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2 Introduction
This issue of the Journal of Algebra grew out of a conference honoring Craig Huneke 
on the occasion of his sixty-fifth birthday, and the special editorial board for this issue 
coincides with the organizing committee for that conference. The contributors to this 
volume have a large overlap with the speakers at the conference, but the correspondence 
is far from exact.

During the conference, the authors of this introduction gave a joint talk highlighting 
some of the work of Craig Huneke. We have included here a version of what was said at 
the conference, but have supplemented it with additional remarks on Huneke’s work and 
his enormous influence on the field of commutative algebra. We want to mention right 
away that Huneke has published over one hundred sixty papers with more than sixty 
co-authors. He has written two books and he has been an editor for four volumes. He has 
had twenty-five graduate students with another in progress. This does not take account 
of a huge number of mentees and colleagues who have benefited from his enormous 
generosity in sharing insight and ideas.

Huneke received his Bachelor of Arts degree from Oberlin College in 1973 and his 
Ph.D. in mathematics from Yale University in 1978. While his official advisor was Nathan 
Jacobson, David Eisenbud played a large role in mentoring his dissertation research. His 
first academic position was as a Junior Fellow in the Society of Fellows at the Univer-
sity of Michigan, where his significant interactions with Mel Hochster began, although 
they had met earlier. This position combined a postdoctoral research position and an 
assistant professorship. During this interval he also held a Visiting Scholar position at 
the Massachusetts Institute of Technology and was a Research Visitor at the Sonder-
forschungsbereich, Universität Bonn, both in 1980.

From 1981 through 1999, Huneke was on the faculty at Purdue University, first as 
Assistant Professor, from 1981 to 1984, then as Associate Professor, from 1984 to 1987, 
and as Professor, from 1987 to 1999. However, he spent 1981–82 as a National Science 
Foundation Fellow at the University of Illinois, he was a Research Visitor at the Uni-
versity of Virginia in 1984, he spent the academic year 1994–95 as a Visiting Professor 
at the University of Michigan, and, in 1998, he was a Fulbright Scholar and Visiting 
Professor at the Max Planck Institute, Bonn.

His collaboration with Hochster on the development of tight closure theory began 
during a conference at the University of Illinois in October 1986, and continued for two 
decades (cf. [1], [15–28]), including a one month period when both were visiting the 
University of Stockholm in the spring of 1988. During 1994–95, while visiting Michigan, 
he wrote the notes [48] for his ten CBMS Conference talks on tight closure: the conference 
took place in July 1995.

For the interval 1999–2012 he was the Henry J. Bischoff Professor at the University of 
Kansas. He was a Member at the Mathematical Sciences Research Institute, Berkeley, in 
the fall of 2002 and a Simons Research Professor at the same institution in the fall of 2012. 
Since 2012, he has held the position of Marvin Rosenblum Professor of Mathematics at 
the University of Virginia, where he also chaired the Mathematics Department for several 
years.
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In the remainder of this introduction, we discuss several aspects of Craig Huneke’s 
research contributions. These include some of our favorites among his theorems, as well 
as some related results in the literature. All of the work that we cite has been the starting 
point for a great deal of research by other experts in the field. We only discuss a fraction 
of his work, but it should be clear that his influence on the field of commutative algebra 
has been transformative. He has repeatedly opened up vast landscapes for exploration 
by many others.

In particular, we discuss some of Huneke’s contributions in these overlapping areas:

• d-sequences and ideal powers
• Linkage
• Residual intersections
• Rees rings, reductions, and the core
• Tight closure
• Local cohomology
• Uniform behavior in Noetherian rings
• The Cohen-Macaulay property of R+ in characteristic p > 0
• Symbolic powers

Since Hilbert functions and multiplicities were introduced, the behavior of powers of 
ideals has been an important topic in commutative algebra. This has led to the study of 
Rees rings, associated graded rings, integral dependence, and the relationship between 
powers and symbolic powers. Residual intersections arise in this context as well as in in-
tersection theory and enumerative geometry; they generalize linkage or liaison, a classical 
method for classifying ideals and projective varieties and a rich source of examples.

Tight closure, related characteristic p ideas, and their relation to the absolute integral 
closure R+ have become a significant part of the landscape in commutative algebra. 
They have also provided a foundation for recent breakthroughs in mixed characteristic. 
Huneke’s research on the behavior of local cohomology and the questions he has raised 
have had a great influence on the field, and his work on uniform behavior in Noetherian 
rings has been an important tool for others as well as inspiration for further research. 
This area also provides an instance where tight closure methods may be applied, as does 
a significant part of his work on the behavior of symbolic powers.

1. d-sequences and ideal powers

Huneke introduced two important notions generalizing regular sequences, d-sequences 
and weak d-sequences, and developed their properties as a means to study powers of 
ideals, see [31–34,39,44]. In many cases, he was able to determine depths of ideal powers 
and to prove the equality of powers and symmetric or symbolic powers. Let a1, . . . , an
be elements of a Noetherian ring that generate an ideal I minimally. According to one of 
the equivalent definitions, these elements form a d-sequence if 

(
(a1, . . . , ai−1) : ai

)
∩ I =
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(a1, . . . , ai−1) for 1 ≤ i ≤ n ([39]). Huneke, and independently Valla, proved that in this 
case the symmetric powers and the powers of I coincide, in other words, the symmetric 
algebra Sym(I) and the Rees algebra R(I) are naturally isomorphic, see [31,81]. In 
addition, he showed that the associated graded ring grI(R) is Cohen-Macaulay if the 
sequence is a Cohen-Macaulay d-sequence in a Cohen-Macaulay ring ([32]). Whenever 
grI(R) is Cohen-Macaulay, then the equality of the powers and symbolic powers as well 
as the asymptotic depth of the powers can be read easily from the (local) analytic spreads 
of I, see [36] and the joint work with Eisenbud [9].

As it turned out later, there is an interesting connection between d-sequences and the 
approximation complex M(I) of Simis and Vasconcelos, which can also be used to study 
symmetric algebras and Rees algebra, see [76,77,13,14]. In fact, the M-complex relates to 
d-sequences much like the Koszul complex relates to regular sequences: The M-complex 
of an ideal I in a Noetherian local ring with infinite residue field is acyclic if and only if I
can be generated by a d-sequence, see Huneke’s [44] for an earlier result and [14] for the 
general case. The acyclicity of the M-complex is implied, mainly, by depth conditions on 
the Koszul homology modules of the ideal and, in particular, by the Cohen-Macaulayness 
of these modules, in which case I is said to be strongly Cohen-Macaulay, see [76,77]. This 
motivates the search for classes of strongly Cohen-Macaulay ideals.

2. Linkage

Linkage, or liaison, has been used since the nineteenth century as a method for clas-
sifying projective varieties, in particular curves in P 3, by authors such as Max Noether, 
Severi, Dubreil, Gaeta, and many others. The subject was reintroduced in the language 
of modern algebra by Peskine and Szpiro ([74]). Two proper ideals I and K of a Noethe-
rian ring are said to be linked, I ∼ K, if there exists a regular sequence α so that 
K = (α) : I and I = (α) : K. The ideals I and K are in the same (even) linkage class if 
I = I0 ∼ I1 ∼ · · · ∼ In = K for some (even) integer n, and I is licci if it belongs to the 
linkage class of a complete intersection ideal. Standard examples of licci ideals include 
perfect ideals of grade 2 and perfect Gorenstein ideals of grade 3. A goal of the subject is 
to classify linkage classes or, at least, to establish properties of licci ideals. With the next 
result, Huneke identified large classes of strongly Cohen-Macaulay ideals and provided 
one of the first tools to show that a perfect ideal is not licci.

Theorem 2.1. [38] Let I and K be ideals of a Cohen-Macaulay ring that are in the 
same even linkage class. Then I is strongly Cohen-Macaulay if and only if K is strongly 
Cohen-Macaulay. In particular, every licci ideal is strongly Cohen-Macaulay.

