . . , xd be a system of parameters for R. In the Cohen-Macaulay case, the
local cohomology of R vanishes for i < d, and so C•(x∞;R), numbered backwards, is a flat
resolution of E. Thus,

Hj
m(M) ∼= TorR

d−j(M, E).

Let G• be a projective resoultion of M by finitely generated projective R-modules. Then

Extd−j
R (M, R)∨ ∼= Hd−j

(
HomR(G•, R), E

)
(since E is injective, HomR( , E) commutes with the calculation of cohomology). The
functor HomR

(
HomR( , R), E

)
is isomorphic with the functor ⊗ E when restricted

to finitely generated projective modules G. To see this, observe that for every G there is
an R-bilinear map G×E → HomR

(
HomR(G, R), E

)
that sends (g, u) (where g ∈ G and

u ∈ E) to the map whose value on f : G → R is f(g)u. This map is an isomorphism when
G = R, and commutes with direct sum, so that it is also an isomorphism when G is finitely
generated and free, and, likewise, when G is a direct summand of a finitely generated free
module. But then

Extd−j
R (M, R)∨ ∼= Hd−j(G• ⊗ E) ∼= TorR

d−j(M, E),

which is ∼= Hj
m(M), as already observed. �

Corollary. Let M be a finitely generated module over a local ring (R, m, K). Then the
modules Hi

m(M) have DCC.

Proof. The issues are unchanged if we complete R and M . Then R is a homomorphic image
of a complete regular local ring, which is Gorenstein. The problem therefore reduces to the
case where the ring is Gorenstein. By local duality, Hi

m(M) is the dual of the Noetherian
module Extn−i

R (M, R), where n = dim (R). �

|

|

The action of the Frobenius endomorphism on local cohomolgy

Let R be a ring of prime characteristic p > 0, and let I = (f1, . . . , fn)R. Consider the
complex C• = C•(f∞; R), which is

0 → R →
⊕

j

Rfj →
⊕

j1<j2

Rfj1fj2
→ · · · →

⊕
j1<···<jt

Rfj1 ···fjt
→ · · · → Rf1···fn → 0.
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This complex is a direct sum of rings of the form Rg each of which has a Frobenius
endomorphism FRg

: Rg → Rg. Given any homomorphism h : S → T of rings of prime
characteristic p > 0, there is a commutative diagram:

S
h−−−−→ T

FS

x xFT

S
h−−−−→ T

The commutativity of the diagram follows simply because h(s)p = h(sp) for all s ∈ S.
Since every Ci is a direct sum of R-algebras, each of which has a Frobenius endomor-
phism, collectively these endomorphism yield an endomorphism of Ci that stabilizes every
summand and is, at least, Z-linear. This gives an endomorphism of C• that commutes
with differentials δi : Ci → Ci+1 in the complex. The point is that the restriction of the
differential to a term Rg may be viewed as a map to a product of rings of the form Rgf .
Each component map is either h or −h, where h : Rg → Rgf is the natural localization
map, and is a ring homomorphism. The homomorphism h commutes with the actions of
the Frobenius endomorphisms, and it follows that −h does as well.

This yields an action of F on the complex and, consequently, on its cohomology, i.e.,
an action of F on the local cohomology modules Hi

I(R). It is not difficult to verify that
this action is independent of the choice of generators for I. This action of F is more than
Z-linear. It is easy to check that for all r ∈ R, F (ru) = rpF (u). This is, in fact, true for
the action on C• as well as for the action on H•

I (R).

If R → S is any ring homomorphism, there is an induced map of complexes

C•(f∞; R) → C•(f∞; S).

It is immediate that the actions of F are compatible with the induced maps of local
cohomology, i.e., that the diagrams

Hi
I(R) −−−−→ Hi

I(S)

F

x xF

Hi
I(R) −−−−→ Hi

I(S)

commute.

|

We now want to use our understanding of local cohomology to prove the Theorem of
Huneke and Lyubeznik.

Discussion. We are primarily interested in studying R+ when (R, m, K) is a local do-
main that is a homomorphic image of a Gorenstein ring A. If M is the inverse image of
m in A, we may replace A by AM and so assume that A is local.
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Note, however, that when we take a module-finte extension domain of R, the ring that
we obtain is no longer local: it is only semilocal. Therefore, we shall frequently have the
hypothesis that R is a semilocal domain that is a module-finite extension of a homomorphic
image of a Gorenstein local ring.

Let (A, m, K) denote a Gorenstein local ring, p a prime ideal of this ring, and R a local
domain that is a module-finite extension of B = A/p. R is semilocal in this situation.
The maximal ideals of R are the same as the prime ideals m that lie over m/p, since R/m
is a module finite extension of B/(m ∩ B), and so R/m has dimension 0 if and only if
B/(m∩B) has dimension 0, which occurs only when m∩B is the maximal ideal m/p of B.
Note that since A is Gorenstein, it is Cohen-Macaulay, and therefore universally catenary.
Hence, so is R. The Jacobson radical A of R will be the same as the radical of mR.

By the dimension formula, which is stated on p. 3 of the Lecture Notes from September
18 for Math 711, Fall 2006, and proved in the Lecture Notes from September 20 from the
same course on pp. 3–5, we have that height (m) = height (m/p) for every maximal ideal
m of R: thus, the height of every maximal ideal is the same as dim (R) = dim (A/p).

We next observe the following fact:

Proposition. Let R be a domain and let W be a multiplicative system of R that does not
contain 0.

(a) If T is an extension domain of W−1R and u ∈ T is integral over W−1R, then there
exists w ∈ W such that wu is integral over R.

(b) If T is module-finite (respectviely, integral) extension domain of R then there exists
a module-finite (respectively, integral) extension domain S of R within T such that
T = W−1S.

(c) If W−1(R+) is an absolute integral closure for W−1R, i.e., we may write W−1(R+) ∼=
(W−1R)+.

(d) If I is any ideal of R, I(W−1R)+ ∩W−1R = W−1(IR+ ∩R). That is, plus closure
commutes with localization.

Proof. (a) Consider an equation of integral dependence for u on T . We may multiply by
a common denominator w ∈ W for the coefficients that occur to obtain an equation

wuk + r1u
k−1 + · · · + riu

k−i + · · · + rk−1u + rk = 0,

where the ri ∈ R. Multiply by wk−1. The resulting equation can be rewritten as

(wu)k + r1(wu)k−1 + · · · + wi−1ri(wu)k−i + · · · + wk−2rk−1(wu) + wk−1rk = 0,

which shows that wu is integral over R, as required.

(b) If T is module-finite over R, choose a finite set of generators for T over R. In
the case where T is integral, choose an arbitrary set of generators for T over R. For each
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generator ti, choose wi ∈ W such that witi is integral over R. Let S be the extension of
R generated by all the witi.

(c) We have that W−1R+ is integral over W−1R and so can be enlarged to a plus
closure T . But each element u ∈ T is integral over W−1R, and so has there exists w ∈ W

such thtat wu is integral over R, which means that wu ∈ R+. But then u = w−1(wu) ∈
W−1R+, and it follows that T = W−1R+.

(d) Note that ⊇ is obvious. Now suppose that u ∈ I(W−1R)+ = IW−1(R+) by
part (c). Then we can choose w ∈ W such that wu ∈ IR+, and the result follows. �

Remark. Part (d) may be paraphrased as asserting that plus closure for ideals commutes
with arbitrary localization. I.e., (IW−1R)+ = W−1(I+). Here, whenever J is an ideal of
a domain S, J+ = (JS +) ∩ S.

Remark: plus closure for modules. If R is a domain we can define the plus closure of
N ⊆ M as the set of elements of M that are in 〈R+ ⊗R N〉 in R+ ⊗R M . It is easy to
check that the analogue of (d) holds for modules as well.

We are now ready to begin the proof of the following result.

