
Math 711: Lecture of December 5, 2007

From the local cohomology criterion for solidity we obtain:

Corollary. A big Cohen-Macaulay algebra (or module) B over a complete local domain
R is solid.

Proof. Let d = dim (R) and let x1, . . . , xd be a system of parameters for R. This is a
regular sequnece on B, and so the maps in the direct limit system

B/(x1, . . . , xd)B → · · · → B/(xt
1, . . . , xt

d)B → · · ·

are injective. Since 0 6= B/(x1, . . . , xd)B ↪→ Hd
(x)(B) = Hd

m(B), B is solid. �

Our next objective is to prove:

Theorem. Let R be a complete local domain. Then there exists an R+-algebra B such
that for every ring R1 with R ⊆ R1 ⊆ R+ such that R1 is module-finite over R the
following two conditions hold:

(1) B is a big Cohen-Macaulay algebra for R1.

(2) For every pair of finitely generated R1-modules N ⊆ M and u ∈ N∗
M , 1⊗u ∈ 〈B ⊗R N〉

in B ⊗R M .

The proof will take a considerable effort. The basic idea is to construct an algebra B
with the required properties by introducing many indeterminates and killing the relations
we need to hold. The difficulty will be to prove that in the resulting algebra, we have that
mB 6= B.

Forcing algebras

Let T ba ring, u an h× 1 column vector over T , and let α be an h× k matrix over T .
Let Z1, . . . , Zk be indeterminates over T and let I be the ideal generated by the entries
of the matrix

u− α

 Z1
...

Zk


By the forcing algebra, which we denote Forceσ(T ), of the pair σ = (u, α) over T we
mean the T -algebra T [Z1, . . . , Zk]/I. In this algebra, we have “forced” u to be a linear
combination (the coefficients are the images of the Zi) of the columns of α. If M is the
cokernel of the matrix α, we have that 1 ⊗ u = 0 in Forceσ(T ) ⊗T M . Given any other
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T -algebra T ′ such that 1 ⊗ u = 0 in T ′ ⊗ M (equivalently, such that the image of u is
a T ′-linear combination of the images of the columns of α), we have a T -homomorphism
Forceσ(T ) → T ′ that sends the Zi to the corresponding coeffiicients in T ′ used to express
the image of u as a linear combination of the images of the columns of α. We shall say
that Forceσ(T ) is obtained from T by forcing σ.

It will be technically convenient to allow the matrix α to have size h×0, i.e., to have no
columns. In this case, the forcing algebra is formed by killing the entries of u. (Typically,
we are forcing u to be in the span of the columns of α. When k = 0, the span of the empty
set is the 0 submodule in Th.)

Now suppose that we are given a set Σ of pairs of the form (u, α) where u is a column
vector over T and α is a matrix over T whose columns have the same size as u. We call
the set Σ forcing data for T . The size of u and of the matrix may vary. By the forcing
algebra ForceΣ(T ) we mean the coproduct of the forcing algebras Forceσ(T ) as σ varies in
T . One way of constructing this coproduct is to adjoin to T one set of appropriately many
indeterminates for every σ ∈ Σ, all mutually algebraically independent over T , and then
impose for every σ the same relations needed to form Forceσ(T ). If Σ = {σ1, . . . , σn}
one may think of this algebra as

n⊗
i=1

Forceσi
(T ),

where the tensor product is taken over T . When Σ is infinite, one may think of ForceΣ(T )
as the direct limit of all the forcing algebras for the finite subsets Σ0 of Σ.

If Σ is forcing data for T and h : T → T ′, we may take the image of Σ to get forcing
data over T ′: one is simply applying the homomorphism h to every entry of every column
and every matrix. We write h(Σ) for the image of Σ under h. Then

Forceh(Σ)(T ′) ∼= T ′ ⊗T ForceΣ(T ).

We refer to the process of formation of Forceh(Σ)(T ′) as postponed forcing: we have, in
fact, postponed the formation of the forcing algebra until after mapping to T ′.

In discussing forcing algebras we make the following slight generalization of the nota-
tions. Suppose that Σ is a set of forcing data over S and g : S → T is a homomorphism.
We shall also write ForceΣ(T ) for Forceh(Σ)(T ). Thus, our notation will not distinguish
between forcing and postponed forcing.

Note that if we partition forcing data Σ for T into two sets, we can form a forcing
algebra for the first subset, and then form the forcing algebra for the image of the second
subset. We postponed the forcing process for the second subset. But the algebra obtained
in the two step process is isomorphic to ForceΣ(T ).

One can also think of the formation of ForceΣ(T ) as an infinite process. Well order the
set Σ. Now perform forcing for one (u, α) at a time. Take direct limits at limit ordinals.
By transfinite recursion, one reaches the same forcing algebra ForceΣ(T ) that one gets by
doing all the forcing in one step.
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Algebra modifications

Let g : S → T be a ring homomorphism (which may well be the identity map) and
let Γ be a a set whose elements are finite sequences of elements of S. We assume that if
a sequence is in Γ, then each initial segment of it is also in Γ. Let ΣΓ, g denote the set
of pairs

(
u,

(
x1 . . . xk

))
such that x1, . . . , xk+1 is a sequence in Γ, u ∈ T , and xk+1u ∈

(x1, . . . , xk)T . Thus, if x1, . . . , xk+1 were a regular sequence on T , we would have that
u ∈ (x1, . . . , xk)T . Let Σ be a subset of ΣΓ,g. We call Σ modification data for T over Γ. We
refer to ForceΣ(T ) as a multiple algebra modification of T over Γ. We write AlgmodΓ,g(T )
for the forcing algebra ForceΣΓ,g (T ) and refer to it as the total algebra modification of
T over Γ. If σ is one element of ΣΓ,g we refer to Forceσ(T ) as an algebra modification
of T . For emphasis, we also refer to it as a simple algebra modification of T . We shall
use iterated multiple algebra modifications to construct T -algebras on which the specified
sequences in Γ become regular sequences.

Note that if k = 0 and x1u = 0 in T , then we get an algebra modification Forceσ(T ) in
which σ is a pair consisting of u and a 1 × 0 matrix: this algebra modification is simply
T/uT .

If we have a homomorphism h : T → T ′, and σ =
(
u,

(
x1 . . . xk

))
, we write h(σ) for(

h(u),
(
x1 . . . , xk

))
. Note that if xk+1u ∈ (x1, . . . , xk)T , then

xk+1h(u) ∈ (x1, . . . , xk)T ′.

Thus,
h(ΣΓ,g) ⊆ ΣΓ,h◦g).

With this notation, if Σ is algebra modification data for T over Γ, then h(Σ) is modifi-
cation data for T ′ over Γ.

Algebra modifications are forcing algebras. As in the general case of a forcing algebra,
we may talk about postponed modifications.

The construction of big Cohen-Macaulay algebras

that capture tight closure

Let (R, m, K) be a complete local domain. Let Γ consist of all sequences in R+ that
are part of a system of parameters in some ring R1 with R ⊆ R1 ⊆ R+ such that R1

is module-finite over R. Let Σ be the set of all pairs (u, α) consisting, for some ring R1

as above, of an h × 1 column vector over R1 and an h × k matrix over a ring R1 such
that u is in the tight closure over R1 of the column space of α. Note that we know that
whether this condition holds is unaffected by replacing R1 by a larger ring R2 such that
R1 ⊆ R2 ⊆ R+ with R2 module-finite over R.
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Let B0 = ForceΣ(R+). If Bn has been defined for i ≥ 0, let Bn+1 be the total algebra
modification of AlgmodΓ(Bn) of Bn over Γ. Then we have a direct limit system

B0 → B1 → · · · → Bn → Bn+1 → · · · .

Let B = lim
−→ n Bn. We shall prove that B is the required big Cohen-Macaulay algebra.

Much of this is obvious. Suppose that N ⊆ M are finitely generated R1-modules and
u ∈ N∗

M over R1. Choose a finite presentation for M/N over R1, so that MN/ is the
cokernel of an h × k matrix αo over R1. The image of v in M/N is represented by an
element u ∈ Rk

1 . Then u is in the tight closure of the column space of α in Rh
1 , and it

follows from the definition of B0 that u is a linear combination of the columns of α in B0

and, hence, in B.

It is likewise easy to see that if x1, . . . , xd is a system of parameters in R1 then it is a
regular sequence on B. Suppose that we have a relation

xk+1bk+1 =
k∑

i=1l

xibi

on B. Because B is the direct limit of the Bn, we can find n0 such that Bn0 contains
elements βi that map to the bi. The corresponding relation may not hold in Bn0 , but since
it holds in B it will hold when we map to Bn for some n ≥ n0. Thus, we may assume that
we have β1, . . . , βk+1 ∈ Bn such that xk+1βk+1 =

∑k
i=1 xiβi in Bn and every βi maps to

bi when we map Bn → B. By the construction of Bn+1, we have that the image of βk+1

is in (x1, . . . , xk)Bn+1. We can then map to B to obtain that bk+1 ∈ (x1, . . . , xk)B.

There remains only one thing to check: that mB 6= B. This is the most difficult point in
the proof. This is equivalent to the condition that for some (equivalently, every) system of
parameters x1, . . . , xd in every R1, we have that (x1, . . . , xd)B 6= B. To see this, observe
that if IB = B, then I2B = IB = B, and multiplying by I repeatedly yields by induction
that ItB = B for every t ≥ 1. If m1 is the maximal ideal of R1, then mR1 ⊆ m1, which
is contained in a power of mR1. Hence, mB = B if and only if m1B = B. Likewise,
if x1, . . . , xd is a system of parameters for R1 generating an ideal I, for some t we have
mt

1 ⊆ I ⊆ m1, and so m1B = B if and only if IB = B.

If (x1, . . . , xd)B = B, then we have that

1 = x1b1 + · · ·+ xdbd

for some finite set of elements of B.

We shall show that if this happens, it happens for some algebra obtained from some
choice of R1 by a finite sequence of forcing algebra extensions: the first extension is the
forcing algebra for a single pair (u, α) such that u is in the tight closure of the column
space of α over R1. The extensions after that are simple algebra modifications with respect
to sequences each of which is part of a system of parameters for R1.
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Eventually, we shall have to work even harder to make the problem more “finite”:
specifically, we aim to replace these algebras by finitely generated submodules. We then
use characteristic p methods to get a contradiction. However, the first step is to get to
the case where we are only performing the forcing procedure finitely many times. With
suffiicient thought about the situation, that one can do this is almost obvious, but it is not
quite so easy to give the argument formally..

Descent of forcing algebras

Let g : S → T be a ring homomorphism. Let Λ be a directed poset and let {Sλ}λ∈Λ

be a directed family of subrings of S indexed by Λ whose union is S. Let {Tλ}λ∈Λ be a
directed family of rings such that lim

−→ λ Tλ = T , and suppose that for every λ ∈ Λ we have
a homomorphism gλ : Sλ → Tλ such that if λ ≤ µ the diagram

S
g−−−−→ Tx x

Sµ
gµ−−−−→ Tµx x

Sλ
gλ−−−−→ Tµ

commutes. Thus, g : S → T is the direct limit of the maps Sλ → Tλ.

Proposition. Let notation be as above.

(a) Let Σ be forcing data over S. Let Σλ denote a subset of Σ such that all entries
occurring are in Sλ. Suppose also that if λ ≤ µ then Σλ ⊆ Σµ and that the union of
the sets Σλ is Σ. Then ForceΣ(T ) is a direct limit of rings each of which is obtained
from some Tλ by a finite sequence of such extensions of Tλ each of which is obtained
from its immediate predecessor by forcing one element of Σλ.

(b) Let Γ be a family of finite sequences in S closed under taking initial segments, and
Σ ⊆ ΣΓ,g(T ). Define Σλ to consist of all elements of Σ whose entries are in Tλ,
whose corresponding sequence is in Sλ, and such that if the sequence is x1, . . . , xk+1

and the element is (u,
(
x1 . . . xk

)
), then xk+1u ∈ (x1, . . . , xk)Tλ. Then the algebra

modification ForceΣ(T ) is a direct limit of rings, each of which is obtained from Tλ

by a simple algebra modification over a subset of Γ.

Proof. (a) Let L denote the poset each of whose elements is a pair (λ, Φ) where Φ is a
finite subset of Σλ. The partial ordering is defined by the condition that (λ, Φ) ≤ (µ, Ψ)
precisely if λ ≤ µ and Φ ⊆ Ψ. There is an obvious map

ForceΦ(Tλ) → ForceΨ(Tµ).
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We claim that ForceΣ(T ) is the direct limit over L of the algebras ForceΦ(Tλ) with
(λ, Φ) ∈ L. If we fix any finite set Φ if Σ, it is contained in Σλ for all sufficiently large
λ, and the direct limit of the ForceΦ(Tλ) is evidently ForceΦ(T ). The result follows from
the fact that the direct limit over Φ of the rings ForceΦ(T ) is ForceΣ(T ).

(b) Note that a relation involving a sequence in Γ that holds in one Tλ continues to
hold in Tµ for all µ ≥ λ. Also note that if σ ∈ Σ, then for all sufficiently large λ then
entries will be in Tλ, the elements of the corresponding string (x1, . . . , xk+1) will be in λ,
and since one has xk+1u ∈ (x1, . . . , xk)T , this will also hold with T replaced by Tλ for
all sufficiently large λ. From this it is clear that Σλ ≤ Σµ if λ ≤ µ and that the union of
the Σλ is Σ. Moreover, each time we force Tλ with respect to an element of Σλ we are
performing a simple algebra modification. The result is now immediate from part (a). �

Lemma. Let (R, m, K) be a complete local domain of prime characteristic p > 0, and let
B be the R-algbera constructed at the bottom of p. 3 and the top of p. 4. Then B is a direct
limit of rings of that are obtained as follows: start with a module-finite extension R1 of R

within R+, force finitely many elements σ = (u, α) where u is in the tight closure of the
column space of α over R1, and then perform finitely many simple algebra modifications
with respect to parts of systems of parameters in R1.

Proof. We freely use the notations from the bottome of p. 3 and top of p. 4 where B is
defined. We apply part (a) of the preceding Proposition, taking S = T = R+. Both are
the directed union of rings of the form R1. It follows that B0 is a direct limit of rings that
are obtained from a module-finite extension R1 of R within R+ by forcing finitely many
elements σ = (u, α) where u is in the tight closure of the column space of α over R1. By
induction on n and part (b) of the preceding Proposition, every Bn is a direct limit of rings
of the form described in the statement of the Lemma. This follows for B as well, since B
is the direct limit of the Bn.

Since every R1 is again a complete local domain, to complete the proof of the Theorem
stated on p. 1, we might as well change notation and repalce R by R1. Now, if one has a
finite set of instances of tight closure over R, say ui is in the tight closure of the column
space of αi for 1 ≤ i ≤ t, then the direct sum of the ui is in the tight closure of the column
space of the direct sum of the matrices αi, 1 ≤ i ≤ t. Moreover, the forcing algebra for
these direct sums is the coproduct of the t individual forcing algebras for the individual
instances of tight closure. While it is not actually necessary to make this reduction, it does
simplify the issue a bit. The problem that remains to complete the proof of the Theorem
on p. 1 is to establish the following:

Let R be a complete local domain of prime characteristic p > 0. Let x1, . . . , xd be
a system of parameters for R. Let T be a ring obtained from R by first forcing one
element σ = (u, α) such that u is in the tight closure of the column space of α over R,
and then performing finitely many simple algebra modifications with respect to parts
of systems of parameters in R. Then 1 /∈ (x1, . . . , xd)T .

The next step in the argument will involve replacing the sequence of forcing algebras
by a sequence of finitely generated R-modules.