Strengthening Theorem 2.1, Huneke introduced numerical invariants measuring the 
deviation of an ideal from being strongly Cohen-Macaulay, and he proved that these 
invariants too are constant across the even linkage class, see [42,43].
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Huneke’s work on linkage also includes [35,40,2,55] and the articles [60–67] with Ulrich, 
where the notions of generic and universal linkage are used in a systematic study of 
linkage classes and licci ideals. It is proved, for instance, that if a factor ring of a regular 
local ring by a licci ideal is not a complete intersection then its non-complete-intersection 
locus has codimension at most 7, and that if the factor ring is not Gorenstein then 
its non-Gorenstein locus has codimension at most 4. Other results relate the shifts in 
homogeneous free resolutions to properties of linkage classes:

Theorem 2.2. [61] Let I ′ ⊂ R′ = k[x1, . . . , xd] be a nonzero homogeneous perfect ideal 
with minimal homogeneous resolution

0 → ⊕i R
′(−ngi) −→ . . . −→ ⊕i R

′(−n1i) −→ I ′ → 0 .

Write R = R′
(x1, ..., xd) and I = I ′R. If

max{ngi} ≤ (g − 1) min{n1i},

then for every ideal K in the even linkage class of I,

μ(K) ≥ μ(I) and r(R/K) ≥ r(R/I),

where μ and r denote minimal number of generators and type, respectively. In particular, 
I cannot be licci.

Whereas there is only one linkage class of arithmetically Cohen-Macaulay curves in 
P 3
k (or arithmetically Gorenstein curves in P 4

k , respectively), Theorem 2.2 can be used to 
show, for instance, that there are infinitely many smooth arithmetically Cohen-Macaulay 
curves in P 4

k (or arithmetically Gorenstein curves in P 5
k , respectively) that belong to 

different linkage classes.

3. Residual intersections

Residual intersections, a vast generalization of linkage, appear in intersection theory, 
enumerative geometry, and the study of Rees rings, for instance. A proper ideal K of a 
Noetherian ring is said to be an s-residual intersection of an ideal I if K = (α1, . . . , αs) :
I, where αi ∈ I, and htK ≥ s. Huneke was the first to prove results about the Cohen-
Macaulayness of residual intersections and to recognize a connection with the depth of 
Koszul homology modules:

Theorem 3.1. [41] Let I be an ideal of a Cohen-Macaulay ring R and assume that I is 
strongly Cohen-Macaulay and satisfies μ(Ip) ≤ ht p for every p ∈ V (I) with ht p ≤ s − 1. 
If K is any s-residual intersection of I, then R/K is Cohen-Macaulay and htK = s.
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Moreover, in [64] the canonical module of R/K is computed and this information is 
used to remove, in some cases, the above assumption on the local numbers of generators 
of I. Meanwhile, there have been many other contributions, by a number of authors, to 
this subject that has its roots in Huneke’s [41].

In [41] Huneke also proved that if an ideal I of a Cohen-Macaulay ring satisfies μ(Ip) ≤
ht p for every p ∈ V (I), then the defining ideal of the extended symmetric algebra of I
is a residual intersection. Hence, if in addition I is strongly Cohen-Macaulay, then this 
algebra is Cohen-Macaulay by Theorem 3.1, which implies once more the facts, mentioned 
in Section 1, that the rings Sym(I) and R(I) are isomorphic and that grI(R) is Cohen-
Macaulay. Whereas the isomorphism Sym(I) ∼= R(I) requires that μ(Ip) ≤ ht p for every 
p ∈ V (I), it is interesting to ask when grI(R) or R(I) are Cohen-Macaulay without this 
assumption. Huneke, in collaboration with Huckaba [29,30], was the first to address this 
question for ideals that are not necessarily integral over complete intersections.

4. Rees rings, reductions, and the core

To deal with ideals whose number of generators exceeds the dimension of the ambient 
ring, Huckaba and Huneke pass to a minimal reduction of the ideal. Any ideal I of a 
Noetherian local ring R with infinite residue field has a minimal reduction, a minimal 
ideal over which I is integral. Every such minimal reduction has the same number of 
generators, called the analytic spread of I and denoted by �(I), and indeed �(I) ≤ dimR; 
for these and other facts about integral dependence of ideals, see the excellent book [80] of 
Huneke and Swanson. The connection between I and a minimal reduction J is measured 
by the reduction number, and when this number is small one can hope for a transfer of 
properties from J back to I.

The main results of [29,30] treat the case �(I) ≤ g + 2, where g = ht I. Huckaba and 
Huneke prove that I has reduction number ≤ 1, i.e., I2 = JI for some minimal reduction 
J , if, for instance, the following hypotheses are satisfied:

• R is Cohen-Macaulay, I is unmixed, g ≥ 1, I is a complete intersection locally in 
codimension g + 1, and �(I) ≤ g + 1.

With the same hypotheses they prove that if R is regular then the powers and the 
symbolic powers of I coincide and if R/I is almost Cohen-Macaulay then R(I) and 
grI(R) are Cohen-Macaulay. Analogous statements are proved if the above hypotheses 
are replaced by the assumptions:

• R is Gorenstein, R/I is Cohen-Macaulay, g ≥ 2, I is a complete intersection locally 
in codimension g + 2, and �(I) ≤ g + 2.

These results are difficult, and they have triggered a great deal of work throughout the 
1990s addressing the Cohen-Macaulayness of Rees algebras for ideals that have arbitrary 
analytic spread.
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Unlike the integral closure, the largest ideal integral over an ideal, minimal reductions 
are not unique. This leads to the definition of the core of an ideal, which is the intersection 
of all its minimal reductions ([75]). The core is related to adjoints or multiplier ideals and 
to the Briançon-Skoda theorem, which, in its simplest form, says that I� ⊂ core(I) for 
any ideal I of analytic spread � in a regular local ring. The core of an ideal is notoriously 
difficult to determine. The first substantial result in this direction is due to Huneke and 
Swanson:

Theorem 4.1. [58] Let I 
= 0 be an integrally closed ideal in a two-dimensional regular 
local ring with infinite residue field. Then

core(I) = I · Fitt2(I) = J2 : I ,

where J is any minimal reduction of I.

This theorem also established, for the first time, a connection with Lipman’s adjoints, 
namely core(I) = I · adj(I) = adj(I2) if ht I = 2. After [58], there has been a growing 
literature about cores, including an article by Huneke and Trung ([59]).

5. Tight closure

Tight closure provides a systematic method of proving results in prime characteristic 
p > 0, and in equal characteristic zero by reduction to characteristic p. Since its introduc-
tion in the late 1980s, it has had a dramatic effect on the field of commutative algebra. 
A key point is that over a regular ring, every ideal is tightly closed and every submod-
ule of every finitely generated module is tightly closed, and that this closure is always 
contained in the integral closure (see Section 4), but is typically substantially smaller. 
Tight closure gives unified proofs and strong generalizations of many major theorems 
in commutative algebra. One is the fact that rings of invariants of linearly reductive 
groups acting on regular rings are Cohen-Macaulay, and, more generally, if R is a direct 
summand as an R-module of a regular R-algebra S, then R is Cohen-Macaulay. This 
contains the result that normal subrings of polynomial rings generated by monomials 
are Cohen-Macaulay. Another is the Briançon-Skoda theorem, which was first proved in 
equal characteristic zero by Briançon and Skoda and in complete generality by Lipman 
and Sathaye [68]. The original theorem asserts that if an ideal I of a regular ring R is 
generated by at most n elements (up to integral closure), then In, the integral closure of 
In, is contained in I. The tight closure version in equal characteristic does not require 
that the ring R be regular. It asserts that In is contained in I∗, the tight closure of I. 
See also Theorems 7.2 and 9.1 for related results and alternative formulations.

Tight closure can also be used to give new proofs of the direct summand conjecture, 
existence of big Cohen-Macaulay modules, and to generalize the Ein-Lazarsfeld-Smith 
theorem on symbolic powers [7] to positive prime characteristic, see Section 9. Various 
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characteristic p notions related to tight closure have led to many connections between the 
study of singularities in equal characteristic zero and in positive prime characteristic p.

6. Local cohomology

Huneke has played a fundamental role in shaping the study of local cohomology. His 
paper [46] has been the inspiration for many other researchers. He did fundamental 
work on vanishing theorems in [53], and his results on local cohomology of regular rings 
of positive prime characteristic, joint with Sharp [57], were the pre-cursor to a huge 
explosion of further research by Lyubeznik (see, for example [69–71]) and many, many 
others. Earlier, related work was done by Hartshorne and Speiser [12]. The following 
result is from [57]:

Theorem 6.1. Every local cohomology module Hi
I(R) of a regular local ring R of prime 

characteristic p > 0 has finitely many associated primes, finite Bass numbers, and is 
injective if supported only at the maximal ideal.

Note that it is an open question whether every local cohomology module Hi
I(M) of 

a Noetherian module over a Noetherian ring R has closed support, i.e., has only finitely 
many minimal primes. This question was raised by Huneke in [46]. We conclude the 
section with two results from Huneke’s joint work with Katz and Marley [50] on this 
topic.

Theorem 6.2. The support of H2
I (M) is closed when I has cohomological dimension at 

most two or R is local of dimension at most four.

Theorem 6.3. Let R be a Noetherian ring containing a field of characteristic zero. Let 
I = (x1, . . . , xn) ⊂ R where n ≥ 6. Then there exists a 2 × 3 matrix A with entries from 
R such that Hn

I (R) ∼= H3
I2(A)(R).

7. Uniform behavior in Noetherian rings

Following earlier work of Zariski [83], Eisenbud-Hochster [8], Duncan-O’Carroll [5,6], 
and O’Carroll [73] (all for the case where I is maximal or principal), Huneke obtained 
the following beautiful results [47].

Theorem 7.1 (Uniform Artin-Rees. Huneke). Let R be a Noetherian ring and let N ⊂ M

be two finitely generated R-modules. If R satisfies at least one of the conditions below, 
then there exists an integer k such that for all ideals I of R, and all n ≥ k, InM ∩N ⊂
In−kN .

(1) R is essentially of finite type over a Noetherian local ring.
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(2) R is a ring of prime characteristic p > 0 and F-finite.
(3) R is essentially of finite type over Z.

Theorem 7.2 (Uniform Briançon-Skoda. Huneke). Let R be a Noetherian reduced ring. 
If R satisfies at least one of the conditions below, then there exists an integer k such that 
for all ideals I of R, and all n ≥ k, In ⊂ In−k.

(1) R is essentially of finite type over an excellent Noetherian local ring.
(2) R is of prime characteristic p > 0 and F-finite.
(3) R is essentially of finite type over Z.

8. The Cohen-Macaulay property of R+ in characteristic p > 0

If R is a domain, R+ denotes the integral closure of R in an algebraic closure of its 
fraction field, called the absolute integral closure of R. It is unique up to non-unique 
isomorphism. It is a largest domain extension that is integral over R.

Let R be a Noetherian local domain of characteristic p > 0. The first theorem, proved 
by Hochster and Huneke [20], states that if R is excellent, then R+ is a big Cohen-
Macaulay algebra, in the sense that every system of parameters in R is a regular sequence 
in R+.

The result of Huneke and Lyubeznik [54] is this:

Theorem 8.1 (Huneke-Lyubeznik). Let (R, m), of Krull dimension d, be the homomorphic 
image of a Gorenstein local ring. Then there is a module-finite extension domain S of R
such that all the maps Hi

m(R) → Hi
m(S) are zero for i < d.

This gives a new, simpler proof of the theorem on R+ in the main cases (the hypotheses 
are different, but either result may be used in the most frequent cases).

9. Symbolic powers

The nth-symbolic power of an ideal I in a Noetherian ring R is defined as I(n) :=
R ∩ InW , where W is the complement of the union of the associated primes of I. If I
is a prime ideal in a polynomial ring over a field for instance, then I(n) consists of the 
polynomials that vanish with order at least n at every closed point of V (I), according 
to the Zariski-Nagata theorem. Although symbolic powers are ubiquitous in algebra and 
geometry, they are not well understood and, in particular, their relation to ordinary 
powers, which they always contain, is mysterious. This problem is a recurring theme in 
Huneke’s work.

As mentioned in Sections 1 and 4, Huneke made great strides in identifying cases where 
powers and symbolic powers coincide. He also observed, in general, that if I(n) = In for 
all (or infinitely many) n then �(Ip) < ht p for every prime p ∈ V (I) not contained in an 
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associated prime of I, and that the converse holds whenever grI(R) is Cohen-Macaulay, 
see [36,9]. If R is an excellent domain, the condition on the local analytic spreads alone 
implies that the symbolic Rees ring 

⊕
n≥0 I

(n) is Noetherian ([36]). Whether symbolic 
Rees rings are Noetherian or not has been investigated for many reasons; for instance, a 
one-dimensional prime ideal in a Noetherian local ring is a set-theoretic complete inter-
section if its symbolic Rees ring is Noetherian ([4]). In [37,45,56] Huneke gave effective 
criteria for the Noetherianness of symbolic Rees rings and applied them masterfully.

The best affirmative results one could expect in general are comparison theorems 
between powers and symbolic powers. In this direction Swanson showed that for any 
given ideal I in an excellent normal ring, there exists an integer h such that I(hn) ⊂ In

for all n, see [79] and, for this particular type of statement, [52]. Ein, Lazarsfeld, and 
Smith proved the surprising result that in a regular ring R of finite type over a field of 
characteristic zero, one can take h to be the biggest height of an associated prime of the 
(radical) ideal I ([7]). In particular, one can take h to be dimR, which does not depend 
on I! Hochster and Huneke proved the corresponding result in characteristic p > 0, using 
tight closure techniques ([26]). In fact, their work applies to rings containing a field of 
arbitrary characteristic and to rings that are not necessarily regular:

Theorem 9.1. [26] Let R be a Noetherian ring containing a field k, let I be an ideal, and 
let h be the biggest height of an associated prime of I.

(1) If R is regular, then I(hn) ⊂ In for all n.
(2) If R is a domain and a finitely generated geometrically reduced k-algebra, with Ja-

cobian ideal J , then J n+1I(hn) ⊂ In for all n.

The proof is by reduction to prime characteristic. In characteristic p, for (1) it is shown 
that I(hn) ⊂ (In)∗ = In. In (2) it is also used that J can be generated by completely 
stable test elements. Recently, using perfectoid algebras, Ma and Schwede obtained an 
analogue of Theorem 9.1(1) in mixed characteristic ([72]).

An immediate consequence of Theorem 9.1(1) is a result of Skoda [78] and Wald-
schmidt [82] on initial degrees of symbolic powers, originally proved with analytic 
methods for k = C; it says that if I is the defining ideal of a finite set of points in PN

k , 
then indeg(I(n)) ≥ indeg(I)

N · n for all n, where indeg(H) denotes the smallest degree of a 
nonzero form in a homogeneous ideal H. The containment I(hn) ⊂ In in Theorem 9.1(1) 
is not always optimal. This led to a number of hypothetical improvements proposed by 
Huneke, Harbourne, and others. One of these improvements implies a sharper version 
of the inequality of Skoda and Waldschmidt that was proved by Chudnovsky [3] for 
N = 2 and conjectured in general. Another question of Huneke is whether I(3) ⊂ I2

for any prime ideal I of height 2 in a regular local ring. These problems have attracted 
much attention. Huneke, with his coauthors, solved them in many important cases, see 
[27,11,10].
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If the ambient R is not necessarily regular, one can still hope for a uniform comparison 
between the powers and the symbolic powers of all prime ideals of R, at least when R
is an excellent normal local ring. Katz, Huneke, and Validashti prove this for isolated 
singularities in equal characteristic:

Theorem 9.2. [51] Let R be an analytically irreducible Noetherian local ring with an 
isolated singularity and assume that R is essentially of finite type over a field of char-
acteristic zero or that R is of prime characteristic and F -finite. Then there exists an 
integer h such that for every prime ideal I of R, and every n, I(hn) ⊂ In.

This result is hard! In addition to [26], it uses both existing results on uniform be-
havior, Theorems 7.1 and 7.2, and other ingenious techniques. In [52,49] Huneke and his 
coauthors study descent and ascent under integral extensions and they prove in partic-
ular that the conclusion of Theorem 9.2 also holds if, essentially, R is a finite Abelian 
extension of a regular domain containing a field. The problem appears to be very difficult, 
and many open questions remain.

We hope that this account, though being far from complete, illustrates the tremendous 
breadth and depth of Huneke’s work. Huneke advanced commutative algebra through 
his seminal ideas and insights, and he initiated important new developments in the 
field. He inspired generations of commutative algebraists and provided ample research 
opportunities for many. Commutative algebra would not be the same without him. We 
owe an inestimable debt to Craig Huneke!
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