
Math 711: Lecture of November 28, 2007

Step 3. Reduction to the complete local case. Now suppose that the result holds for ideals
of height k of the form (x1, . . . , xk)R whenever k < d. Also suppose that (R, m, K)
is a normal excellent local ring of prime characteristic p > 0 of dimension d, that I =
(x1, . . . , xd)R where x1, . . . , xd is a system of parameters for R, and that u ∈ I∗ − I+.
We next want to show that there is a counterexample such that R is also complete. Over
R̂, we still have that u ∈ (IR̂)∗. If

u ∈ (IR̂)+,

then there is a module-finite extension domain T of R̂ such that u ∈ IT . By the Theorem
at the bottom of p. 3 of the Lecture Notes from November 26, there is also a module-finite
extension S of R such that u ∈ IS, a contradiction. Henceforth, we may assume that our
minimal counterexample is such that R is complete. �

For the next reduction, we need the following fact.

Lemma. Let A be a normal domain, and let S be a domain extension of A generated by
one element u that is integral over A, so that S = A[u]. Let f = f(X) be the minimal
polynomial of u over K = frac (A). Then f has coefficients in A, and S ∼= A[x]/(f).

Proof. Let deg(f) = n. Let L be a splitting field for f over K. Let g be a monic polynomial
over A such that g(u) = 0. Then f |g working in K[X]. It follows that every root ρ of f
satisfies g(ρ) = 0. Hence, all of the roots of f in L are integral over A. We can write

f =
n∏

i=1

(X − ρi)

where the ρi are the roots of f . The coefficients of f are elementary symmetric functions
of ρ1, . . . , ρn, and so are integral over A. Since they are also in K and A is normal, the
coefficients of f are in A, i.e., f ∈ A[x].

Now suppose that h ∈ A[X] is any polynomial such that h(u) = 0. Then h|f working
over K[X]. Because f is monic, we can carry out the division algorithm, dividing h by
f and obtaining a remainder of degree strictly less than n, entirely over A[X], and the
result will be the same as if we had carried out the dvision algorithm over K[X]. Since the
remainder is 0 when we carry out the division over K[X], the remainder is also 0 when we
carry out the division over A[X]. Consequently, h ∈ fA[X]. It follows that the kernel of
the A-algebra surjection A[X] � A[u] = S such that X 7→ u is precisely fA[X], and the
stated result follows. �

Step 4. Reducction the case where R is complete and Gorenstein. Choose a coeffiicient
field K for the complete counterexample R. Then R is module-finite over its subring

1



2

A = K[[x1, . . . , xd]], which is regular, and, in paritcular, normal. Let S = A[u]. A
domain module-finite over a complete local domain is again local. In S, we still have that

u ∈
(
(x1, . . . , xn)S

)∗
,

since this becomes true when we make the module-finite extension to R: cf. Problem 4 of
Problem Set #4. Moreover, since R is module-finite over S, we may identify R+ = S +,
so that we still have

u /∈ (x1, . . . , xd)S +.

Thus, S also gives a counterexample. By the preceding Lemma, S ∼= A[X]/f where f
is monic polynomial. Since u is not a unit, the constant term of f is in the maximal
ideal of A. It follows that S ∼= A[[X]]/(f) as well. Since A[[X]] is regular, A[[X]]/(f) is
Gorenstein. We therefore have a minimal counterexample to the Theorem in which the
ring is a complete local Gorenstein domain. �

Remark. Until this point in the proof, we have been concerned with keeping R normal.
In doing the reduction just above, normality is typically lost. But the remainder of the
proof will be carried through for the Gorenstein case, without any further refernce to or
need of normality.

We shall soon carry through an investigation that requires the study of the tight closure
of 0 in the injective hull of the residue class field of a Gorenstein local ring (R, m, K),
which may also be thought of as the highest nonvanishing local cohomology module of the
ring with support in m. We shall therefore digress briefly to study some aspects of the
behavior 0∗Hd

m(R).

Comparison of finitistic tight closure and tight closure

Let R be a Noetherian ring of prime characteristic p > 0. When N ⊆ M are modules
that are not necessarily finitely generated, we have a notion of tight closure N∗

M .

There is an alternative notion, N∗fg
M , defined as follows:

N∗fg
M =

⋃
N⊆M0⊆M with M0/N finitely generated

N∗
M0

.

As with tight closure, studying this notion can be reduced to the case where N = 0, and
in this case

0∗fgM =
⋃

M0⊆M with M0 finitely generated

0∗M0

It is not known whether, under mild conditions on R, these two notions are always
the same. There has been particularly great interest in the case where the module M is
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Artinian, for reasons that we shall discuss in the sequel. The result that 0∗fgM = 0∗M is
known in the following cases:

(1) M = Hd
m(R), where (R, m, K) is a reduced, equidimensional excellent local ring and

d = dim (R).

(2) R is N-graded with R0 = K and M is a graded Artinian module.

(3) R is excellent, equidimensional reduced local with an isolated singularity, and M is
an arbitrary Artinian module.

(4) (R, m, K) is excellent, local, RP is Gorenstein if P 6= m, and M is the injective hull
of the residue class field.

(5) R is excellent local, W is a finitely generated R-module such that WP has finite
injective dimension if P 6= m, and M is the Matlis dual of W .

(1) was proved by K. E. Smith, and (2), (3), and (4) by G. Lyubeznik and K. E. Smith.
See [G. Lyubeznik and K. E. Smith, Strong and weak F -regularity are equivalent for graded
rings, Amer. J. Math. 121 (1999), 1279–1290] and [G. Lyubeznik and K. E. Smith, On
the commutation of the test ideal with localization and completion Trans. Amer. Math.
Soc. 353 (2001) 3149–3180]. (5) is a recent result of J. Stubbs in his thesis (University of
Michigan, expected May, 2008), whose full results greatly extend (2), (3), and (4), as well
as related results in [H. Eltizur, Tight closure in Artinian modules, Thesis, University of
Michigan, 2003].

We shall prove (1), shortly. We first want to note that the following questions are all
open:

Let (R, m, K) be an excellent local reduced ring of prime characteristic p > 0.

(a) Does 0∗fgM = 0∗M in every Artinian R-module M?

(b) Does 0∗fgE = 0∗E in the injective hull E of the residue class field of R?

(c) If R is weakly F-regular, does 0∗fgE = 0∗E in the injective hull of the residue class
field? Equivalently, if R is weakly F-regular, is 0∗E = 0 in the injective hull E of the
residue class field?

(d) If R is weakly F-regular, is R strongly F-regular?

Obviously, an affirmative answer to each of (a), (b), or (c) implies an affirmative answer
to the next on the list. Note that in (c), the two formulations are equivalent because in
a weakly F-regular ring, 0∗fg = 0 in every module M , since 0 is tightly closed in every
finitely generated module.

What is more, (c) and (d) are equivalent, by the Proposition on p. 3 of the Lecture
Notes from October 22.

Hence, an affirmative answer to any one of the statements (a), (b), (c) and (d) implies an
affirmative answer to all of the questions following it on the list, while affirmative answers
for (c) and (d) are equivalent.


