
Math 711, Fall 2007 Problem Set #5 Solutions

1. (a) The extension is module-finite since the equation is monic in Z, and generically
étale since adjoining a cube root gives a separable field extension in characteristic 6= 3.
The matrix has as entries the traces of the elements zi−1+j−1, 1 ≤ i, j ≤ 3. The trace
of 1 is 3, and the trace of multiplication by z or z2 is 0 (the matrices have all zeros on
the diagonal). Since z3 = −(x3 + y3) and z4 = −(x3 + y3)z, the matrix of traces is 3 0 0

0 0 −3(x3 + y3)
0 −3(x3 + y3) 0

 , whose determinant is −27(x3 + y3)2 = −27z6.

(b) The partial derivatives are 3X2, 3Y 2, and 3Z2, and 3 is invertible in K. �

2. R is Gorenstein, and not weakly F-regular, since z2 ∈ (x, y)∗. (The solution for
5(b) in Problem Set #3 gives x(z2)q ∈ (xq, yq) for all q.) Hence, no parameter ideal
is tightly closed in R. Since z2 is a socle generator mod (x, y), (xy)z2 is mod (x2, y2).
Mod J = (x2, y2, xyz2) the ring is K-spanned by 1, x, y, z, xy, xz, yz, z2, xz2, yz2

and xyz. It suffices to show that J = I∗: since I 6= I∗, xyz2 ∈ I∗. If not, there exists
v ∈ I∗ representing a socle element of R/J − {0}. The socle in R/J is spanned by the
images of xz2, yz2, and xyz. Hence, it suffices if when a, b, c ∈ K, not all 0, then for
some q, x2(axz2 + byz2 + cxyz)q /∈ (x2q, y2q). The left hand side is A + B + C where
A = aqxq+2(x3 + y3)kzρ, B = bqx2yq(x3 + y3)kzρ, and C = cqxq+2yq(x3 + y3)hzρ′ , where
2q = 3k + ρ, q = 3h + ρ′, with 1 ≤ ρ, ρ′ ≤ 2. R is K[x, y]-free on the basis 1, z, z2. Since
ρ ≡ 3ρ′ mod 3, terms from C cannot cancel those from A or B. Exponents on x in terms
from A are ≡ q + 2 mod 3; those from B are ≡ 2 mod 3: these cannot cancel either.

Thus, if az2x+ bz2y + cxyz ∈ I∗, each term with nonzero coefficient ∈ I∗. Thus, it suffices
to show that each of z2x, z2y, zxy /∈ I∗. Say zxy ∈ I∗. Then colon-capturing (cf. the
Theorem, bottom of p. 2, November 12) gives z ∈ (x2, y2)∗ : xy ⊆

(
(x2, y2) : xy

)∗ = (x, y)∗.
But x2zq = x2(x3 + y3)hzaρ, and if q = p, x2(x3 + y3)h has a term x2x3bh/2cy3(h−bh/2c).
Since 3bh/2c ≤ 3h/2 ≤ p/2 < p and 3(h−bh/2c) ≤ 3

(
h−(h−1/2)

)
≤ 3h+3/2 < p+1 < 2p,

and
(

k
bh/2c

)
6= 0 with k < p, z /∈ (x2, y2).

If xz2 ∈ (x2, y2)∗, then z2 ∈ (x2, y2)∗ : x ⊆
(
(x2, y2) : x

)∗ = (x2, y)∗. We will show
this is false. (By symmetry, this handles v = yz2.) Then x2zq ∈ (x2q, yq) for all q

⇒ x2(x3 + y3)kzρ′ ∈ (x2q, yq) and so x2(x3 + y3)k ∈ (x2q, yq). But
(
k
1

)
x2(x3)k−1y3 /∈

(x2q, yq): since p does not divide k = (2q − ρ′)/3 the coefficient is nonzero, while the
degree in x is 2 + 3k − 3 = 3k − 1 < 2q and the degree in y is 3 < q for all q � 0.

It follows that the test ideal in Rm where m = (x, y, z)R is (x2, y2)Rm : JRm = mRm,
i.e., the annihilator of 0∗E in the injective hull of Rm/mRm is m. This is also true for
ER(R/m) ∼= E. The localization at other maximal ideals is regular, and the annihilator of
0∗E′ = 0 in the injective hull E′ of R/m′ for any other maximal ideal m′ of R. It follows
from the Theorem at the top of p. 5, notes from Novemberr 30, that τ(R) = m. �

3. Suppose u ∈ R (we may assume this after clearing denominators) has the property that
its image in W−1R is in (IW−1R)∗ − (I∗)W−1R. Choose a prime ideal of W−1R that



2

contains (I∗)W−1R :W−1R u ⊇ IW−1R. Localizing at this prime gives a counterexample
in which W = R− P for some prime P with I ⊆ P . But then I is generated by part of a
system of parameters for RP , and we may replace tight closure by plus closure throughout.
Since plus closure commutes with localization, the result follows.

4. We need to prove that every ideal I generated by parameters in R is tightly closed. But
if u ∈ R and u ∈ I∗ = I+, there is a module-finite extension S of R such that u ∈ IS ∩R.
Since R ↪→ S splits by hypothesis, IS ∩R = I. �

5. Since R is complete, it suffices to prove that ideals I of R are contracted from S.
Suppose u ∈ IS ∩ R. Since R is weakly F-regular, it suffices to show that u ∈ I∗. Hence,
it suffices to show that S is a solid R-algebra, i.e., that Hd

m(S) 6= 0, or Hd
mS(S) 6= 0. Since

height (mS) = d, we can pick a minimal prime M of mS of height d. Then MSM =
Rad (mSM), and so Hd

mS(S)M = Hd
mS(SM) = Hd

MSM
(SM) 6= 0, since dim (SM) = d. �

6. Assume (∗q) cGq = uq1G
q
1 + · · ·uqhGq

h for q � q1 where G, G1, . . . , Gh all have the
same degree and c 6= 0. The same holds when we pass to a homogenous component ck 6= 0
of c and the degree k components of the ui. Thus, we may assume that c and all uqh ∈ [R]k.
Take h minimum. If all of the uqi ∈ Kc, divide by c and take q th roots to show G ∈ I.
Hence, for every q, at least one uqi /∈ cK. Choose i such that uqi /∈ Kc for q ∈ Q with
|Q| = ∞. By renumbering, say i = h, so that uqh /∈ Kc for q ∈ Q. It suffices if there exist
q0 and c′ ∈ R◦, such that for q ⊆ Q, there exists an Rq0-lineaar map θq : R → R such that
θq(c) = c′ and θq(uhq) = 0. For then applying θq for q ≥ max{q0, q1} with q ∈ Q to (∗q)
shows that c′Gq ∈ (G1, . . . , Gh−1)[q] for infinitely many q, and we may replace h by h− 1.
Let K = frac (R) and K ′ =

⋂
q Kq. Then K ′ = K: to see this, choose a separating tran-

scendence basis for K and enlarge K to be Galois over a pure transcendental extension
F = K(y1, . . . , yd). Given w ∈ K ′ −K, all elementary symmetric functions of its conju-
gates over F are also in K ′, and so one of them z ∈ F ∩K ′ −K. Write z = (f/g)q with
f, g ∈ K[y] in lowest terms and not all exponents divisible by p. Then z has a pq th root
in K, and so f/g has a p th root in K not in F , contradicting that K/F is Galois.
Let v1, . . . , vN be a K-basis for [R]K . Then dimKqspanKq{v1, . . . , vn} cannot decrease
with q. Pick q0 for which it is maximum, and renumber so that v1, . . . , vt give a basis
for the span over Kq0 . If t < N , write vt+1 as a Kq0-linear combination of v1, . . . , vt.
Then we must have that some coefficient is not in K, and we can choose q′ > q0 so
that this coefficient is not in Kq′ . Then v1, . . . , vt+1 are independent over Kq′ : a new
relation would give a relation on v1, . . . , vt. Thus, v1, . . . , vN are independent over Kq0 .
Extend v1, . . . , vN to v1, . . . , vB ∈ R, a Kq0-basis for K over Kq0 . Then we can choose
d ∈ Rq0 −{0} such that dR ⊆ M =

∑B
j=1 Rq0vj . We can now define θq as follows. Choose

a K-linear map T : V → R that sends c to c, and kills uh: this is possible since c and
uh are linearly independent over K. Extend this map to M =

∑B
j=1 Rq0vj → R: let the

values on v1, . . . , vN be given by T , and choose the values on the other vj arbitrarily. This
gives ηq : M → R that is Rq0-linear such that θq(c) = c and ηq(uqh) = 0. Finally, define
θq on R by θq(r) = ηq(dr). Then θq(c) = ηq(dc) = dηq(c) = dc, and θa(uhq) = ηq(duhq) =
dηquhq) = 0. Take c′ = dc. �


