Grobner Bases

Grobner bases are a tool for doing explicit algorithmic calculations in a polynomial
ring over a field or a homomorphic image of a polynomial ring over a field. We assume
that arithmetic operations on the elements of the field can be performed algorithmically.
Throughout, K is a field, and zq, ... ,x, are indeterminates over K.

While Grobner bases are tools for calculation, they can also be used to prove substantial
theorems, such as the Hilbert basis theorem (ideals in R are finitely generatded) and the
Hilbert syzygy theorem (discussed below). Moreover, not surprisingly, the systematic
study of Grobner bases introduces many new theoretical problems.

One of the problems we want to solve is this: given generators for an ideal of the ring,
how do we tell whether a given element of the polynomial ring is in the ideal?

Here is another problem: If we have finitely many generators for an ideal
I CKzy, ... ,x,] =R,

how can we find finitely many generators for IN K[zs+ 1, ..., z,], 1 <s<n—17

This problem is intimately connected with the problem of solving the equations obtained
by setting the generators of the ideal equal to 0. Suppose that K is algebraically closed
and that we know that there are only finitely many solutions.

By intersecting I with KJ[z,| we get a principal ideal generated by one polynomial.
It has only finitely many roots, say A1, ..., A.. If the elements of the solution set have
last coordinates A1, ..., Ag, these will be the same as the roots of that single polynomial,
although there may be multiplicities. (The polynomial (z,, — A1) - -+ (2, — Aq) vanishes on
the solution set: by Hilbert’s Nullstellensatz, it has a power in I. Conversely, if f(z,) € I,
the first coordinate of any point in the solution set obviously satisfies f.)

For each of these roots \; we can substitute x,, = A; in all of the polynomials. We have
now replaced the original problem by finitely many, each one involving fewer variables than
in the original.

This idea reduces the problem of solving systems of polynomial equations in several
variables with finitely many solutions to the problem of solving one equation in one variable.

Another use of Griobner bases is this: given elements fi, ..., [, € Klzi, ..., zy],
find generators for all the relations on those elements, i.e., for the module of m-tuples of
polynomials g1, ..., gn such that Z;n:l g;f; = 0. In fact, one can require insteasd that
the g, satisfy several equations like this, i.e., a system
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 gifij=0, 1<i<r
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This is equivalent to finding the relations on the r columns of the m x r matrix ( f,-yj).
Consider the R-submodule M of R™ spanned by these columns. The module of relations
on the columns is called a first module of syzygies of M. More generally, whenever we
have a short exact sequence of finitely generated R-modules 0 — M’ — R" — M — 0, M’
is called a first module of syzygies of M. A first module of syzygies of a kth module of
syzygies is called a (k + 1) st module of syzygies: when N is a nth module of syzygies of
M there is an exact sequence

0—+N-—=R"1' ... 5R" 5 M0

of finitely generated R-modules.

Grobner bases can be used to prove the famous Hilbert syzygy theorem, that every
finitely generated module over K|z, ..., z,] has an nth module of syzygies that is free.
(Equivalently, that every finitely generated R-module has a free resolution of length at
most n.) Beyond that, they can be used to compute the resolution.

In the graded case, this means that Grobner bases can be used to find finite free resolu-
tions of graded R-modules M. If we let Hps(t) = dimg (M), where My is the ¢ th graded
piece of M, then Hys(t), the Hilbert function of M, agrees with a polynomial in ¢ for all
n > 0. The degree of this polynomial is one less than the Krull dimension of M (which is
the same as the Krull dimension of the ring R/AnngM.) One finds a graded free resolu-
tion of M in which a typical term is a direct sum of copies of R(—s), s a variable integer,
where R(—s) is free on one generator but is graded so that its generator lives in degree s
(that is, the ¢ th graded piece of R(—s) is Ri;—s). The Hilbert function of K[z1, ... ,z,]
itself is (tti_ll) (and it is zero for t < 0). One can then immediately compute the Hilbert
function of any graded module M from a finite graded free resolution: one simply takes
the alternating sum of the Hilbert functions of the free modules in the resolution, each of
which is sum of copies of Hp(_)(t) = Hgr(t — s) with s varying. Thus, Grébner bases can
be used to find Hilbert functions.

Let M denote the multiplicative semigroup of all monomials in z1, ... ,x,: a typical
element is :c’fl co-xfn for (ky, ..., k,) € N*, where N is the set of non-negative integers.

Throughout, free modules are assumed to be finitely generated. If F' is a finitely gener-
ated free K[z1, ... ,z,]-module with a given free basis ey, ... ,e, by a monomial in F we
mean an element of the form pe;, where p C M.

In order to define the notion of Grobner basis, one first needs to fix a monomzial order.
This is a total ordering > of M that is compatible with multiplication, and such that 1
is least. That is, if A\, y, and v are monomials, and p > v, then Ay > Av (and Av > A
follows since » > 1). We shall make the convention that the variables always have the
order x1 > -+ > x,: this can always be achieved by renumbering.

Given a free R-module with free basis eq, ... ,e,, we extend the monomial order to the
monomials of the free R-module by requiring that e; > --- > e, and then letting pe; > ve;
if 4 > v or p=v and e; > e;. Such monomial orders are referred to by the acronym TOP
(term over position). Other monomial orders on free modules are possible, but these will



suffice for our purposes here. (In the general case, one requires that for any pe; > ve;, one
has Ape; > Ave; > ve;.)

Here are some examples of monomial orders on M. One is lexicographic order, or lex
order, which means that :c’fl gk > a:i“ -« P precisely if for some s, 1 < s < n, k; = h;
for ¢« < s while kg > h,.

A variant is homogeneous lexicographic or hlex order, where p >y1ex ¥ means either that
i has larger degree than v or they have the same degree and p >ex V.

A very important monomial order is reverse lexicographic order. Here p >,eyiex ¥ Mmeans
that p has larger degree, or that the degrees are equal and for some s, 1 < s < n, ks < hg
while k; = h; for ¢ > s. Among monomials of a fixed degree, this is the opposite of
the lexicographic order obtained by numbering the variables backwards, so that a double
reversal is involved. Note that 123 >hiex x% but :U% >reviex T123. Very roughly speaking,
larger monomials in lex order involve more of the earlier variables, while in revlex order
they involve fewer of the later variables. This “tends” to be the same thing, but not always.

In two or more variables there are always uncountably many monomial orders! E.g., let
01, ... ,0, be positive real numbers linearly independent over the rationals, and map the
monomials to the reals by letting W send z%* - - - zF» to S kif;. Order the monomials
by the rule p > v precisely when W (u) > W (v). Even in the case of two variables there
are uncountably many orders of this type.

Now fix a monomial order, both on M and, if we are working with a free module with
free basis ey, ... ,e,, on the monomials of the free module. By a term in a polynomial we
mean cf, where c is a nonzero scalar, that occurs. Likewise, every element of F' is a linear
combination of monomials, and we define a term to mean cue; occurring in the element,
where ¢ is a nonzero scalar. The terms occurring in a given element are linearly ordered
by the monomial order if we ignore the scalars. Therefore, every element u of R or F' has
a largest term, called the initial term, in(u). Given an ideal of I C R or a submodule M
of F = R", we define in([) (respectively, in(M) to be the ideal (respectively, submodule
of F') spanned by all the initial terms of elements of I (respectively M). This will be a
monomial ideal (respectively, module), i.e., one generated by monomials. Monomial ideals
and modules are much easier to work with than others: e.g., the intersection of two such
is spanned by the monomials in the intersection.

We now come to a key definition. Fix a monomial order for R (respectively, for F'). A
Grébner basis for an ideal I or for submodule M of F is a set of elements of I (respectively
M) whose initial terms generate in(I) (respectively, in(M)). It is then easy to show that
a Grobner basis actually does generate I (respectively, M).

In fact, one has that ift N C M C F then in(N) = in(M) implies that N = M.

A Grobner basis is called minimal if no terms can be omitted. This means that no initial
term of an element in the basis divides any other. It is called reduced if no initial term of
an element divides any term in any other element and the scalar coefficient of every initial
term is 1. We shall see that reduced Grobner bases exist, can be found algorithmically,
and are unique.



Next note that every monomial order has DCC: the reason is that in any set of mono-
mials, finitely many are minimal under the partial ordering by divisibility, and one of these
must be least in any total ordering that refines it.

The following fact is of great importance in the theory of Grobner bases. From this
point on we shall state several results for the module case: the case of ideals is included.

Theorem (division). Let F' be a free R-module, with R = K|z, ... ,x,], and suppose
that a monomial order > has been fized. If f, g1, ... ,gn € F are given then one can write
h
F=> figit+r
i=1

with the f; € R, p € F', where none of the monomials occurring in p is in

(m(gl), cee m(gh))

and in(f) > in(fig;) for 1 < i < h. An expression satsifying these conditions is called
standard, and p is called a remainder of f with respect to g1, ... ,gp.

Here is both how one proves this theorem and how one carries out the “division” algo-
rithmically. Choose the maximal term in f that is divisible by some in(g;). Let my be the
quotient of that term by the relevant in(g;) (choose i as small as possible if it is desired to
make the process choice-free). Let i¢; be the value of i used. Now look at fi = f — mg;,
and repeat the process. This generates a sequence, fo = f, f1, f2, etc. Eventually, either
fs is 0, or else it has no term that is divisible by any in(g;). In the latter case, fs = p.

It is trivial that if g1, ...,gs, are a Grobner basis and g is in their span, then any
remainder in the division algorithm must be zero. (The remainder is in the span of the
g1, - - »gn, but its initial term is not divisible by any in(g;).)

This shows that one has an effective membership test once one has any Grobner basis.

Second, one can always modify a Grobner basis until it is reduced: consider the largest
monomial in any g; that is divisible by some in(g;) for ¢ # j Subtracting a suitable multiple
of g; from g; decreases the number of occurrences of that largest monomial in the Grobner
basis. It follows that one eventually reaches a reduced Grébner basis (one also needs to
adjust the coefficients of the initial terms at the end, but that is a trivial step). We leave
it as an exercise to show that two reduced Grobner bases for the same submodule of F
must be identical.

We next give a criterion and algorithm due to Buchberger for testing whether one has a
Grobner basis and, if not, enlarging it. Eventually, this produces a Grobner basis. Suppose
that we have a free module F' over R = K|[z1, ... ,z,| and monomial order as usual. Let
g1, --. ,9n be elements of F'. For every pair of indices 4, j such that in(g;) and in(g;)
involve the same basis element ej of F, let m;; = in(g;)/GCD(in(yg;), in(g;)) € S. For



each such 7, j we can choose a standard expression for mj;g; — m;;g;: call the reminder
pij- (This means that we have expressions:

h
mjigi — mijg; = > fijege + pij
=1

where for all ¢,7, in(m;;9;, — m;;jg;) > in(fijrg:) for all ¢, and none of the monomials
occurring in any p;; is in (in(g1), ... , in(gp))-

This is actually very simple: in writing down mj;g; — m;;g; we are trying to get the
“obvious” candidate for the initial term of a linear combination of the g;, in fact, of just
two of them, to turn out to be zero, so that we might get a new element of € (M) from
it, where M is the span of the g;. But we first perform division on the difference: if the
remainder is 0 we are not actually getting anything new.

Buchberger’s criterion asserts that the g; are a Grobner basis for their span if and only
if all the p;; = 0. The proof is not difficult, and is given, for example, in D. Eisenbud,
Commutative Algebra with a View Toward Algebraic Geometry, GTM 150 Springer-
Verlag, New York, 1995, §15.4. In further references we refer to Eisenbud’s book as [E].

Buchberger’s algorithm is an immediate consequence: if the g; are not a Grobner basis,
enlarge them with the p;;. Repeating will eventually produce a Grobner basis, since the
module spanned by the initial terms cannot go on increasing forever.

The problem of computing syzygies (or relations) on a module is also solved easily now.
We first note that it does not affect the problem to increase the set of generators by one
element that is already a linear combination of them (or, inductively, by several). If we
know the relations on g1, ... ,gn and gp4+1 = 2?21 r;gi, then this single new relation to-
gether with the ones on g1, ..., gn spans all of the relations on g1, ..., gn,gn+1. On the
other hand, from any relation on g1, ..., gn, gn+1 one gets a relation on g1, ..., gn by sub-
stituting gp4+1 = 2?21 r;g;, and in this way generators for the relations on g1, ..., gn, gn+1
give rise to generators for the relations on gq, ..., gn. Finally, given two different sets of
generators for M, one can compare each to the union, and so it does not matter which set
of generators one uses in computing relations.

Therefore, one may assume that one is working with a Grobner basis for the module in
doing this: call it g1, ..., gn. With the m;; defined as in the Buchberger criteron, we have
certain equations, coming from the division algorithm, but now, every p;; = 0. But then,
after we move the two terms on the left to the right, every equation

h
mjigi — Mgy = Y fijigs
t=1
gives a relation on g1, ... ,gp. It is not difficult to show that these relations span all
relations on ¢y, ...,gn! This method is due to Schreyer. Cf. [E], §15.5. In fact, for

a suitable monomial order on the free module containing the relations, these relations



already are a Grobner basis for all the relations. (Map the free module with free basis
ei, ..., e}, into the free module containing the Grobner basis g1, ..., gn by sending e} to
gi- Put a monomial order on the new free module by pe; > ve’ if in(ug;) > in(rg;) with
respect to the monomial order on F', or they are equal up to multiplication by a nonzero
scalar and 7 < j. The relations 7;; = mj;e; — m,-jeg — 2?21 fijt€} give a Grobner basis for
the module of relations, and 7;; has initial term mj;e’.)

We conclude with several exercises on Grobner bases. The results in 1., 2., 5., and 6.
are significant applications, while 3. and 4. are calculations of Grobner bases and syzygies.

We first recall that yq, ..., yx is a regular sequence on N if N # (yq, ... ,yx)N, y1 is
not a zerodivisor on N, ys is not a zerodivisor on N/y; N, and, for every t < k, yz+1 is not
a zerodivisor on N/(y1, ... ,y:)N.

Exercise 1 (elimination theory). Use lexicographic order on R, with 1 > --- > z,,. If
91, --- , gn is areduced Grobner basis for I, then those elements that happen to involve only
Zsy ..., Tp is a reduced Grobner basis for I N K[xs, ..., zy,]. Is that easy or what?! (The
proof is very easy. Cf. D. Cox, J. Little, and D O’Shea, Ideals, Varieties, and Algorithms,
Springer-Verlag, New York, 1992, p. 114, Theorem 2, or [E], pp. 357-359.)

Exercise 2 (regular sequence test). Let F' be free and use reverse lexicographic order.
Let M be a graded submodule. Then z1, ..., zj is a regular sequence on F'/M if and only
if it is a regular sequence on F/in(M). (This is a theorem of Bayer and Stillman. Cf. [E],
Thoerem 15.13.)

Exercise 3. Find a Grobner basis for zy, zy + y? for lexicographic order with z > y. (Cf.
[E], pp. 334-5.)

Exercise 4. Find a Grobner basis for z2,y2, zy + yz using reverse lexicographic order
with z > y > 2, and then find the relations (or syzygies) on the elements of the Grébner
basis by Schreyer’s method.

Exercise 5 (Hilbert basis theorem). Give a proof by combinatorial methods that
every monomial ideal in R is finitely generated. It follows that any ideal I has a finite
Grobner basis. Therefore, every ideal of R is finitely generated: this is a Grobner basis
proof of the Hilbert basis theorem.

Exercise 6 (Hilbert syzygy theorem). With notation as in the discussion of finding
syzygies above, arrange the Grobner basis so that whenever in(g;) and in(g;) involve the
same ey, say in(g;) = v;er and in(g;) = vge, then if ¢ < j we have that v; > v; in lex
order. Show that if the variables 1, ... ,xs are missing from the initial terms of the g;
then the variables xq, ... ,7,41 are missing from the initial terms of the 7;;. This easily
implies the Hilbert syzygy theorem.



