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Let R be a Noetherian F-finite domain of characteristic p > 0. We next want to prove
that the strongly F-regular locus is Zariski open, and that if Rc is strongly F-regular then,
if c ∈ R◦, c has a power that is a test element.

Before doing this, we want to make a remark about the test elements in a domain: taken
together with 0, they form an ideal. In fact, this ideal is the same as

⋂
N⊆M N :R N∗

M , as
N ⊆ M run through finitely generated modules. We shall call this ideal the test ideal for
R and denote it τ(R). Quite generally, the test elements in R are the same as the elements
of τ(R)−R◦.

Since the pair N ⊆ M may be replaced by the pair 0 ⊆ M/N , it suffices to consider⋂
M AnnR 0∗M as M runs through finitely generated modules. In fact, it suffices to consider

modules of finite length with a one-dimensional socle — on the face of it, there might be
more in the intersection when we restrict attention to these, but if u ∈ 0∗M and is not killed
by r ∈ R, we can choose N ⊆ M maximal with respect to not containing ru, and then
M/N will be killed by a power of some maximal ideal m (so that it can be thought of as a
module over Rm), will have a one-dimensional socle and so embed in E, the injective hull
of the residue field of Rm. Note that the image v of u in M/N will be in the tight closure of
0 in M/N and we will still have rv 6= 0. Thus, τ(R) =

⋂
M AnnR0∗M as M runs through

finite length submodules of injective hulls of the residue fields of the various local rings Rm

for m maximal in R. Note that for each m we need only include a countable increasing
family of submodules of E whose union is E (e.g., the family AnnEmt at t varies), because
every finite length submodule will be contained in a member of the family, and the larger
submodule has smaller annihilator.

It follows that if the local rings of R at maximal ideals are approximately Gorenstein,
e.g., if R is reduced an locally excellent (thus, we are imposing a rather weak condition),
then τ(R) =

⋂
I I :R I∗ as I runs through the ideals of R. In fact, instead of using all

ideals, it suffices, for each maximal ideal m of R, to choose a decreasing sequence of m-
primary irreducible ideals cofinal with the powers of m, and to intersect all of the ideals
I :R I∗ as I runs through the union of all these sequences. Thus, under mild conditions, it
does not matter whether one uses only ideals or all finitely generated modules in defining
the test ideal τ(R).

We now return to the tasks discussed in the first paragraph. We need some lemmas in
order to prove the results that we want.

Lemma. If R as above is such that Rc is strongly F-regular, then for every d ∈ R − {0}
there are powers of p, q and Q, and an R-linear map R1/q → R sending d1/q to cQ. Any
power of p that is ≥ Q may also be used.
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Proof. . By hypothesis, there exists q and an Rc-linear map (R1/q)c → Rc that sends d1/q

to 1. Restrict this to a map α on R1/q, which is a finitely generated R-module. The image
of each generator can be written in the form r/ch, and if N is the maximum of the values
of h needed, then cNα maps R1/q into R and has value cN on d1/q. Clearly, N may be
replaced by any larger integer, and so may be assumed to be a power Q of p, and it is clear
that any larger power of p may also be used. �

Theorem. Let R be a Noetherian F-finite domain of characteristic p > 0. Suppose c 6= 0
is such that Rc is F-regular. Then R is F-regular iff the map R → R1/Q sending 1 to c1/Q

splits for some Q.

Proof. First recall that the hypothesis implies that the map R ⊆ R1/Q splits as well, and,
by taking q′ th roots, we get a splitting of R1/q′ ⊆ R1/q′Q also.

Let d 6= 0 be given. By the preceding Lemma, we have an R-linear map R1/q → R
mapping d1/q to cQ, where Q � 0. Choose q′ so large that the map R → R1/q′

sending
1 to c1/q′

splits. Taking q′Q th roots, we have a map R1/qq′Q → R1/q′Q sending d1/qQ to
c1/q′

that is R-linear. There is an R-linear map R1/q′Q → R1/q′
that sends c1/q′

to itself,
by the assertion of the first paragraph. Finally, compose with the map R1/q′ → R that
sends c1/q′

to 1 to get a map R1/qq′Q → R that sends d1/qq′Q to 1. �

By a theorem of Kunz, the flatness of Frobenius implies that R is regular. Thus, if c 6= 0
in R is such that (R1/p)c is Rc-free, then R is regular. We shall not prove this here, but
we do want to show Rc is F-regular without using this. We need some preliminaries.

First, note that if M is any finitely generated R-module, where R is a Noetherian
domain, and u1, . . . , uh is a maximal set of elements of M that are linearly independent
over R, then we have an embedding G ⊆ M , where G is the R-free module spanned by
the uj , and that the cokernel M/G is a torsion module over R. (If uh+1 ∈ M represented
an element with trivial annihilator in R, then u1, . . . , uh+1 would be a larger linearly
independent set of elements in M .) If c 6= 0 is an element that annihilates M/G, then
Gc → Mc is an isomorphism, i.e., Mc is Rc-free.

Note also that if A → B → C is such that B is a free algebra over A with basis {bλ : λ}
and if C is a free B-algebra with basis {cµ : µ} then C is a free A-algebra with basis
{bλcµ : λ, µ}. If R1/p is free over R then taking q th roots shows that R1/pq is free over
R1/q for all q, and iterated use of the fact in the preceding sentence shows that R1/q is free
over R for all q.

Lemma. With R a Noetherian domain that is F-finite of positive characteristic p, we may
choose c 6= 0 such that R

1/p
c is R-free, and, for such a c, Rc is strongly F-regular. That is,

if R1/p is R-free, then R is strongly F-regular.

Proof. The fact that we can choose c is immediate from the first of the two paragraphs
preceding the statement of the Lemma, with M = R1/p. The hypothesis is preserved by
localizing at a maximal ideal m of R. Since R

1/p
m

∼= (Rm)1/p, and since a ring is strongly
F-regular if all of its local rings at maximal ideals are, we may assume without loss of
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generality that (R, m) is local. By the remark in the preceding paragraph, R1/q is R-free
for all q. Now let d ∈ R − {0} be given. The intersection of the powers of m is zero, and
m[q] ⊆ mq. Thus, we can choose q � 0 such that d /∈ m[q]. Taking q th roots, we find that
d1/q /∈ mR1/q. By Nakayama’s lemma, d1/q is part of a minimal basis for R1/q over R, and
since R1/q is R-free, this means that it is part of a free basis for R1/q over R. But then
an R-linear map R1/q → R may be specified arbitrarily on the free basis, so that there
is an R-linear map R1/q → R sending d1/q → 1 and the other basis elements to, say, 0.
(What it does to the other elements of the free basis does not matter.) Thus, R is strongly
F-regular. �

Of course, when R1/p is R-free (or even R-flat) R is regular by the stronger result of
Kunz mentioned earlier.

Theorem. Let R be a Noetherian domain that is F-finite of positive characteristic p.
Then the strongly F-regular locus {P ∈ SpecR : RP is strongly F-regular} is open.

Proof. Choose an element c ∈ R − {0} such that (R1/p)c is R-free, so that Rc is weakly
F-regular. Now suppose that RP is strongly F-regular. Then we can choose q so that
the map RP → (R1/q)P that sends 1 to c1/q splits. The restriction of the splitting to
R1/q takes values in R · 1

a for some element a /∈ P , and so we get a splitting of the map
Ra → (Ra)1/q that sends 1 to c1/q. But then we may localize further to get a splitting
of the corresponding map for RQ for every prime Q that does not contain a, which shows
that one has strong F-regularity locally on a Zariski neighborhood of P . �

An element of R◦ is called a locally stable (respectively completely stable) test element
if it is test element in every local ring of R (respectively, in the completion of every local
ring of R). It is easy to see that a locally stable test element is a test element for every
localization of R, including R itself, and that a completely stable test element is locally
stable (a test element for the completion of a local ring R that is in R is a test element for
R). We shall soon see that the theory of strongly F-regular rings provides a large source
of completely stable test elements.

Theorem. With R as above, if c′ ∈ R is such that Rc′ is strongly F-regular, then c′ has
a power that is a test element. Moreover, one can choose a power c of c′ such that there
is an R-linear map R1/p → R sending 1 to c, and then c3 is a test element.

Proof. Since Rc′ is strongly F-regular, there is an Rc′ -linear map from R
1/p
c′ → Rc′ sending

1 to 1. We can restrict it to R1/p and clear denominators to get an R-linear map, say h,
from R1/p → R sending 1 to a power c of c′. We next claim that there is a map from
R1/q → R sending 1 to c2 for all q. If q = p we may simply use ch. We use induction.
Assuming such a map from R1/q → R we take p th roots to get a map R1/pq → R1/p that
is R1/p-linear and sends 1 to c2/p. Multiplying this map by c(p−2)/p we get a map that
sends R1/pq → R1/p such that the image of 1 is c. Composition with h produces a map
that sends 1 to c2, as required.

