
Math 711, Fall 2007 Problem Set #3 Solutions

1. Since the test ideal τ(R) has height two, it cannot be contained in the union of P and
the minimal primes of R. Hence, we can choose a test element c ∈ R◦ that is not in P .
If u ∈ N∗M , we have that cuq ∈ N

[q]
M for all q � 0. This is preserved when we apply

S ⊗R , and the image of c is not 0. �

2. (a) Every element of I∗ maps into (IW−1R)∗, from which I∗W−1R ⊆ (IW−1R)∗. To
show ⊇, , let r/w ∈ (IW−1R)∗. Then r ∈ (IW−1R)∗ as well, so that for all q � 0,
(c/1)(rq/1) ∈ (IW−1R)[q] = I [q]W−1R. By the Proposition on p. 2 of the Lecture Notes
from September 17, W−1R◦ maps onto (W−1R)◦, and so we may assume that c ∈ R◦.
Then for all q � 0 there exists wq ∈ W such that wqcr

q ∈ I [q]. Since w is not in any
associated prime of I [q], it is a nonzerodivisor on I [q]. Then crq ∈ I [q] , and r ∈ I∗. �

(b) For every q, xq
1, . . . , xq

n is a regular sequence in the Cohen-Macaulay ring R, and so
R/I [q] is Cohen-Macaulay, which implies that all associated primes of I [q] are minimal
primes of I [q] and, hence, of I. By part (a), we can localize at W , the complement of the
union of the minimal primes of I, and IW−1R will be tightly closed, while PW−1R is a
maximal idea of W−1R. Thus, I remains tightly closed when we localize at PW−1R, by
the Lemma on p. 2 of the Lecture Notes from September 17. We have a reduced Cohen-
Macaulay local ring in which a system of parameters generates a tightly closed ideal, and
the ring is F-rational by the Theorem on p. 9 of the Lecture Notes from October 8. �

(c) R is F-rational and so it is certainly Cohen-Macaulay and reduced. Choose part of a
system of parameters for R that is also a system of parameters for RP . The ideal these
elements generate in R is tightly closed, and, hence, so is the ideal they generate in RP . �

3. Let P be maximal in Ass (M) and let N = AnnMP . Then N 6= 0, and it will suffice
to show that (∗) Ass (M) = Ass (N) ∪ Ass (M/N). In fact, Ass (N) ⊆ Ass (M) and any
prime in Ass (N) must contain P . It follows that Ass (N) = {P}, since P is maximal in
Ass (M), and that N is a torsion-free module over R/P . If (∗) holds, then by Noetherian
induction on M , M/N will have a filtration as required whose inverse image in M , together
with N , will give the required filtration of M . To prove (∗) note that we always have ⊆
and that Ass (N) ⊆ Ass (M). We need only show that Ass (M/N) ⊆ Ass (M). Suppose
Q ∈ Ass (M/N). If P is not contained in Q, then NQ = 0, and so MQ = (M/N)Q. Thus,
QRQ ∈ Ass (MQ) over RQ, and so Q ∈ Ass (M), as required. Now suppose that P ⊂ Q
strictly, and that Q is the annihilator of u ∈ M −N . Since u /∈ N , we can choose r ∈ P
such that ru 6= 0. But then Qru = rQu ⊆ rN = 0, and so Q or a larger prime is in
Ass (M), contradicting the maximality of P . �

(b) If P ∈ AssR(M), then R/P ↪→ M , and so S/PS = S ⊗R R/P injects into S ⊗R M .
Thus, AssS(S/PS) ⊆ Ass S(S ⊗R M) for every P ∈ AssR(M). This proves ⊇. For the
other direction, suppose that we have a finite filtration of M such that every factor Ni

is a torsion-free module over R/Pi for some Pi ∈ AssR(M). Then we have a filtration
of S ⊗R M by the modules S ⊗ Ni. It suffices to show that if Ni is nonzero torsion-free
over R/Pi, then AssS(S ⊗R Ni) ⊆ AssS(S/PiS). But if Ni is torsion-free over R/Pi, it
embeds in a free module (R/Pi)⊕h by the Lemma on the first page of the Lecture Notes
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from October 12. Therefore, S ⊗R Ni embeds in S ⊗R (R/P )⊕h, which is a direct sum of
copies of S/PS. Hence, Ass S(S ⊗R Ni) ⊆ AssS(S/PiS). �

4. Evidently τ(R) ⊆ I :R I∗ for every ideal I. In the local case, if It is a sequence of
m-primary irreducible ideals cofinal with the powers of m, then τ(R) =

⋂
t(It :R I∗t ).

To see this, suppose c is in the intersection but not in τ(R). Then there exist finitely
generated modules N ⊆ M such that u ∈ N∗ but cu /∈ N . Replace N by N ′ maximal
such that N ⊆ N ′ ⊆ M and cu /∈ N ′. Then replace, u, M, N ′ by v, M/N ′, 0, where v is
the image of u in M/N ′. Every nonzero submodule of M contains Rcv = Kcv, and so
M is a finite length essential extension of K and is killed by some It: then M ↪→ R/It

with cv corresponding to the socle element. Then v corresponds to an element r of I∗t /It

with cr /∈ It, a contradiction, since cI∗t ⊆ It by hypothesis. If x1, . . . , xn is generated by
test elements in the Gorenstein ring (R, m, K), let It = (xt

1, . . . , xt
n). We only need that

I :R I∗ = It :R I∗t for all t. Let u ∈ I∗t . Then xiu ∈ It for all i, and u ∈ It :R I = It+yt−1R,
where y = x1 · · · xn. But if u = f + yt−1r, then r ∈ I∗t :R yt−1 = J : we’ll show that
J ⊆ I∗. Since yt−1r ∈ I∗t , for some d ∈ R◦ and all q � 0, dyq(t−1)rq ∈ (It)[q] = Iq ⇒ drq ∈
Itq :R ytq−q = I [q]. Thus, r ∈ I∗, and I∗t = It + yt−1I∗. But then cI∗t ⊆ It iff cyt−1I∗ ⊆ It,
and this holds iff cI∗ ⊆ It :R yt−1 = I. Thus, I∗t :R It = I∗ :R I, as required. �

5. (a) With R F-finite or complete, it follows from part (6) of the splitting crriterion
at the top of p. 3 of the Lecture Notes from October 24 that the map is split iff uS /∈
(x1, . . . , xn)S, where S is R viewed as an R-algebra via F : R → R. But this means
precisely that up /∈ (xp

1, . . . , xp
n)R.

(b) Use x, y as a system of parameters. The socle mod (x, y) is represented by z2. Note
that R is free over A = K[[x, y]] on the basis 1, z, z2, and so every element can be
uniquely represented as a0 + a1z + a2z

2 with the ai ∈ A. The ring is F-split if and
only if z2p /∈ (xp, yp). Let p = 3k + r, where r = 1 or 2 and so 2p = 6k + 2r. Then
z2p = z6kz2r = ±(x3 + y3)2kz2 if r = 1 and ±(x3 + y3)2k+1z if r = 2. This is in (xp, yp) iff
all terns of (x3 + y3)2k (resp., (x3 + y3)2k+1) are: the binomial coefficients do not vanish,
since 2k + 1 < p. In case r = 1 there is a term involving x3ky3k which is not in (xp, yp).
In the second case, every term involves an exponent on x3 or on y3 that is at least k + 1,
and 3k +3 > p. Hence, the ring is F-split if p ≡ 1 mod 3 and is not F-split if p ≡ 2 mod 3.

6. (a) When N is already a module over W−1R = S, S ⊗R N ∼= N as S-modules. Hence,
Fe

S(M) ∼= Fe
S(S⊗R M) ∼= S⊗RFe

R(M) (by property (11) on p. 3 of the Lecture Notes from
September 12), and this is simply Fe

R(M) because every w ∈ W already acts invertibly on
this module, since wq does.
(b) By the equivalent condition (c) in the Proposition on p. 3 of the Lecture Notes from
October 22, it suffices to show that for every prime ideal Q of W−1R, 0 is tightly closed in
the injective hull of W−1R/Q. We know that Q has the form PW−1R for some prime ideal
P of R disjoint from W . Thus it suffices to check that 0 is tightly closed in E = E(R/P )
thought of as an W−1R module. Suppose to the contrary that u 6= 0 is in the tight closure
of 0. By the Proposition on p. 2 of the Lecture Notes from September 17, we may assume
the element used in establishing that u is in the tight closure is the image of c ∈ R◦. Then
cuq is 0 in Fe

S(E) for all q � 0. Since Fe
S(E) ∼= Fe

R(E), this shows that u is in the tight
closure of 0 in E working over R, a contradiction. �


