
Math 711: Lecture of November 21, 2007

We are aiming to prove the Theorem stated at the bottom of the last page of the
Lecture Notes from November 19, which will complete the proof of the Huneke-Lyubeznik
Theorem. We first want to make an observation about local cohomology when the ring is
not Noetherian, and then we prove a Lemma that does most of the work.

Discussion. Let R be a ring that is not necessarily Noetherian and let I be an ideal of
R that is the radical of a finitely generated ideal. Let M be any R-module. We shall still
use the notation Hi

I(M) for
Hi

(
C•(f∞; M)

)
,

where f = f1, . . . , fn are elements of R that generate an ideal whose radical is the same
as the radical of I. Tht is, we are relaxing the restriction that the base ring be Noetherian.

Note that if R0 is any subring of R that is finitely generated over the prime ring and
contains f1, . . . , fn, then we may view M as an R0-module, and

Hi
(
C•(f∞; M)

) ∼= Hi
(f)R0

(M).

If g = g1, . . . , gs is another set of elements generating an ideal whose radical is the same
as Rad(I), then every fi has a power in (g1, . . . , gs)R, say

fhi
i =

s∑
j=1

rijgj

and every gj has a power in (f1, . . . , fn)R, say

g
kj

j =
n∑

i=1

r′jifi.

These equations will evidnetly hold in any subring R0 of R finitely generated over the
prime ring that is sufficiently large to contain f, g and all of the rij and r′ji. With such
a choice of R0, we see that Hi

(f)R0
(M) = Hi

(g)R0
(M) for all i. Thus, even when R is not

Noetherian, this cohomology is independent of the choice of f .

However, when R is not Noetherian, we do not have available the result that this is the
same cohomology theory one gets using Ext.

Notation: polynommial operators in the Frobenius endomorphism. Let R be
a ring of prime characteristic p > 0, and let G = G(Z) be a monic polynomial in one
indeterminate Z with coefficients in R, say

G = Ze + r1Z
e−1 + · · ·+ re−1Z + re.
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Then we may view

GF = F e + · · ·+ r1F
e−1 + · · ·+ re−1F + re1

as an operator on every R-algebra S whose value on s ∈ S is

spe

+ rspe−1
+ · · ·+ r1s

p + r0s.

GF acts on the complexes C•(f∞;S) just as F does: it stabilizes every component summand
Sg, and is value on u is

F e(u) + r1F
e−1(u) + · · ·+ re−1F (u) + r0u.

Both F and multiplication by an element r of R act on C•(f∞; S) so that:

(1) The action is Z-linear.

(2) The action stabilizes every component summand Sg, where g is a product fi1 · · · fih
.

(3) The action commutes with the differential.

The operators on the complex with these three properties are closed under addition
and composition, from which it follows that GF is a Z-linear endomorphism of C•(f∞; S)
that stabilizes every component summand and commutes with the differential. Hence, this
operator also acts on the cohomology of the complex.

Lemma. Let S be a domain of prime characteristic p > 0 and f1, . . . , fn ∈ S. Let
I = (f1, . . . , fh)S. Let G = G(Z) be a monic polynomial in one indeterminate Z with
coefficients in S. Let u ∈ Hi

I(S) be such that GF kills u. Then S has a module-finite
extension domain T such that the image of u under the map Hi

I(S) → Hi
I(T ) is 0.

Proof. Let v ∈ Ci(f∞; S) be a cycle that represents u. Then GF (v) is a coboundary, say
GF (v) = δ(w), where δ is the diffferential in the complex. Let w0 be one component of w:
it is an element of a ring of the form Sg. The equation

GF (Y )− w0 = 0

is monic in Y , and so has a solution in a module-finite extension domain of Sg. By part
(c) of the Lemma on p. 7 of the Lecture Notes from November 19, there is a module-finite
extension domain T0 of S such that this equation has a solution in (T0)g. We can find
such a module-finite extension for every component summand of C•(f∞; S). Since there
are only finitely many, we can find a module-finite extension T1 of S sufficiently large that
there is an element w′ of Ci−1(f∞; T1) such that GF (w′) = w. We then have that

GF (v) = δ(w) = δ
(
GF (w′)

)
= GF

(
δ(w′)

)
and so

GF

(
v − δ(w′)

)
= 0.
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It follows that every component of v − δ(w′) is a fraction in some (T1)g that satisfies a
monic polynomial over T1. Therefore, we may choose a module-finite extension T of T1

within its fraction field such that all components of v′ = v − δ(w′) are in T . It will now
suffice to show that v′ is a coboundary in Ci(f∞; T ).

Each component Tg of the complex C•(f∞; T ) contains a copy of T . These copies of T
form a subcomplex, and this subcomplex contains v′. It will therefore suffice to show that
this subcomplex is exact. But this subcomplex is the complex

C•(1∞; T )

where 1 denotes a string 1, 1, . . . , 1 of n elements all of which are 1. Hence, its cohomology
is H•

T (T ), which is killed by T and, consequently, is 0. �

We now restate the Theorem we are trying to prove, in a slightly generalized form, and
give the argument. In the earlier version, R and S were the same.

Theorem. Let I ⊆ S be a finitely generated ideal of a domain S of prime characteristic
p > 0, let R ⊆ S be a Noetherian ring, and and let M be a finitely generated R-submodule
of Hi

I(S) that is stable under the action of the Frobenius endomorphism F on Hi
I(S). Then

there is a module-finite extension T of S such that the image of M in Hi
I(T ) is 0.

Proof. Let u ∈ M . Consider the ascending chain of R-submodules of M spanned by the
initial segments of the sequence

u, F (u), F 2(u), · · · , F k(u), ldots.

Since M is Noetherian, these submodules stabilize, and so some F e(u) is an R-linear
combination of its predecessors. This yields an equation

F e(u) + s1F
e−1u + · · ·+ seu = 0,

where the si ∈ R. However, the argument makes no further use of this fact.

We may apply the preceding Lemma with

G = Ze + s1Z
e−1 + · · ·+ se.

This shows that there is a module-finite extension T0 of S such that u maps to 0 in Hi
I(T0).

We can choose such a module-finite extension for every uj in a finite set of generators
u1, . . . , uh for M over R. We may then choose a module-finite extension T that contains
all of these. Then M maps to 0 in Hi

I(T ). �

Corollary. Let R be a semilocal domain of Krull dimension d with Jacobson radical A

that is module-finite over a Gorenstein local ring. Then Hi
A(R+) = 0, 0 ≤ i ≤ d− 1.

Proof. Hi
A(R+) is the direct limit of the modules Hi

A(S) as S runs through all module-
finite extensions of R. But each Hi

A(S) maps to 0 in Hi
A(T ) for some further module-finite

extension domain T of S, by the Huneke-Lyubeznik Theorem, and so each Hi
A(S) maps

to 0 in Hi
A(R+). �



4

Corollary. Let (R, m, K) be a local domain of Krull dimension d that is module-finite
over a Gorenstein local ring. Then Hi

m(R+) = 0, 0 ≤ i ≤ d− 1. �

Theorem. Let (R, m, K) be a local domain of Krull dimension d that is module-finite
over a Gorenstein local ring. Then R+ is a big Cohen-Macaulay algebra. That is, every
system of parameters for R is a regular sequence in R+.

Proof. It is clear that mR+ 6= R+: since R+ is integral over R, it has a prime ideal that
lies over m.

Let x1, . . . , xd be part of a system of parameters: we must show that it is a regular
sequence on R+. We use induction on dim (R), and also on d. The result is trivial if
d = 1, since R+ is a domain. Assume that d > 1 and that we have a counterexample.
Then x1, . . . , xd−1 is a regular sequence but we can choose u ∈ R+ such that uxd ∈
(x1, . . . , xd−1)R+ while u /∈ (x1, . . . , xd−1)R+ = J . Choose a minimal prime P of R
in the support of (J + Ru)/J . Then we still have a counterexample when we pass to RP

and (RP )+ ∼= (R+)P . By the induction hypothesis we may assume that P = m. Then
H0

m(R+/J) = 0.

We can get a contradiction by proving that for every integer h with 0 ≤ h ≤ d− 1,

Hi
m(R+/(x1, . . . , xh)R+) = 0

when x1, . . . , xh is part of a system of parameters and i < d − h. We then have a
contradiction, taking h = d− 1 in the paragraph just above.

We use induction on h. We already know this when h = 0. Now suppose that S =
R+/(x1, . . . , xh)R+ and that we know that Hi

m(S) = 0 for i < d − h. Let x = xh+1.
We want to show that Hi(S/xS) = 0 for i < d− h− 1. From the short exact sequence

0 −→ S
x·−→ S −→ S/xS −→ 0,

we obtain a long exact sequence part of which is

Hi
m(S) → Hi

m(S/xS) → Hi+1
m (S).

For i < d−h−1 we also have i+1 < d−h, and so both the leftmost term and the rightmost
term vanish, which implies that the middle term vanishes as well, as required. �

We shall next expend a considerable effort proving the following Theorem of K. E.
Smith:

Theorem. Let R be a locally excellent Noetherian domain of prime characteristic p > 0,
and let x1, . . . , xd ∈ R be such that I = (x1, . . . , xd)R has height d. Then I∗ = I+.

We give, in outline, the steps of the proof.
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(1) Work with a counterexample with d minimum.

(2) Reduce to the case where R is local, normal, and x1, . . . , xd is a system of parameters.
This requires the theorem that R+ is a big Cohen-Macaulay algebra.

(3) Show that if R is normal local excellent domain, u ∈ R, I ⊆ R, and u ∈ IT for a
module-finite extension domain T of R̂, then u ∈ IS for a module-finite extension
domain S of R. This permits a reduction to the case where R is complete. This
requires a generalization of Artin approximation that may be deduced from a very
difficult Theorem of Popescu.

(4) Reduce to the case where R is Gorenstein.

(5) Let It = (xt
1, . . . , xt

d)R. Consider lim
−→ t I∗t /It, which may be thought of as 0∗ in Hd

mR),

as well as lim
−→ t I+

t /It, which may be thought of as 0+ in Hd
m(R). Also consider the

respective annihilators J∗ and J+ of these submodules of Hd
m(R). Show that it suffices

to prove that 0∗/0+ is 0, and that this module is the Matlis dual of J+/J∗.

(6) Show that J+/J∗ has finite length. This involves proving that J∗ is the test ideal for
R, and that formation of the test ideal in an excellent Gorenstein local ring commutes
with localization. Then use the induction hypothesis: in proper localizations of R at
primes, one knows that tight closure of parameter ideals is the same as plus closure.

(7) Once it is known that J+/J∗ has finite length, it follows that 0∗/0+ has finite length,
and this module may be identified with the image M of 0∗ in Hd

m(R+). It then
follows from the Theorem on p. 3 that M is 0, from which the desired result follows.

Needless to say, it will take quite some time to fill in the details.