Now suppose that u ∈ I∗. We want to show that c3u ∈ I. We have d ∈ R − {0} such
that duq ∈ I [q] for all q � 0, and so d1/qu ∈ IR1/q for all q � 0. For sufficiently large q,
we can map R1/q′

to R via an R-linear map such that d1/q′
maps to cQ. Taking Q th roots
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we have a map R1/q′Q → R1/Q, linear over the latter, that sends d1/q′Q to c ∈ R1/Q. Now
d1/q′Qu ∈ IR1/q′Q, and so, applying the map, we have that cu ∈ IR1/Q. But there is a
map R1/Q → R such that 1 maps to c2, so that c3u ∈ I. �

Excellent rings. Noetherian rings that come up in algebraic geometry, number theory,
several complex variables, and so forth have better properties than arbitrary Noether-
ian rings. This idea was formalized by A. Grothendieck in his Éléments de géométrie
algébrique, where the notion of an excellent ring was introduced. It is beyond the scope
of this course to do a detailed treatment of the notion, but it is often the right hypothesis
for our theorems. We therefore give the definition and some properties that we shall need.
For further details, we refer the reader to H. Matsumura’s book Commutative Algebra,
W.A. Benjamin, New York, 1970, which has a self-contained treatment of the subject that
avoids excessive detail and generality. We recall that a Noetherian ring is called catenary
or catenarian if for any two prime ideals P ⊆ Q, all saturated chains of primes joining P
to Q have the same length (where saturated means that for any two consecutive primes in
the chain, there are no primes strictly between them).

Second, we recall the very useful notion of fiber of a ring homomorphism. Let R → S
be a homomorphism of Noetherian rings and P a prime ideal of R. Let κP denote the field
RP /PRP , which is canonically isomorphic with the fraction field of R/P . The elements
of Spec (κP ⊗R S) are in bijective correspondence with the primes of S lying over P ,
that is with the set-theoretic fiber f−1(P ) of the induced map f : Spec S → Spec R, and
the ring κP ⊗R S is referred to as the fiber of the map R → S. (One might use the
term scheme-theoretic fiber also.) Note that the condition for a prime Q of S to lie over
P is that it contain the image of P , and hence contain PS (such primes correspond to
the primes of S/PS) and be disjoint from the image of W = R − P , and such primes
correspond to those of W−1S = SP . The two conditions together yield precisely primes
that correspond to those of the ring SP /PSP

∼= (RP /PRP ) ⊗R S = κP ⊗ S. The fiber
over P is called regular if κP ⊗R S is a regular ring. It is called geometrically regular if the
fiber is a geometrically regular algebra over κP : this means that for every finite algebraic
extension λ of κP , λ⊗κP

(κP ⊗R S), which is ∼= λ⊗R S, is regular as well. The condition
is automatic for separable base changes, and so one need only impose it when λ is a finite
purely inseparable extension of κP .

If R is a domain with fraction field L, the fiber L⊗R S of R → S over the prime ideal
(0) in R is called the generic fiber. If (R, m) is local the fiber S/mS of R → S over m is
called the closed fiber.

The formal fibers of a local ring R are the fibers of the map R → R̂. A ring is called
excellent if it is Noetherian, universally catenary, the formal fibers of all of its local rings are
geometrically regular, and the regular locus is open in Spec S for every finitely generated
R-algebra S (much weaker but more technical statements can be substituted for this last
condition).

This is a very technical definition, but the main point for us is that good properties
of local rings of R are preserved when one completes. Here is a summary of some good
properties of excellent rings:
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If R is excellent, so is every homomorphic image and localization of R, and every finitely
generated R-algebra. Complete local rings (hence, fields) are excellent. The integers is
excellent. Analytic local rings are excellent (these are homomorphic images of rings of
convergent power series over C). By a theorem of Kunz, F-finite rings are excellent.

If R is an excellent domain, the integral closure of R is a finitely generated R-module.
If R is excellent and local, then if R is reduced, so is R̂. Also, if R is normal, so is R̂.
(However, when R is a domain and not necessarily normal, R̂ need not be a domain. E.g.,
let A = C[x, y], and let T by its localization at (x, y). Let R = T/(y2 − x2 − x3). This is
a domain: the polynomial x2 + x3 has no square root in C(x). However, if one completes,
R̂ = T̂ /(y2−x2−x3) = C[[x, y]]/(y2−x2−x3) is no longer a domain. The polynomial now
factors into two irreducibles, corresponding to the two square roots of x2 + x3 in C[[x]],
±x(1+x)1/2. Note that (1+x)1/2 is in the power series ring C[[x]]: one can find the power
series square root explicitly using the binomial theorem.)

Experience has shown that when a map R → S is flat and both R and all fibers have a
certain good property, S tends to have that same good property. One important instance
is this:

Proposition. IF R → S is a flat homomorphism of Noetherian rings such that R is
regular and all the fibers are regular, then S is regular.

Proof. The result is immediate from part (b) of the Lemma just below, since the issue is
local on S (and if one localizes S at prime, one may also localize R at the contraction of
that prime. �

Lemma. Let (R, m) → (S, n) be a local map (i.e., the image of m is contained in n) of
local Noetherian rings that is flat.
(a) Then dimS = dimR + dimS/mS.
(b) If R and S/mR are regular, then S is regular.

Proof. For part (a), note that if dim R = 0 then m is nilpotent and killing mS, which is
also nilpotent, will not change the dimension of S. The result follows. More generally, we
can kill the ideal of all nilpotents of R and its expansion to S. Thus, we may assume that
R is reduced and of positive dimension. Then we can choose an element x of R not in any
minimal prime, and x will be a nonzerodivisor in R. By the flatness of S over R, x is also
a nonzerodivisor in S. The result now follows by induction applied to the flat local map
R/xR → S/xS. Killing a nonzerodivisor in the maximal ideal of a local ring decreases
the dimension by 1. Note that killing I ⊆ R and IS ⊆ S gives a flat map R/I → S/IS
without affecting the fiber over the maximal ideal.

For part (b), note that m is generated by dim R elements, and since S/mS is generated
by dim (S/mS) is elements, we get that n is generated by at most dim R + dim (S/mS) =
dim S elements, while we know that at least dim S elements are required. Thus, S is
regular. �

We can now see that there are completely stable test elements in an F -finite domain.
In the course of the proof we need that when R is an F-finite local domain, the obvious
map A = R̂ ⊗ R1/q → R̂1/q = B is an isomorphism (we only need the case where q = p
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just below, but we shall soon need the general case). We leave this an exercise, but here
are some suggestions about doing it. We are dealing with excellent local rings, so that
completions of reduced rings are reduced. The ring A is the same as the completion of
R1/q, since R1/q is module-finite over R. To prove injectivity, use that if an element is in
the kernel, its q th power is in the kernel. To prove surjectivity, note that any element b of
B is the q th root of the limit of a Cauchy sequence of elements of R. But q th roots of the
elements in the Cauchy sequence exist in A. Check that those q th roots form a Cauchy
sequence in A whose limit will map to b.

Theorem. Suppose that R is a Noetherian F-finite domain of positive characteristic p.
Let c′ be an element of R such that Rc′ is regular. Let c be a power of c′ such that there is
an R-linear map R1/p → R sending 1 to c. (We proved earlier that there is such a power.)
Then c3 is a completely stable test element. In particular, every F-finite domain has a
completely stable test element.

Proof. The hypotheses are stable under passage to a local ring of R, and so c is locally
stable by the theorem we proved earlier. Thus, we may assume that R is local. To show
that c3 is completely stable, we need to prove that the hypotheses pass to the completion.
One point is that R̂c is regular. The reason for this is that since R → R̂ is flat, this remains
true when we localize at c, while the fibers of Rc → R̂c are a subset of the fibers of R → R̂
(corresponding to those primes of R that do not contain c). Thus, since R is F-finite and,
therefore, excellent, it follows that the fibers are regular, and so R̂c is regular. We get the
required map R̂1/p → R̂ sending 1 to c by completing, which is the same as tensoring over
R with R̂. One needs to verify that the obvious map R̂⊗R1/p → R̂1/p is an isomorphism,
which was discussed just above �

Corollary. If R is a local and F-finite domain, R is strongly F-regular if and only if R̂ is
strongly F-regular.

Proof. Fix c such that Rc is regular (and, hence, R̂c is regular). Whether there is a splitting
of the map φ : R → R1/q that sends 1 to c1/q is independent of whether we complete or
not. Thus, if either φ or φ̂ : R̂ → R̂1/q splits for a certain q, so does the other. But one
has strong F-regularity for R iff φ splits for large q, and the same holds for R̂ and φ̂. �

Lemma. Let R be a local ring with a completely stable test element c. The R is weakly
F-regular if and only if R̂ is weakly F-regular.

Proof. A sufficient condition for weak F-regularity is that 0 be tightly closed in every finite
length R-module. These modules are “the same” whether we work over R or R̂ (those that
are killed by mN are the same as the modules over R/mN ∼= R̂/mN R̂), and for such a
module M , F e(M) over R may be identified with F e(M) over R̂. Because one has an
element of R that is a test element in R̂, checking whether an element of M is in the tight
closure of 0 is independent of which ring one is working over. �


