
Math 711: Lecture of December 3, 2007

Step 6. Proof that J+/J∗ has finite length when d is minimum. We first prove that the
test ideal commutes with localization for a reduced excellent Gorenstein local ring of prime
characteristic p > 0. In order to do so, we introduce a new notion. Let (R, m, K) be a
reduced excellent Gorenstein local ring of prime characteristic p > 0. We say that an ideal
J ⊆ R is F-stable provided that J is the annihilator of a submodule N of H = Hd

m(R)
that is stable under the action of F on H. We first note:

Lemma. Let notation be as above.

(a) J ⊆ R is F-stable if and only if for every ideal I of R generated by a system of
parameters x1, . . . , xd, (∗) if Ju ⊆ I then Jup ⊆ I [p]. Moreover, for J to be F-
stable, it suffices that for a single system of parameters x1, . . . , xd for R, with It =
(xt

1, . . . , xt
d)R we have that Ju ⊆ It implies that Jup ⊆ I

[p]
t for all t.

(b) If J is F-stable and P is any prime ideal of R, then JRP is F-stable.

(c) If J is an F-stable ideal of R that contains a nonzerodivisor, then τ(R) ⊆ J .

Proof. (a) Each element of H is represented by the class v of u ∈ R in R/It ↪→ H for
some t. The maps in the direct limit system for H are injective, and so J kills the class
of u if and only if Ju ⊆ It. Then F (v) is represented by vp in R/Ipt, and Ipt = I

[p]
t . It is

immediate both that condition (∗) for all It is necessary and sufficient for J to be F-stable,
and since we may choose I to be any ideal generated by a system of parameters, we must
have (∗) for all parameter ideals.

(b) Let h = height (P ) and choose a system of parameters x1, . . . , xd ∈ m such
that x1, . . . , xh ∈ P , and such that the images of x1, . . . , xh form a system of param-
eters in RP . It suffices to check that if u/w ∈ RP , where u ∈ R and w ∈ R − P ,
and J(u/w)p ∈ (x1, . . . , xh)RP , then J(u/w) ∈ (xp

1, . . . , xp
h)RP . From the first condi-

tion we can choose w′ ∈ R − P such that w′Ju ⊆ (x1, . . . , xh)R, and the latter ideal
is contained in (x1, . . . , xh, xN

h+1, . . . , xN
d )R for all N ≥ 1. Since J is F-stable, and

J(w′u) ⊆ (x1, . . . , xh, xN
h+1, . . . , xN

d )R, we have that

J(w′u)p ⊆ (xp
1, . . . , xp

h, xpN
h+1, . . . . , xpN

d )R

for all N . Intersecting the ideals on the right as N varies, we obtain that

(w′)pJup ⊆ (xp
1, . . . , xp

h),

which implies that J(u/w)p ∈ (xp
1, . . . , xp

h)RP , as required.

(c) Let c ∈ J ∩R◦. Since c kills N = AnnHJ if v ∈ N we have that vq ∈ N for all e, and
so cvq = 0 for all q. It follows that v ∈ 0∗H . Hence, N ⊆ 0∗H , and so τ(R) = AnnR0∗H ⊆
Ann(N) = AnnR(AnnH(J)) = J . �

We shall need the following fact:
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Proposition. Let (R, m, K) be an excellent reduced equidimensional local ring of prime
characteristic p > 0, and let d = dim (R). Let H = Hd

m(R). Then 0∗H is stable under the
action of F . If R is a domain, 0+

H is stable under the action of F .

Proof. Let x1, . . . , xd be a system of parameters. The first statement follows from the
fact that if u ∈ I∗t for some t, then up ∈

(
(It)[p]

)∗. In fact, if u ∈ I∗ then up ∈ (I [p])∗

in complete generality. The second assertion follows from the fact that if u ∈ I+
t , then

up ∈
(
I
[p]
t

)+. The corresponding fact for any ideal I in any domain R follows from the
fact that the Frobenius endomorphism on R+ sends u to up and IR+ to I [p]R+ while
stabilizing R: hence, up ∈ I [p]R+ ∩R. �

We next note:

Lemma. Let R be a Noetherian ring of prime characteristic p > 0. Let A be an ideal
whose radical is contained only in maximal ideals of R, and let m be one maximal ideal of
R. Then (ARm)∗ in Rm is the same as A∗Rm.

Proof. It suffices to prove ⊆. Let m = m1, . . . ,mk be the maximal ideals of R. If any
mi is also minimal, then {mi} is an isolated point of Spec (R), and the ring is a product.
Every ideal is a product, and tight closure may be calculated separately in each factor.
We can reduce to studying a factor where tthere are fewer maximal ideals. Therefore, we
may assume that no mi is minimal.

Then A has primary decomposition A = A1∩· · ·∩Ak where Ai is primary to mi. Choose
an element w of A2 ∩ · · · ∩Ak that is not in P , and not in any minimal prime of the ring.

Now suppose that u/1 ∈ (IRP )∗ (we may clear denominators to assume the element has
this form). By the Proposition on p. 2 of the Lecture Notes from September 17, we can
choose c ∈ R◦ such that cu[q]/1 ∈ (ARm)[q] for all q � 0. Then (∗) wc ∈ R◦ ∩ (R −m),
and c(wu)q ∈ A[q] for all q � 0. To see this, note that

A[q] = (A1 ∩ · · · ∩ Ak)[q] = (A1 · · ·Ak)[q]

(since the ideals A1, . . . ,Ak are pairwise comaximal). This becomes A
[q]
1 ∩ · · · ∩ A

[q]
k and,

since the ideal mi is maximal, the ideal A
[q]
i is primary to mi. Then cuq is in the contraction

of (ARm)[q] to R, and this is A
[q]
1 , while wq ∈ A

[q]
i for i > 1. This proves (∗), and, hence,

wu ∈ I∗ and u ∈ W−1I∗. �

Theorem (K. E. Smith). Let (R, m, K) be an excellent reduced Gorenstein local ring
of prime characteristic p > 0. Let P be a prime ideal of R. Then τ(RP ) = τ(R)P .

Proof. We know that both ideals are generated by nonzerodivisors. We first show that
τ(R)P ⊆ τ(RP ). Let c ∈ τ(R). Let height (P ) = h and let x1, . . . , xh be part of a
system of parameters for R whose images in RP give a system of parameters for RP .
Let At = (xt

1, . . . , xt
h)R. By part (d) of the Theorem on p. 5 of the Lecture Notes
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from November 30, it suffices to show that for every t, c(AtRP )∗RP
⊆ AtRP . We claim

that (AtRP )∗ = A∗t RP . By Problem 2(a) of Problem Set #3, we can localize at the
multiplicative system W which is the complement of the union of the minimal primes of
A, since elements of W are nonzerodivisors on every A[q]. In the resulting semilocal ring,
the expansion of P is maximal, and we may apply the preceding Lemma to obtain that
(AtRP )∗ = A∗t RP . But then cA∗t ⊆ At, and so c(AtRP )∗ = cA∗t RP ⊆ AtRP , as required.

To prove the other direction, let d be the Krull dimension of R and let H = Hd
mR).

Then the annihilator of 0∗H in R is τ(R). Hence, by the Proposition above, τ(R) is an
F-stable ideal. It follows that τ(R)RP is an F-stable ideal of RP by part (b) of the Lemma
on p. 1. It contains a nonzerodivisor, since τ(R) does. By part (c) of the Lemma on p. 1,
τ(RP ) ⊆ τ(R)RP . �

We can now prove:

Lemma. Let (R, m, K) be a complete local Gorenstein domain of Krull dimension d of
prime characteristic p > 0 such that, for h < d, tight closure is the same as plus closure
for ideals generated by h elements that are part of a system of parameters. Then J+/J∗
has finite length. Hence, 0∗/0+ has finite length.

Proof. Since J+/J∗ is finitely generated, it suffices to prove that it becomes 0 when we
localize at a prime ideal P of R strictly contained in m. Since J∗ = τ(R), we have that
(J∗)P = J∗RP = τ(RP ), by the Theorem above. Hence, it suffices to prove that every
element of J+ maps to a test element in RP . Let c ∈ J+. Let h = height (P ). Let
x1, . . . , xd be a system of parameters for R such that x1, . . . , xh ∈ P and their images in
RP are a system of parameters for RP . Then it suffices to show that

c
(
(xt

1, . . . , xt
h)RP

)∗ ⊆ (xt
1, . . . , xt

h)RP

for all t. We have that (
(xt

1, . . . , xt
h)RP

)∗ = (xt
1, . . . , xt

h)∗RP

and (
(xt

1, . . . , xt
h)R

)∗ =
(
(xt

1, . . . , xt
h)R

)+ ⊆
(
(xt

1, . . . , xt
h, xN

h+1, . . . , xN
d )R

)+

for all N ≥ 1. Since c ∈ J+, this yields

c
(
(xt

1, . . . , xt
h)RP

)∗ ⊆ (xt
1, . . . , xt

h, xN
h+1, . . . , xN

d )R

for all N ≥ 1. We may intersect the ideals on the right as N varies to obtain

c
(
(xt

1, . . . , xt
h)RP

)∗ ⊆ (xt
1, . . . , xt

h)R,

and localizing at P then gives the result that we require. �



4

Step 7. The dénouement: applying the Theorem on killing local cohomology in a module-
finite extension. We can now complete the proof that plus closure is the same as tight
closure for parameter ideals. We know that the kernel of the map H = Hd

m(R) → Hd
m(R+)

is 0+
H , by the Discussion on p. 2 of the Lecture Notes from November 30. Hence, we may

view M = 0∗H/0+
H as an R-submodule of Hd

m(R+). It is stable under F , since this is
true for both 0∗H and 0+

H in Hd
m(R), by the Proposition at the top of p. 2, and the map

Hd
m(R) → Hd

m(R+) commutes with the action of F . Hence, by the Theorem on p. 3 of
the Lecture Notes of November 21, there is a module finite extension domain T of R+

such that the map Hd
m(R+) → Hd

m(T ) kills m. However, R+ does not have such an
extension, unless it is an isomorphism. Hence, M must already be 0 in Hd

m(R+), which
shows that 0∗H = 0+

H . This completes the proof of the Theorem stated at the bottom of
p. 4 of the Lecture Notes of November 21, as sketched on p. 5 of those Lecture Notes. �

Characterizing tight closure using solid algebras
and big Cohen-Macaulay algebras

We next want to prove the results on characterizing tight closure over complete local
domains using solid algebras and big Cohen-Macaulay algebras that were stated on p. 12
of the Lecture Notes of September 7.

We recall that an R-module M over a domain R is solid if HomR(M, R) 6= 0. That is,
there is a nonzero R-linear map θ : M → R.

Nonzero finitely generated torsion-free modules are solid if and only if they are not
torison modules: the quotient by the torsion submodule is finitely generated, nonzero, and
torsion free. It can be embedded in a finitely generated free R-module, and one of the
coordinate projections will give a nonzero map to R. However,we will be primarily inter-
ested in the case where M is an R-algebra. Solidity is much more difficult to understand
in this case.

Note that if S is an R-algebra, then S is solid if and only if there is an R-linear module
homomorphism θ : S → R such that θ(1) 6= 0. For if θ1 : S → R is an R-linear module
homomorphism such that θ1(s0) 6= 0, we can define θ to be the composition of this map
with multiplication by s0, i.e., define θ(s) = θ(s0s) for all s ∈ S.

The following is a slight generalization of Problem 1 of Problem Set #1.

Proposition. Let R be a Noetherian domain of prime characteristic p > 0, and let N ⊆ M
be R-modules. If u ∈ M is such that 1⊗ u ∈ 〈S ⊗R N〉 in S ⊗R M , then u ∈ N∗

M .

Proof. Let θ : S → R be an R-linear map such that θ(1) = c 6= 0. Then uq ∈ 〈(S ⊗N)[q]〉
in

Fe
S(S ⊗R M) ∼= S ⊗R Fe

R(M),

and we may identify 〈(S ⊗R N)[q]〉 with 〈S ⊗R N [q]〉. Apply θ ⊗R 1Fe(M) to obtain that
cuq ∈ N [q] in Fe

R(M) for all q. �
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Our objective is to prove a converse for finitely generated modules over complete local
domains.

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0. Let
N ⊆ M be finitely generated R-modules, and let u ∈ M . The following conditions are
equivalent.

(a) u ∈ N∗
M .

(b) There exists a solid R-algebra S such that 1⊗ u ∈ 〈S ⊗R N〉 in S ⊗R M .

(c) There exists a big Cohen-Macaulay R-algebra S such that 1⊗u ∈ 〈S ⊗R N〉 in S⊗RM .

It will be some time before we can prove this. We shall actually prove that there is an
R+-algebra B that is a big Cohen-Macaulay algebra for every module-finite extension R1

of R within R+, and the B can be used to test all instances of tight closure in finitely
generated modules over such rings R1.

Before beginning the argument, we want to give quite a different characterization of solid
modules over a complete local domain R. In the following result, there is no restriction on
the characteristic.

Theorem. Let (R, m, K) be a complete local domain of Krull dimension d, and let M be
any R-module. Then M is solid if and only if Hd

m(M) 6= 0.

Proof. We know that R is a module-finite extension of a regular local ring (A, mA, K),
and for any R-module N , Hd

m(N) ∼= Hd
mA

(N). First suppose that M is solid, and admits
a nonzero map M → R. The long exact sequence for local cohomology yields

· · · → Hd
mA

(M) → Hd
mA

(J) → 0,

where J 6= (0) is some ideal of R, since Hd+1
mA

vanishes on all A-modules (mA is generated
by d elements). Hence, it suffices to see that Hd

mA
(J) 6= 0. Since J is a torsion-free A-

module, it contains a nonzero free A-submodule, Ah whose quotient is a torsion A-module
(take h as large as possible). Then we have 0 → Ah → J → C → 0 where C is killed by
some element x ∈ mA−{{0}. Then we also have J ∼= xJ ⊆ Ah → C ′ → 0, and C ′ is killed
by x since xAh ⊆ xJ . Since C ′ is a module over A/xA, whose maximal ideal is the radical
of an ideal with d − 1 generators, we have that Hd

mA
(C ′) = Hd

mA/xA(C ′) = 0, and so the
long exact sequence for local cohomology yields

· · · → Hd
mA

(J) → Hd
mA

(Ah) → 0.

Since Hd
mA

(Ah) ∼= Hd
mA

(A)⊕h and Hd
mA

(A) ∼= EA(A/mA) 6= 0, we have that Hd
mA

(J) 6= 0
and, hence, Hd

m(M) 6= 0, as claimed.

Now suppose that Hd
m(M) 6= 0. Let x1, . . . , xd be a system of parameters for A. Let

It = (xt
1, . . . , xt

d)A. Let E = Hd
mA

(A), which is also an injective hull for A/mA over
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A. Then Hd
m(R) = Hd

mA
(M) = lim

−→ t M/ItM ∼= M ⊗A lim
−→ t A/It

∼= M ⊗A E 6= 0. Now

HomA( , E) is a faithfully exact functor on A-modules. (To see that it does not vanish
on N 6= 0, choose a nonzero element v ∈ N . The Av ∼= A/A for some proper ideal A,
which yields a map Av � K ↪→ E. This nonzero map from Av to E extends to N because
E is injective over A.) Hence,

HomA(M ⊗A E, E) 6= 0.

By the adjointness of ⊗ and Hom, we have that

HomA

(
M, HomA(E, E)

)
6= 0,

and since A is complete, we have that HomA(E, E) ∼= A. Thus, HomA(M, A) 6= 0, i.e.,
M is solid over A.

We have a nonzero A-linear map η : M → A. Exactly as in the argument that begins
near the bottom of p. 1 in the Lecture Notes from November 14, we have an induced map
η∗ : HomA(R, M) → HomA(R,A), and HomA(R, A) is a torsion-free R-module of rank
one and, hence, isomorphic with a nonzero ideal J ⊆ R. As in the Lecture Notes from
November 14, we consequenctly have a composite R-module map

M
µ−→ HomA(R, M)

η∗−→ HomA(R, A)
∼=−→ J

⊆−→ R

where the first map µ is the map that takes u ∈ M to the map fu : R → M such that
fu(r) = ru for all r ∈ R. Call the composite map θ. Let v ∈ M be such that η(v) 6= 0.
Then θ(v) ∈ R is the image under an injection of a map g : R → A whose value on 1 is
η(v) 6= 0, and so θ(v) 6= 0 and, hence, θ 6= 0. �

Remark. The argument in the last paragraph shows that, in general, if R is a domain
that is a module-finite extension of A and M is an R-module that is solid when viewed as
an A-module, then M is also solid as an R-module.