Theorem (Huneke-Lyubeznik). Let R be a semilocal domain of prime characteristic
p > 0 that is a module-finite extension of a homomorphic image of a Gorenstein local ring
(A, m, K). Let A denote the Jacobson radical in R, which is the same as the radical of
mR. Let d be the Krull dimension of R. Then there is a module-finite extension domain S
of R such that for all i < d, the map Hi

mR(R) → Hi
mS(S) is 0. If B denotes the Jacobson

radical of S, we may rephrase this by saying that Hi
A(R) → Hi

B(S) is 0 for all i < d.

Proof. Let n denote the Krull dimension of the local Gorenstein ring (A, m, K). Since R
is a module-finite extension of A/p, we have that the height of p is n− d.

Recall from the discussion above that A (respectively, B) is the radical of mR (respec-
tively, mS). This justifies the rephrasing. We may think of the local cohomology modules
as Hi

m(R) and Hi
m(S).

It suffices to solve the problem for one value of i. The new ring S satisfies the same
hypotheses as R. We may therefore repeat the process d times, if needed, to obtain a
module-finite extension such that all local cohomology maps to 0: once it maps to 0 for a
given S, it also maps to 0 for any further module-finite extension. In the remainder of the
proof, i is fixed.

It follows from local duality over A that is suffices to choose a module-finite extension
S of R such that the map

(∗) Extn−i
A (S, A) → Extn−i

A (R, A)

is 0, since the map of local cohomology is the dual of this map. Note that both of the
modules in (∗) are finitely generated as A-modules. We shall use induction on dim (R) to
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reduce to the case where the image of the map has finite length over A: we then prove a
theorem to handle that case. Let VS denote the image of the map.

Let P1, . . . , Ph denote the associated primes over A of the image of this map that
are not the maximal ideal of A. Note that as S is taken successively larger, the image VS

cannot increase. Also note that since since VS is a submodule of N = Extn−i
A (R, A), any

associated prime of VS is an associated prime of N . We show that for each Pi, we can
choose a module-finite extension Si of R such that P is not an associated prime of VSi

.
This will remain true when we enlarge Si further. By taking S so large that it contains
all the Si, we obtain VS which, if it is not 0, can only have the associated prime m. This
implies that VS has finite length over A, as required.

We write P for Pi. Let W = A − P . Then W−1R = RP is module-finite over the
Gorenstein local ring AP . Let P have height s in A, where s < n. By local duality over
AP , we have that the dual of Extn−i

AP
(MP , AP ) is, functorially, H

s−(n−i)
PAP

(MP ) for every
finitely generated A-module M . Since i < d,

s− (n− i) < s− (n− d) = s− height (p) = s− height (pAP ) = dim (AP /pAP ).

By the induction hypothesis we can choose a module-finite extension T of RP such that

H
s−(n−i)
PAP

(T ) → H
s−(n−i)
PAP

(RP )

is 0. By part (b) of the Proposition on p. 7, we can choose a module-finite extension S of
R such that T = SP . Then we have the dual statement that

Extn−i
AP

(SP , AP ) → NP

is 0, which shows that (VS)P = 0. But then P is not an associated prime of VS , as required.

Thus, we can choose a module-finite extension S of R such that VS has finite length
as an A-module. Taking duals, we find that the image of Hi

m(R) → Hi
m(S) has finite

length as an A-module, Since Frobenius acts on both of these local cohomology modules
so that the action is compatible with this map, it follows that the image W of the map is
stable under the action of Frobenius. Moreover, W is a finitely generated A-module, and,
consequently, a finitely generated S-module. It suffices to show that we can take a further
module-finite extension T of S so as to kill the image of W in Hi

m(T ). This follows from
the Theorem below. �

Theorem. Let I ⊆ S be an ideal of a Noetherian domain S of prime characteristic p > 0,
and let W be a finitely generated submodule of Hi

I(S) that is stable under the action of the
Frobenius endomorphism F . Then there is a module-finite extension T of S such that the
image of W in Hi

I(T ) is 0.

Notice that there is no restriction on i in this Theorem. We shall, in fact, prove a
somewhat stronger fact of this type.


