Math 711: Lecture of December 3, 2007

Step 6. Proof that Jy/J. has finite length when d is minimum. We first prove that the
test ideal commutes with localization for a reduced excellent Gorenstein local ring of prime
characteristic p > 0. In order to do so, we introduce a new notion. Let (R, m, K) be a
reduced excellent Gorenstein local ring of prime characteristic p > 0. We say that an ideal
J C R is F-stable provided that J is the annihilator of a submodule N of H = HZ (R)
that is stable under the action of F' on H. We first note:

Lemma. Let notation be as above.

(a) J C R is F-stable if and only if for every ideal I of R generated by a system of

parameters x1, ... ,xq, (x) if Ju C I then JuP? C Il Moreover, for J to be F-
stable, it suffices that for a single system of parameters x1, ... ,xq for R, with I; =
(2%, ..., z5) R we have that Ju C I; implies that JuP C It[p] for all t.

(b) If J is F-stable and P is any prime ideal of R, then JRp is F-stable.
(¢) If J is an F-stable ideal of R that contains a nonzerodivisor, then T(R) C J.

Proof. (a) Each element of H is represented by the class v of u € R in R/I; — H for
some t. The maps in the direct limit system for H are injective, and so J kills the class
of u if and only if Ju C I;. Then F(v) is represented by v? in R/I, and I,; = It[p]. It is
immediate both that condition (x) for all I; is necessary and sufficient for J to be F-stable,
and since we may choose I to be any ideal generated by a system of parameters, we must
have (x) for all parameter ideals.

(b) Let h = height (P) and choose a system of parameters xi,...,zq € m such
that x1, ... ,zp, € P, and such that the images of 1, ...,z form a system of param-
eters in Rp. It suffices to check that if u/w € Rp, where v € R and w € R — P,
and J(u/w)? € (x1, ... ,zp)Rp, then J(u/w) € (af, ... ,27)Rp. From the first condi-
tion we can choose w’ € R — P such that w'Ju C (1, ... ,z,)R, and the latter ideal
is contained in (z1, ... ,xh,xgﬂ, .o, Y )R for all N > 1. Since J is F-stable, and
J(w'u) C (xq, ... ,xh,thH, oo, Y )R, we have that

N N
J(w'u)? C (2F, ..., 2}, IZ+1’ oo, 28R

for all N. Intersecting the ideals on the right as N varies, we obtain that
(Wb C (a, ... o),
which implies that J(u/w)?P € («f, ..., 2} )Rp, as required.

(c) Let ¢ € JNR°. Since ckills N = AnngJ if v € N we have that v € N for all e, and
so cv? = 0 for all ¢. It follows that v € 0};. Hence, N C 0}, and so 7(R) = Anng0j; C
Ann(N) = Anng(Anng(J))=J. O

We shall need the following fact:
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Proposition. Let (R, m, K) be an excellent reduced equidimensional local ring of prime
characteristic p > 0, and let d = dim (R). Let H = HZ (R). Then 0% is stable under the
action of F. If R is a domain, 0}} 1s stable under the action of F.

Proof. Let x1, ... ,xq4 be a system of parameters. The first statement follows from the
fact that if v € I} for some ¢, then uP € ((It)[p})*. In fact, if w € I* then uP € (IP1)*
in complete generality. The second assertion follows from the fact that if u € I,5, then
u?f e (It[p })+. The corresponding fact for any ideal I in any domain R follows from the

fact that the Frobenius endomorphism on Rt sends u to u? and IRT to IPRT while
stabilizing R: hence, u? € IPRTNR O

We next note:

Lemma. Let R be a Noetherian ring of prime characteristic p > 0. Let 2 be an ideal
whose radical is contained only in mazrimal ideals of R, and let m be one maximal ideal of

R. Then (UAR,,)* in R, is the same as A* R,,.

Proof. 1t suffices to prove C. Let m = mq, ... ,m; be the maximal ideals of R. If any
m; is also minimal, then {m;} is an isolated point of Spec (R), and the ring is a product.
Every ideal is a product, and tight closure may be calculated separately in each factor.
We can reduce to studying a factor where tthere are fewer maximal ideals. Therefore, we
may assume that no m; is minimal.

Then 2 has primary decomposition 2 = 2;N- - -NA, where 2; is primary to m;. Choose
an element w of Ay N --- N A, that is not in P, and not in any minimal prime of the ring.

Now suppose that u/1 € (IRp)* (we may clear denominators to assume the element has
this form). By the Proposition on p. 2 of the Lecture Notes from September 17, we can
choose ¢ € R® such that cul? /1 € (UAR,,)1? for all ¢ > 0. Then (x¥) wc € R°N (R —m),
and c(wu)? € Al for all ¢ > 0. To see this, note that

old — (AN mg[k)[fﬂ = (Ay - - .Q[k)[Q]
lq]

(since the ideals 4, ..., are pairwise comaximal). This becomes 91[111] N---N2AL" and,
since the ideal m; is maximal, the ideal QIEQ] is primary to m;. Then cu? is in the contraction

of (AR, to R, and this is Ql[f], while w? € QQ‘” for 4 > 1. This proves (x), and, hence,
wu € I*and u € WI*. O

Theorem (K. E. Smith). Let (R, m, K) be an excellent reduced Gorenstein local ring
of prime characteristic p > 0. Let P be a prime ideal of R. Then 7(Rp) = 1(R)p.

Proof. We know that both ideals are generated by nonzerodivisors. We first show that
T(R)p € 7(Rp). Let ¢ € 7(R). Let height (P) = h and let zq, ... ,x, be part of a
system of parameters for R whose images in Rp give a system of parameters for Rp.
Let 2 = (2%, ... ,2t)R. By part (d) of the Theorem on p. 5 of the Lecture Notes
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from November 30, it suffices to show that for every ¢, C(Q[tRp)*RP C A, Rp. We claim
that (A:Rp)* = A;Rp. By Problem 2(a) of Problem Set #3, we can localize at the
multiplicative system W which is the complement of the union of the minimal primes of
2, since elements of W are nonzerodivisors on every 214, In the resulting semilocal ring,
the expansion of P is maximal, and we may apply the preceding Lemma to obtain that

(A:Rp)* = Af Rp. But then A C 2, and so ¢(A:Rp)* = A Rp C A;Rp, as required.

To prove the other direction, let d be the Krull dimension of R and let H = HZ R).
Then the annihilator of 03, in R is 7(R). Hence, by the Proposition above, 7(R) is an
F-stable ideal. It follows that 7(R)Rp is an F-stable ideal of Rp by part (b) of the Lemma
on p. 1. It contains a nonzerodivisor, since 7(R) does. By part (c) of the Lemma on p. 1,
T(Rp) CT7(R)Rp. O

We can now prove:

Lemma. Let (R, m, K) be a complete local Gorenstein domain of Krull dimension d of
prime characteristic p > 0 such that, for h < d, tight closure is the same as plus closure
for ideals generated by h elements that are part of a system of parameters. Then Jy/J,
has finite length. Hence, 0* /0% has finite length.

Proof. Since Jy/J, is finitely generated, it suffices to prove that it becomes 0 when we
localize at a prime ideal P of R strictly contained in m. Since J, = 7(R), we have that
(J.)p = JxRp = T7(Rp), by the Theorem above. Hence, it suffices to prove that every
element of J; maps to a test element in Rp. Let ¢ € J;. Let h = height (P). Let
x1, ... ,xq be a system of parameters for R such that xq, ...,z € P and their images in
Rp are a system of parameters for Rp. Then it suffices to show that

c((=f, ... ,:B';L)Rp)* C (2%, ... ,20)Rp

for all t. We have that

and
(4, ... 7x’,;)R)* = ((f, ... ,x’fl)R)—i— C((2h, ..o b, anyqs - ,mflV)R)+
for all N > 1. Since ¢ € J4, this yields
c((af, ... ,xZ)Rp)* C(zh, ..o ah, ang, - 2) )R
for all N > 1. We may intersect the ideals on the right as N varies to obtain
c((af, ... ,:CZ)RP)* C (2}, ..., 2})R,

and localizing at P then gives the result that we require. [J
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Step 7. The dénouement: applying the Theorem on killing local cohomology in a module-
finite extension. We can now complete the proof that plus closure is the same as tight
closure for parameter ideals. We know that the kernel of the map H = H% (R) — H% (RT)
is 0}}, by the Discussion on p. 2 of the Lecture Notes from November 30. Hence, we may
view M = 0%/0}; as an R-submodule of HZ(R'). It is stable under F, since this is
true for both 0% and 0;} in H? (R), by the Proposition at the top of p. 2, and the map
HZ(R) — H%(R) commutes with the action of F. Hence, by the Theorem on p. 3 of
the Lecture Notes of November 21, there is a module finite extension domain 7' of Rt
such that the map H%(RT) — HZ(T) kills m. However, Rt does not have such an
extension, unless it is an isomorphism. Hence, M must already be 0 in H%(R"'), which
shows that 03 = 0};. This completes the proof of the Theorem stated at the bottom of
p- 4 of the Lecture Notes of November 21, as sketched on p. 5 of those Lecture Notes. [

Characterizing tight closure using solid algebras

and big Cohen-Macaulay algebras

We next want to prove the results on characterizing tight closure over complete local
domains using solid algebras and big Cohen-Macaulay algebras that were stated on p. 12
of the Lecture Notes of September 7.

We recall that an R-module M over a domain R is solid if Homg (M, R) # 0. That is,
there is a nonzero R-linear map 6 : M — R.

Nonzero finitely generated torsion-free modules are solid if and only if they are not
torison modules: the quotient by the torsion submodule is finitely generated, nonzero, and
torsion free. It can be embedded in a finitely generated free R-module, and one of the
coordinate projections will give a nonzero map to R. However,we will be primarily inter-
ested in the case where M is an R-algebra. Solidity is much more difficult to understand
in this case.

Note that if S is an R-algebra, then S is solid if and only if there is an R-linear module
homomorphism 6 : S — R such that 6(1) # 0. For if §; : § — R is an R-linear module
homomorphism such that 6;(sp) # 0, we can define 6 to be the composition of this map
with multiplication by sg, i.e., define 6(s) = 0(sgs) for all s € S.

The following is a slight generalization of Problem 1 of Problem Set #1.

Proposition. Let R be a Noetherian domain of prime characteristic p > 0, and let N C M
be R-modules. If u € M is such that 1 ® u € (S ®r N) in S @r M, then u € Nj,.

Proof. Let 6 : S — R be an R-linear map such that 6(1) = ¢ # 0. Then u? € {(S @ N)l4l)
in

Fé(S@r M) =S®r Fr(M),
and we may identify ((S ®z N)9) with (S @ N9). Apply  ®p 1£-(ar) to obtain that
cud € N4 in F&(M) for all ¢. O
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Our objective is to prove a converse for finitely generated modules over complete local
domains.

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0. Let
N C M be finitely generated R-modules, and let w € M. The following conditions are
equivalent.

(a) u e Nj,.
(b) There exists a solid R-algebra S such that 1 @ u € (S ®r N) in S ®@r M.
(¢) There exists a big Cohen-Macaulay R-algebra S such that 1®@u € (S @p N) in S@r M.

It will be some time before we can prove this. We shall actually prove that there is an
R+—algebra B that is a big Cohen-Macaulay algebra for every module-finite extension R;
of R within R+, and the B can be used to test all instances of tight closure in finitely
generated modules over such rings R;.

Before beginning the argument, we want to give quite a different characterization of solid
modules over a complete local domain R. In the following result, there is no restriction on
the characteristic.

Theorem. Let (R, m, K) be a complete local domain of Krull dimension d, and let M be
any R-module. Then M is solid if and only if HE (M) # 0.

Proof. We know that R is a module-finite extension of a regular local ring (A, m4, K),
and for any R-module N, HZ (N) = HZ (N). First suppose that M is solid, and admits
a nonzero map M — R. The long exact sequence for local cohomology yields

where J # (0) is some ideal of R, since HZ"! vanishes on all A-modules (m 4 is generated
by d elements). Hence, it suffices to see that HZ  (J) # 0. Since J is a torsion-free A-
module, it contains a nonzero free A-submodule, A" whose quotient is a torsion A-module
(take h as large as possible). Then we have 0 — A" — J — C — 0 where C is killed by
some element x € m4 — {{0}. Then we also have J = xJ C A" — C’ — 0, and C" is killed
by x since A" C z.J. Since C’ is a module over A/xA, whose maximal ideal is the radical
of an ideal with d — 1 generators, we have that HZ, (C') = HiA/xA(C’) = 0, and so the
long exact sequence for local cohomology yields

Since HY (AM) = HY (A)®" and HE (A) = Ex(A/ma) # 0, we have that HZ, (J) #0
and, hence, H (M) # 0, as claimed.

Now suppose that HS (M) # 0. Let xq, ... ,x4 be a system of parameters for A. Let
I, = (zf,...,25)A. Let E = HZ (A), which is also an injective hull for A/my4 over
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A. Then HZ(R) = HY, (M) = lim, M/, M = M ®, lim; A/, = M ®4 E # 0. Now

Homu(_, F) is a faithfully exact functor on A-modules. (To see that it does not vanish
on N # 0, choose a nonzero element v € N. The Av = A/ for some proper ideal 2,
which yields a map Av — K — FE. This nonzero map from Av to E extends to N because
E is injective over A.) Hence,

HOHlA(M ®aFE, E) £ 0.
By the adjointness of ® and Hom, we have that
Hom 4 (M, Homa(E, E)) # 0,

and since A is complete, we have that Homy (F, E) =2 A. Thus, Hom4 (M, A) # 0, i.e.,
M is solid over A.

We have a nonzero A-linear map 1 : M — A. Exactly as in the argument that begins
near the bottom of p. 1 in the Lecture Notes from November 14, we have an induced map
N« : Homa (R, M) — Hom4 (R, A), and Hom4 (R, A) is a torsion-free R-module of rank
one and, hence, isomorphic with a nonzero ideal J C R. As in the Lecture Notes from
November 14, we consequenctly have a composite R-module map

M 5 Homa(R, M) 25 Homa(R, A) — J = R

where the first map p is the map that takes v € M to the map f, : R — M such that
fu(r) = ru for all r € R. Call the composite map 6. Let v € M be such that n(v) # 0.
Then §(v) € R is the image under an injection of a map g : R — A whose value on 1 is

n(v) # 0, and so 6(v) # 0 and, hence, 6 # 0. O

Remark. The argument in the last paragraph shows that, in general, if R is a domain
that is a module-finite extension of A and M is an R-module that is solid when viewed as
an A-module, then M is also solid as an R-module.



