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CHAPTER I

Introduction

I.1 History

The focus of this thesis is on understanding local cohomology modules. Given an

ideal I of a Noetherian ring R and an R-module M , the local cohomology modules

of M with support in I are a family of R-modules indexed by nonnegative integers i,

and are denoted H i
I (M). These modules capture many properties of R, I, and M ,

making them remarkably useful. For example, the first local cohomology module of a

ring may be viewed geometrically as the obstruction to extending sections of sheaves

from an open set to the whole space. The dimension of a local ring and the depth of

a module on an ideal can also be characterized in terms of local cohomology, as can

the Cohen-Macaulay and Gorenstein properties.

Understanding the structure of local cohomology modules is both intriguing and

challenging. For example, the only nonzero local cohomology module of a polynomial

ring R over a field with support in its homogeneous maximal ideal m is isomorphic to

the smallest injective module containing R/m (and gives a concrete realization of this

injective hull). Injective modules are rarely finitely generated, and local cohomology

modules are often unwieldy and can be difficult to understand.

A major goal of this thesis is to understand local cohomology modules of poly-

nomial rings with support in ideals generated by determinants. More precisely, if
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X = [xij] is an r × s matrix of indeterminates, where r ≤ s, consider the polynomial

ring R over a field k in the entries of X, i.e.,

R = k



x11 x12 . . . x1s

x21 x22 . . . x2s

...
...

. . .
...

xr1 xr2 . . . xrs


.

The ideals It generated by all the t × t minors of X are examples of determinantal

ideals, a class of much-studied ideals that provide a rich source of naturally-arising

examples in commutative algebra, algebraic geometry, invariant theory, and combi-

natorics. This thesis is particularly concerned with understanding local cohomology

modules of R with support in I := Ir, i.e., the ideal generated by the maximal minors

of X.

The behavior of the local cohomology modules of the ring with support in the

ideal generated by the maximal minors of the matrix X depends strongly on the

characteristic of the ring. In prime characteristic, by results of Hochster and Eagon

and of Peskine and Szpiro, there is only one nonzero such local cohomology module:

Theorem I.1.1 ([HE71, Theorem 1], [PS73, Théorème III.4.1]). Suppose that X

is an r × s matrix of indeterminates, that k is a field of prime characteristic, that

R = k[X] is the polynomial ring over k in the entries of X, and that I is generated

by the maximal minors of X. Then the only nonzero local cohomology module of the

form H i
I (R) has index i = s− r + 1, the depth of I.

In characteristic zero, the case on which this thesis is focused, the minimum index for

which H i
I (R) 6= 0 is still i = s−r+1, the depth of I [HE71, Theorem 1]. However, an

argument of Hochster, Huneke, and Lyubeznik shows that the maximum nonvanishing

index is a number almost r times larger:
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Theorem I.1.2 ([HL90, Remark 3.13]). Suppose that X is an r × s matrix of inde-

terminates, that k is a field of characteristic zero, that R = k[X] is the polynomial

ring over k in the entries of X, and that I is generated by the maximal minors of X.

Then

max{i | H i
I (R) 6= 0} = r(s− r) + 1.

Their proof uses invariant theory and the fact that r(s − r) + 1 is the dimension

of the k-subalgebra of R generated by the maximal minors of X, the homogeneous

coordinate ring of the Plücker embedding of the Grassmann variety of r-planes in

s-space.

The only previously known explicit description of such a local cohomology module

in characteristic zero is due to Walther:

Example I.1.3 ([Wal99, Example 6.1]). Assume that X is a 2× 3 matrix of indeter-

minates, that k is a field of characteristic zero, that R = k[X] is the polynomial ring

over k in the entries of X, and that I is generated by the the three 2 × 2 minors of

X. Then H3
I (R) is isomorphic to the injective hull of k over R.

Walther’s example motivates the following question:

Question I.1.4. Suppose that X is an r × s matrix of indeterminates, that k is a

field of characteristic zero, that R = k[X] is the polynomial ring over k in the entries

of X, and that I is generated by the maximal minors of X. If d = r(s− r) + 1 is the

“maximum nonvanishing” index noted in Theorem I.1.2, then is Hd
I (R) isomorphic

to the injective hull of k over R?

Along with a Gröbner basis algorithm, in the proof of Example I.1.3, Walther

employs a powerful theorem of Lyubeznik, proved using the D-module structure of

local cohomology modules:

Theorem I.1.5 ([Lyu93, Theorem 3.4]). Let k be a field of characteristic zero, and

let R be a regular k-algebra. If a local cohomology module H i
I (R) is supported only at
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a maximal ideal m, then H i
I (R) is isomorphic to a finite direct sum of copies of the

injective hull of R/m over R.

With R, I, and d as in Theorem I.1.4, it can easily be checked that Hd
I (R) is

supported only at the homogeneous maximal ideal of R. Thus, by Theorem I.1.5, we

know that Hd
I (R) must be isomorphic to the direct sum of a finite number of copies

of the injective hull of k over R. Confirming an affirmative answer to to Question

I.1.4 is therefore equivalent to proving that the number of copies of the injective hull

is one.

I.2 Main Results

This thesis answers Question I.1.4 affirmatively: Hd
I (R) is isomorphic to exactly

one copy of the injective hull of k over R. Our method relies on invariant theory, as

well as the work of Lyubeznik cited earlier. The thesis also provides information about

the local cohomology modules H i
I (R) at indices i < d. Our main result regarding the

local cohomology modules H i
I (R) in the characteristic zero case is the following:

Main Theorem on Minors (V.10). Let k be a field of characteristic zero and let X

be an r × s matrix of indeterminates, where r < s. Let R = k[X] be the polynomial

ring over k in the entries of X, and let I be its ideal generated by the maximal minors

of X. Given an R-module M , let ER(M) denote the injective hull of M over R.

(a) Let d = max{i : H i
I (R) 6= 0}, so that d = r(s− r) + 1 by Theorem I.1.2. Then

Hd
I (R) ∼= ER(k).

(b) H i
I (R) 6= 0 if and only if i = (r − t)(s− r) + 1 for some 0 ≤ t < r.
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(c) Furthermore, if i = (r − t)(s− r) + 1, then

H i
I (R) ↪→ ER(R/It+1) ∼= H i

I (R)It+1
,

where It+1 is the ideal of R generated by the (t+1)× (t+1) minors of X (which

is prime by [HE71, Theorem 1]). In particular, AssR (H i
I (R)) = {It+1(X)}.

Note that there is precisely one nonvanishing local cohomology module of the form

H i
I (R) for every possible size minor of X, and that each nonvanishing H i

I (R) in-

jects into a specific indecomposable injective module. Moreover, this result is proven

independently of Theorem I.1.2.

The proof of Main Theorem on Minors V.10 takes advantage of the natural action

of the group G = SLr(k) on the ring R. The fact that this group also acts on each

of the local cohomology modules is a powerful tool. A classical result from invariant

theory is that RG, the subring of invariant elements of R, is the k-subalgebra of R

generated by the maximal minors of X [Wey39, Theorem 2.6.A]. This means that

the ideal I of R generated by the maximal minors of X is the expansion of the

homogeneous maximal ideal of RG to R.

This technique, in fact, can be extended more generally to a polynomial ring with

an action of any linearly reductive group. Indeed, we prove the following more general

theorem:

Main Theorem (IV.8). Let R be a polynomial ring over a field k of characteristic

zero with homogeneous maximal ideal m. Let G be a linearly reductive group over k

acting by degree-preserving k-automorphisms on R, such that R is a rational G-module

(see Definition II.4.3). Assume that A = RG has homogeneous maximal ideal mA, let

d = dimA, let I = mAR, and let ER(k) denote the injective hull of k over R. Then

Hd
I (R) 6= 0 and I is generated up to radicals by d elements and not fewer, so that

H i
I (R) = 0 for i > d. Moreover, the following hold:
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(a) If i < d, then m is not an associated prime of H i
I (R), i.e., H0

m (H i
I (R)) = 0.

If, in addition, Hd
I (R) is supported only at m (e.g., this holds if, after localization

at any of the indeterminates of R, I requires fewer than d generators up to radical),

then

(b) V := SocHd
I (R) is a simple G-module, and

(c) As rational R[G]-modules (see Definition II.4.9), Hd
I (R) ∼= ER(k)⊗k V.

I.3 Outline

In Chapter II, we provide background material necessary in understanding the

thesis work. Section II.1 focuses on associated primes and support, Section II.2

on local cohomology modules, Section II.3 on determinantal ideals, Section II.4 on

linearly reductive groups and G-modules, and Section II.5 on the spectral sequence

of a double complex. Chapter III presents additional preliminary definitions and

lemmas regarding graded duals and G-modules. Proving the Main Theorem IV.8 is

the goal of Chapter IV, and proving the Main Theorem on Minors V.10 is the focus

of Chapter V. The thesis concludes with Chapter VI, which provides the proof of

Theorem VI.3, a vanishing result on certain iterated local cohomology modules of

the form H1
m (H i

I (R)) . Through a spectral sequence argument, this theorem helps

to further describe the local cohomology modules with support in ideals of maximal

minors.
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CHAPTER II

Background

II.1 Associated Primes and Support

This section reviews the theory of associated primes and support necessary to

complete the proofs of the Main Theorem IV.8 and the Main Theorem on Minors

V.10. Throughout this section, all rings are assumed to be Noetherian. However, for

most results stated, we do not need to assume that modules are finitely generated.

We will note when this assumption is needed. Our primary reference is [Mat80].

Definition II.1.1 (Associated prime of a module). Given a Noetherian ring R and an

R-module M , an associated prime of M is a prime ideal p of R such that R/p ↪→M

as R-modules, or, equivalently, if p = annR(u) for some element u ∈ M . The set of

associated primes of M is denoted AssR (M) .

Proposition II.1.2. Given a Noetherian ring R, ideals that are maximal elements

of the set {annR(x) | x ∈M,x 6= 0} are associated primes of M .

Corollary II.1.3. Given a ring R and an R-module M , the union of the associated

primes is the set of all zero divisors on M in R.

Definition II.1.4. Given a ring R and an R-module M , the support of M is the

following collection of prime ideals of R: SuppR(M) = {p ∈ Spec(R) | Mp 6= 0}.
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Theorem II.1.5. Given a ring R and a nonzero R-module M , neither AssR (M) nor

SuppR(M) is empty. Moreover, SuppR(M) ⊇ AssR (M), and the minimal elements

of AssR (M) and of SuppR(M) are the same.

Proposition II.1.6. If R is a ring, Σ ⊆ R is a multiplicative system, and M is an

R-module, then AssR (Σ−1M) = {p ∈ AssR (M) | Σ ∩ p = ∅}.

Theorem II.1.7 ([Mat80, Theorem 12]). If R is a Noetherian ring, M is an R-

module, and S is flat Noetherian R-algebra, then

AssR (M ⊗R S) =
⋃

p∈AssR(M)

AssS (S/pS) =
⋃

p∈AssR(M)
S/pS 6=0

pS.

The proof of Theorem II.1.7 extends from the case that M is a finitely-generated

module: Since any module is the direct limit of its finitely generated submodules, if

for some prime p, R/p injects into M , then it must inject into a finitely-generated

submodule of M . The result then follows from the commutativity of direct limits

with tensor products.

Proposition II.1.8. Suppose that R is an N-graded ring, and that M is a Z-graded

R-module. Then the associated primes of M are homogeneous.

A consequence of Proposition II.1.8 is that if R is an N-graded ring with R0 = k,

a field, and M is a Z-graded R-module, then every associated prime of M must be

contained in the homogeneous maximal ideal of R.

II.2 Local Cohomology Modules

In this section, we will present the material on local cohomology modules that is

needed to prove the main results. The main references for this section are [BH93]

and [Har67]. Throughout, a local ring (R,m, k) is a Noetherian ring R with unique

maximal ideal m and residue field k = R/m.
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Definition II.2.1 (Injective module). An R-module E is injective if for any injection

N ↪→M of R-modules, the induced map HomR(M,E)→ HomR(N,E) is surjective.

Definition II.2.2 (Injective resolution). If R is a ring and M is an R-module, an

injective resolution of M is a complex of injective R-modules

0→ E0 → E1 → E2 → . . .

such that M = ker(E0 → E1), and the complex is exact at every other spot.

Definition II.2.3 (Injective dimension). If R is a ring and M is a nonzero R-module,

the injective dimension of M is the length of the shortest injective resolution of M .

If no finite resolution exists, we say that the injective dimension of M is infinite.

Definition II.2.4 (Right derived functor). Given a ring R, suppose that F is a

covariant left-exact functor from the category of R-modules to itself. Given an R-

module M , take an injective resolution of M :

0 // E0
f0 // E1

// . . . // Ei−1
fi−1 // Ei

fi // Ei+1
// . . .

Apply F to the resolution to get:

0 // F (E0)
F (f0) // F (E1) // . . . // F (Ei−1)

F (fi−1)// F (Ei)
F (fi)// F (Ei+1) // . . .

(II.2.4.1)

The ith right derived functor of F , denoted RiF , is the functor whose value on M is

RiF (M) = kerF (fi) / ImF (fi−1), the ith cohomology module of (II.2.4.1).

Definition II.2.5 (Local cohomology). Let R be a Noetherian ring, let I be an ideal

of R, and let M be an R-module. Let Γ be the functor from the category of R-modules

to itself such that Γ(M) =
∞⋃
t=1

AnnM(I t) ⊆ M. The ith local cohomology of M with

support in I is the ith right derived functor of Γ applied to M , RiΓ(M).
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There are several equivalent definitions; each definition makes certain properties

of local cohomology modules more apparent. The following definition is needed in

one such description of local cohomology:

Definition II.2.6 (Ext functor). Suppose that R is a ring and that M and N are

R-modules. Then the ith right derived functor of the functor HomR(M,−), applied

to N , Ri HomR(M,−)(N), is denoted ExtiR (M,N).

Two particularly useful characterizations of local cohomology are presented in the

following theorem:

Theorem II.2.7. Let R be a Noetherian ring, and M an R-module. Suppose that I

is an ideal of R, and that
√
I =

√
(f1, . . . , fµ). Then the following are the isomorphic

R-modules:

(a) H i
I (M).

(b) lim−→
t

ExtiR (I t,M) .

(c) The ith cohomology of the complex:

0→M →
µ⊕
i=1

Mfi →
⊕

1≤i<j≤µ

Mfifj → . . .→
µ⊕
i=1

Mf1...f̂1...fµ
→Mf1...fµ → 0,

where the map on each summand is defined as follows: if 1 ≤ i1 < . . . < in ≤ µ,

the map

Mfi1 ...fin
→

⊕
1≤l1<...<ln+1≤µ

Mfl1 ...fln+1
is given by

u

fi1 . . . fin
7→

∑
{i1,...,in}={l1,...,l̂α,...ln+1}

(−1)α−1 uflα
fl1 . . . fln+1

.

One immediate consequence of Theorem II.2.7 (c) is that local cohomology de-

pends only on the radical of the associated ideal. Since the complex described in
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(c) has only µ (possibly) nonzero terms, H i
I (M) = 0 for indices i greater than the

number of generators of any ideal with the same radical as I (and in particular, for

all i greater than the minimal number of generators of I), which we call the minimal

number of generators of I, up to radical.

Recall that for M an arbitrary (not necessarily finitely-generated) module over a

ring R, we may define the dimension of M to be any of the following equal suprema:

sup{dim(N) | N ⊆M finitely-generated R-submodule}

= sup{dim(R/p) | p ∈ AssR (M)}

= sup{dim(R/p) | p ∈ SuppR(M)}.

Besides the number of generators of I, up to radical, other familiar and important

invariants of R, I, and M also restrict the vanishing of the local cohomology modules

H i
I (M), as illustrated by the following theorem:

Theorem II.2.8. Suppose that R is a Noetherian ring, I is an ideal of R, and that

M is an R-module. Then

(a) H i
I (M) = H i√

I
(M),

(b) H i
I (M) = 0 for i greater than the minimal number of generators of I, up to

radical,

(c) If M is finitely generated and M 6= IM , then min{i | H i
I (M) 6= 0} = depthI(M),

(d) H i
I (M) = 0 for i > dimM , and

(e) If i > dimR/p for all p ∈ AssR (M), then H i
I (M) = 0.

Theorem II.2.9 (Long exact sequence in local cohomology). Suppose that R is a

Noetherian ring, I is an ideal of R, and that 0 → M ′ → M → M ′′ → 0 is an

11



exact sequence of R-modules. Then there is a functorial long exact sequence in local

cohomology:

0 // H0
I (M ′) // H0

I (M) // H0
I (M ′′)

// H1
I (M ′) // H1

I (M) // H1
I (M ′′)

// H2
I (M ′) // H2

I (M) // H2
I (M ′′) // . . .

. . . // H i
I (M ′) // H i

I (M) // H i
I (M ′′) // . . .

Definition II.2.10 (Cohen-Macaulay ring). A local ring (R,m) is Cohen-Macaulay

if dimR = depthmR. An arbitrary ring is Cohen-Macaulay if its localization at every

prime ideal of R is a Cohen-Macaulay local ring.

Note that Theorem II.2.8 (c) and (d) combine to give a characterization of the

Cohen-Macaulay property for a local ring in terms of local cohomology:

Corollary II.2.11. A local ring (R,m) is Cohen-Macaulay if and only if the only

nonzero local cohomology module H i
m (R) has index i = dimR.

Remark II.2.12. Note that Corollary II.2.11 implies that an arbitrary ring R is

Cohen-Macaulay if and only if, for every prime ideal p of R, the only nonzero local

cohomology module of the form H i
pRp

(Rp) has index i = dimRp.

Definition II.2.13 (Essential extension). For R a ring, a homomorphism of R-

modules φ : M → N is an essential extension if it is both an injection and if every

nonzero submodule of N has nonzero intersection with φ(M).

Lemma II.2.14. Suppose that R is a ring and that M is an R-module. A maximal

essential extension (an extension with no proper essential extension) M → E exists,

and E is an injective R-module. If M
φ // E and M

φ′ // E ′ are maximal essential
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extensions, then E ∼= E ′ as R-modules, and if ψ denotes such an isomorphism, the

following diagram commutes:

M
φ //

φ′   

E

ψ
��
E ′

Lemma II.2.14 confirms that the following definition is well defined:

Definition II.2.15 (Injective hull). If M is an R-module and M → E is a maximal

essential extension, then E is called the injective hull of M over R, and is denoted

ER(M).

Proposition II.2.16. For p a prime ideal of a ring R, ER (R/p) ∼= ERp (Rp/pRp) .

Definition II.2.17 (Socle). Let (R,m) be a local ring or let R be an N-graded ring

with R0 = k, a field, and homogeneous maximal ideal m. Let M be an R-module.

The Socle of M , denoted SocM , is the R-submodule AnnM m.

Note that SocM is naturally a R/m-vector space.

Proposition II.2.18. If R is a Noetherian ring and p is a prime ideal of R, then

AnnER(R/p) p ∼= Frac (Rp/pRp) . In particular, if (R,m) is a local ring or R is an N-

graded ring with R0 = k, a field, and homogeneous maximal ideal m, SocER(k) ∼= k.

Example II.2.19. If R = k[x1, . . . xd] is the polynomial ring over a field k and m is

its homogeneous maximal ideal, then the complex described in Theorem II.2.7 (c) to

define the local cohomology modules H i
m (R) is:

0→ R→
n⊕
i=1

Rxi →
⊕

1≤i<j≤n

Rxixj → . . .→
n⊕
i=1

Rx1...x̂1...xn → Rx1...xn → 0.

Since R is Cohen-Macaulay of dimension d, the only nonzero local cohomology module

of R in this case is Hd
m (R). Taking cohomology, Hd

m (R) ∼= Rx1...xn/
∑n

i=1Rx1...x̂1...xn .

A vector space basis for Hd
m (R) consists of x−α1

1 · . . . · x−αnn , where each αi > 0;
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this module has been called an“upside-down polynomial ring in x1, . . . , xn.” In fact,

Hd
m (R) ∼= ER(k).

Definition II.2.20 (Gorenstein ring). A Gorenstein local ring is a local ring with

finite injective dimension as a module over itself. A Noetherian ring is Gorenstein if

its localization at every prime ideal of the ring is a Gorenstein local ring.

The polynomial ring k[x1, . . . , xn] from Example II.2.19 is Gorenstein. In fact,

all regular rings, and so in particular, complete intersection rings, are Gorenstein.

Gorenstein rings are Cohen-Macaulay. The fact that Hd
m (R) ∼= ER(k), in fact, holds

for any local or graded Gorenstein ring:

Theorem II.2.21. Suppose that (R,m, k) is a Gorenstein local ring, or that R is an

N-graded ring with R0 = k, a field, and homogeneous maximal ideal m. If dimR = d,

then Hd
m (R) ∼= ER(k).

The following theorem is used in the proof of the Main Theorem on Minors V.10:

Theorem II.2.22. If I is an ideal of a Noetherian ring R, M is an R-module, and

S is a flat Noetherian R-algebra, then for any i, H i
I (M ⊗R S) ∼= H i

I (M)⊗R S.

Corollary II.2.23. If I is an ideal of a Noetherian ring R, M is an R-module, and

Σ ⊆ R is a multiplicative system, then for any i, H i
I (Σ−1M) ∼= Σ−1H i

I (M) .

Definition II.2.24 (Canonical module). If (R,m, k) is a Cohen-Macaulay local ring

of dimension d, then a finitely-generated R-module ω is a canonical module for R

if HomR(ω,ER(k)) ∼= Hd
m (R) as R-modules. A finitely-generated R-module ω is a

canonical module for an arbitrary Cohen-Macaulay ring R if, for every prime ideal p

of R, ωp is a canonical module for Rp.

Theorem II.2.25 (Local duality). Let (R,m, k) be a local Gorenstein ring of dimen-

sion d and let E = Hd
m (R), which, by Theorem II.2.21, is an injective hull for k over
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R. Then for any finitely-generated R-module M , H i
m (M) ∼= HomR(Extd−iR (M,R) , E)

as functors in M .

Corollary II.2.26. A Gorenstein local ring is its own canonical module.

Proof. Apply Theorem II.2.25 to the case that M is the ring and i is its dimension.

Theorem II.2.27. Given a Cohen-Macaulay ring R, a canonical module for R exists

if and only if R is a homomorphic image of a Gorenstein ring.

Theorem II.2.28. Assume that R is a Cohen-Macaulay domain that is a homomor-

phic image of a Gorenstein ring. Then the canonical module for R is isomorphic with

an ideal of R containing a nonzerodivisor, so is a torsion-free module of rank one.

II.3 Determinantal ideals

In this section, we briefly introduce a certain class of determinantal ideals.

Definition II.3.1 (The ideals It+1(X)). Given a ring R and an r×s matrix X = (rij)

of entries of R, then for 1 ≤ t ≤ r, let It(X) denote the ideal of R generated by the

t× t minors of X.

Definition II.3.2 (Polynomial ring over a matrix). If A is a ring and X = [xij] is

an r × s matrix of indeterminates, then let A[X] denote the polynomial ring over A

in the rs indeterminates xij.

The following theorem of Hochster and Eagon [HE71, Theorem 1] is used in the

proof of the Main Theorem on Minors V.10.

Theorem II.3.3 (Hochster and Eagon). Assume that X is an r × s matrix of inde-

terminates, where r ≤ s, that k is a field, and that R = k[X]. Then the ideals It(X),

0 < t ≤ r, are prime. Additionally, htIt(X) R = depthIt(X)R = (r − t+ 1)(s− t+ 1).
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II.4 G-modules and R[G]-modules

This section reviews the relevant theory of G- and R[G]-modules; our main refer-

ence here is [Bor91].

Definition II.4.1 (Linear algebraic group). A linear algebraic group over a field k is

a Zariski-closed subgroup of GLn(k), for some positive integer n.

Definition II.4.2 (G-module, G-module action, G-submodule, simple G-module,

G-module homomorphism, G-equivariant map). Given a linear algebraic group G over

a field k, a G-module is a k-vector space on which there exists a k-linear representation

of G, a group homomorphism Φ : G → GL(V ). The corresponding group action

G × V → V on a G-module is called its G-module action. A G-submodule W of

V is a k-vector subspace of V that is stable under its G-module action. A simple

G-module is a nonzero G-module that contains no proper nonzero G-submodules.

Given G-modules V and W , a G-module homomorphism φ : V → W is a vector

space homomorphism that is also G-equivariant, which means that for all g ∈ G and

v ∈ V , g · φ(v) = φ(g · v).

Definition II.4.3 (Rational G-module). Given a linear algebraic group G over a

field k, a finite-dimensional G-module V is called a rational G-module if the action

G×V → V is a regular map of affine varieties over k. An arbitrary (possibly infinite-

dimensional) G-module is a rational G-module if it is a directed union of G-stable

finite-dimensional k-vector subspaces that are themselves rational G-modules.

A G-stable subspace of a rational G-module, a quotient of a rational G-module,

or a direct sum of rational G-modules is again a rational G-module. If V and W

are rational G-modules, then V ⊗k W is a rational G-module with action defined on

simple tensors by g · (v ⊗ w) = g · v ⊗ g · w. If V is also a finite-dimensional vector

space, then Homk(V,W ) is a rational G-module by g · f = gfg−1. Moreover, their

definition implies that rational G-modules are also closed under directed unions.
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Example II.4.4. For example, if k = C, G = GL1(C) = C× and G acts on V = C

by, for λ ∈ G and z ∈ V , λ · z = λnz for some integer n, then this action makes V a

rational G-module. However, the action defined by λ · z = λz, where λ denotes the

complex conjugate of λ, is not a rational G-module action over C.

Remark II.4.5. Every linear algebraic group G acts rationally on the coordinate

ring k[G], and every finite-dimensional rational G-module occurs as a G-submodule

of k[G]⊕h for some h. Every finite-dimensional simple rational G-module occurs as a

G-submodule of k[G] [Fog69, Discussion following Definition 2.23].

Definition II.4.6 (Linearly reductive group). A linear algebraic group G is called

linearly reductive if every finite-dimensional rational G-module splits into a direct

sum of simple G-modules.

In particular, if G is linearly reductive, every map of rational G-modules splits.

Some examples of linearly reductive groups in characteristic zero are the general

linear group (and, in particular, the multiplicative group of the field), the special

linear group, the orthogonal group, the symplectic group, finite groups, and products

of any of these. In characteristic p > 0, there are fewer linearly reductive groups;

some examples are the multiplicative group of the field, finite groups whose orders

are not multiples of p, and products of these.

Definition II.4.7 (W -isotypical component). Given a linearly reductive group G, a

rational G-module V , and a simple rational G-module W , the W -isotypical compo-

nent of V is the direct sum of all G-submodules of V isomorphic to W , i.e., it is of

the form
⊕
i

Wi ⊆ V , where each Wi
∼= W as G-modules. As G-modules, V is the

direct sum of its isotypical components.

Definition II.4.8 (Invariant part). If V is a G-module, then the invariant part of

V , denoted V G, is the G-submodule of elements in V fixed by the action of G.
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When G is linearly reductive, V G is the isotypical component of k with the trivial

action, so the functor on rational G-modules sending V to V G is exact. The sum

of all other isotypical components (the sum of all the simple G-submodules of V on

which G does not act trivially) defines a unique G-module complement of V G.

Definition II.4.9 (R[G]-module). Let G be a linear algebraic group over a field k

and let R be k-algebra that is a G-module. An R-module M that is also a G-module

is an R[G]-module if for every g ∈ G, r ∈ R, and u ∈M,

g(ru) = (gr)(gu).

Definition II.4.10 (Rational R[G]-module). Given a field k and a k-algebra R with

an action of a linear algebraic group G, a rational R[G]-module is an R[G]-module

that is also a rational G-module.

Remark II.4.11. Every simple rationalG-module occurs in the action ofG = SLr(k)

on k[G] = k[xij]r×r/(det([xij]r×r) − 1), and hence in the action on k[xij]r×r, which

maps onto k[G]. Thus, all occur in the action on k[X], where X = [xij]r×s and r ≤ s,

which contains k[xij]r×r.

The following isomorphism of G-modules will be used in the proofs of Lemma

II.4.13 and of Lemma III.8.

Remark II.4.12. Given a linear algebraic group G over a field k, and G-modules U

and V , dimk V <∞, we have the following isomorphism of G-modules:

U ⊗k V ∗ ∼= Homk(V, U)(II.4.12.1)

u⊗ f 7→ φ, where φ(v) = f(v)u,

where, given g ∈ G, for u⊗f ∈ U⊗kV ∗, g ·(u⊗f) = gu⊗gf, and for φ ∈ Homk(V, U)

and v ∈ V , (g · φ)(v) = (gφg−1)(v).
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Lemma II.4.13. If G is a linearly reductive group over a field k, and U and V are

rational G-modules, then

(U ⊗k V )G 6= 0 ⇐⇒ for some simple G-submodule W of V , W ∗ ↪→ U.

Proof. Suppose that (U ⊗k V )G 6= 0 and that U =
⊕
i∈I
Yi and V =

⊕
j∈J

Wj are decom-

positions into simple G-modules. Then U ⊗k V ∼=
⊕

i∈I,j∈J
Yi ⊗k Wj as G-modules, so

that as G-modules,

(U ⊗k V )G ∼=
⊕

i∈I,j∈J

(Yi ⊗k Wj)
G.

For simple G-modules Y and W , (Y ⊗k W )G = 0 unless W ∼= Y ∗ as G-modules:

By the adjointness of tensor and Hom, (Y ⊗k W )∗ ∼= Homk (W,Y ∗). Since G is

linearly reductive, as G-modules,

(
(Y ⊗k W )G

)∗ ∼= ((Y ⊗k W )∗)
G

∼= (Homk (W,Y ∗))G

∼= HomG (W,Y ∗) ,

the ring of G-module maps between W and Y ∗. Thus, if (Y ⊗k W )G 6= 0, then

HomG (W,Y ∗) 6= 0, so there exists a nonzero G-module map W → Y ∗, and since Y

and W (and so also Y ∗) are simple G-modules, the map must be an isomorphism.

Thus, in our setup, (U ⊗k V )G 6= 0 implies (Yi ⊗k Wj)
G 6= 0 for some i and j, and so

Yi ∼= Wj
∗.

Now say that for some simple G-submodule W of V , W ∗ ↪→ U . If we apply

(−)⊗kW to W ∗ ↪→ U , we see that W ⊗kW ∗ ↪→ W ⊗kU , and if we apply (−)⊗kU to

W ⊆ V , we have the injection W⊗kU ↪→ U⊗kV. Thus, W⊗kW ∗ injects into U⊗kV, so

(W ⊗k W ∗)G injects into (U⊗kV )G. Under (II.4.12.1), W⊗kW ∗ ∼= Homk(W,W ), and

G acts by conjugation on Homk(W,W ). The element of W ⊗k W ∗ that corresponds
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to the identity element of Homk(W,W ) must be invariant, since g idW g−1 = idW , so

(W ⊗k W ∗)G is nonzero, and (U ⊗k V )G must also be nonzero.

Corollary II.4.14. Let G be a linearly reductive group. If V is a simple rational G-module

and a rational G-module U has V -isotypical component Û , then

(U ⊗k V ∗)G =
(
Û ⊗k V ∗

)G
.

Proof. Suppose that U =
⊕
i∈I
Ui as G-modules, where each Ui is a simple G-module.

Let J ⊆ I be the set of indices j such that Uj ∼= V as G-modules, so that Û =
⊕
i∈J

Ui.

For i ∈ I − J , by Lemma II.4.13, (Ui ⊗k V ∗)G = 0. This means that

(U ⊗k V ∗)G =

((⊕
i∈J

Ui

)
⊗k V ∗

)G

=
(
Û ⊗k V ∗

)G
.

II.5 Spectral sequence of a double complex

This section gives a brief introduction to the theory of a spectral sequence of a

double complex; our main reference is [Wei94]. One specific such spectral sequence

will be used in the proof of Theorem VI.3.

Without loss of generality, we will describe the theory when the complex is co-

homological; the homological theory is analogous, with differentials lowering, rather

than raising, degree. Suppose that A•• is a double complex such that for i or j

negative, Ai,j = 0. Let ∂i,j : Ai,j → Ai,j+1 be the horizontal differential, and let

δi,j : Ai,j → Ai+1,j be the vertical differential.
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We define a filtration on A••,

A•• = 〈A••〉0 ⊇ 〈A••〉1 ⊇ 〈A••〉2 ⊇ . . . 〈A••〉p ⊇ . . . ,

where 〈A••〉p is the same complex as A••, except with all positions in rows i ≤ p

replaced by zeros. Maps are made zero as appropriate.

Recall that the total complex of A•• is the (single) complex T • (A••) defined by

T n (A••) =
⊕
i+j=n

Ai,j,

and the differential T n (A••)→ T n+1 (A••) is
∑

i+j=n

∂i,j +(−1)iδi,j. The total complex

T • (〈A••〉p) of each 〈A••〉p is a subcomplex of T • (A••), so that the T • (〈A••〉)p :=

T • (〈A••〉p) define a filtration of the total complex T • (A••).

We define the complex E•0 as En
0 =

⊕
p〈T n (A••)〉p/〈T n (A••)〉p+1 an associated

graded complex that consists of the direct sum of the rows. With Ep,q
0 = Ap,q, the

differential dp,q0 : Ep,q
0 → Ep,q+1

0 is the row differential ∂p,q. Let Ep,q
1 denote the

cohomology with respect to dp,q0 , so En
1 =

⊕
p+q=n

Ep,q
1 is the cohomology with respect

to dn0 =
∑

p+q=n

dp,q0 . Now, dp,q1 : Ep,q
1 → Ep+1,q

1 is induced by the vertical differential δp,q,

and Ep,q
2 is the cohomology with respect to dp,q1 . Analogously, En

2 =
⊕

p+q=n

Ep,q
2 is the

cohomology with respect to dn1 =
∑

p+q=n

dp,q1 . We may continue this process, where the

cohomology with respect to the induced differential dp,qr : Ep,q
r → Ep+r,q−r+1

r is Ep,q
r+1,

and so En
r+1 =

⊕
p+q=n

Ep,q
r+1 is the cohomology with respect to dnr =

∑
p+q=n

dp,qr . (The

maps dnr move up one degree since (p + r) + (q − r + 1) = p + q + 1.) For example,

the map dp,q2 : Ep,q
2 → Ep+2,q−1

2 is akin to a knight’s move in chess, as shown in Figure

II.5.0.1. The sequence of complexes E•r is the spectral sequence of the double complex

A•• with respect to the filtration.

The spectral sequence eventually stabilizes at each spot, i.e., for every p and q,

there is some ρ > 0 such that Ep,q
ρ = Ep,q

ρ+i for any i ∈ N. The stable value at this spot
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Figure II.5.0.1: The differentials dp,q2

is denoted Ep,q
∞ . Notationally, to denote this convergence, we write, for any fixed r0,

Ep,q
r0

=⇒
p

Ep,q
∞ .

Letting En
∞ =

⊕
p+q=n

Ep,q
∞ , E•∞ is an associated graded complex of the cohomology of

the total complex, H• (T • (A••)). Spectral sequences thus give us a way to translate

information between each E•r0 term and this associated graded complex. Moreover,

we could have also filtered by interchanging the roles of rows and columns, and the

new E•∞ would again be an associated graded complex of H• (T • (A••)) with respect

to a different grading, giving us a way to relate the intermediate terms of the two

spectral sequences.

The following spectral sequence is utilized in the proof of Theorem VI.3: Suppose

that I and J are ideals of a Noetherian ring R, and that M is an R-module. With

respect to some choice of generators for I, let C(M ; I) be the complex provided in

Theorem II.2.7 (c) whose ith cohomology is the local cohomology module H i
I (M),
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and define C(M ; J) analogously. If we think of C(M ; I) as a horizontal complex and

C(M ; J) as a vertical complex, the tensor product of the two will be a double complex

C••. In the spectral sequence with respect to C••, each Ep,q
2 term is Hp

J (Hq
I (M)),

and each Ep,q
∞ is Hp+q

I+J (M) [Har67, Proposition 1.4]:

Remark II.5.1 (Spectral sequence of iterated local cohomology modules). Quite

generally, if I and J are ideals of a Noetherian ring R, and M is an R-module, there

is a spectral sequence

Ep,q
2 = Hp

J (Hq
I (M)) =⇒

p
Ep,q
∞ = Hp+q

I+J (M) .

In particular, if J = m is the homogeneous maximal ideal of a polynomial ring

R over a field k, and M = R, only one Ep,q
∞ will be nonzero (and will be isomorphic

to ER(k)), and will be at a position where p + q = dimR. Studying the nonzero

terms and the differentials of this spectral sequence in a specific case will allow us to

relate its terms to gain information about certain iterated local cohomology modules

of interest in the proof of Theorem VI.3.
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CHAPTER III

Preliminaries

The “#” notation used in the following definition is not standard, but is very

useful in our context.

Definition III.1 (Graded dual). If k is a field and V is a Z-graded k-vector space

such that dimk[V ]i <∞ for every i ∈ Z, then the graded dual of V ,

V # =
⊕
i∈Z

Homk([V ]i, k),

is a Z-graded k-vector space satisfying
[
V #
]
j

= Homk([V ]−j, k).

Note that if V is a finite-dimensional k-vector space, then V # = V ∗ := Homk(V, k).

Note also that (−)# is an exact contravariant functor.

Remark III.2. Suppose that k is a field and R is an N-graded ring with R0 = k

and homogeneous maximal ideal m. Suppose also that M is a Z-graded Artinian R-

module. Then M≥i :=
⊕
n≥i

Mn is a submodule of M , and since mM≥i ⊆ M≥i+1, each

Mi
∼= M≥i/M≥i+1 is a Noetherian R-module killed by m, so is a finite-dimensional

k-vector space. Thus, M satisfies the hypotheses necessary to define its graded dual.

Remark III.3 (Graded dual is a rational R[G]-module). Suppose that G is a linear

algebraic group over a field k. Assume that R is an N-graded ring such that R0 = k,
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and that R is also a G-module, where G acts on R by k-automorphisms as to preserve

its grading. Assume that M is a Z-graded R[G]-module such that dimk[M ]i <∞ for

every i, and that the action of G preserves the grading of M . Then M# is also a

Z-graded R[G]-module. For any g ∈ G, f ∈M#, and u ∈M ,

(gf)(u) = f(g−1u),

which is natural shorthand for
∑
i

fi(g
−1ui), assuming f =

∑
i

fi, where deg fi = −i,

and u =
∑

i ui, where deg ui = i. If M is a rational R[G]-module, this action of G

makes M# a rational R[G]-module as well.

Remark III.4. When k is a field and R is a Noetherian N-graded ring with R0 = k,

R# ∼= ER(k) as R-modules [BH93, Proposition 3.6.16].

Remark III.5. If k is a field and R = k[x1, . . . , xn] is a polynomial ring with ho-

mogeneous maximal ideal m, then R# ∼= ER(k) ∼= Hn
m (R) as R-modules (see Exam-

ple II.2.19). However, if Hn
m (R) is viewed as Rx1...xn/

∑n
i=1 Rx1...x̂i...xn , its grading is

shifted: Hn
m (R) ∼= R#(−n) as N-graded modules, where

[
R#(−n)

]
j

=
[
R#
]
j−n.

Remark III.6 (Matlis Duality for graded modules). Suppose that R is an N-graded

ring such that R0 = k, and that M is a Z-graded R-module. If M has DCC (respec-

tively, ACC) as a graded module, then M# has ACC (respectively, DCC). If M has

either DCC or ACC, the natural map M →M## is an isomorphism of graded mod-

ules. Moreover, the functor (−)# provides an anti-equivalence of categories from the

category of Z-graded R-modules with DCC to the category of Z-graded R-modules

with ACC, and vice versa [BH93, Theorem 3.6.17].

Lemma III.7. Let G be a linearly reductive group over a field k. Let R be an N-graded

ring, with R0 = k, that is also a G-module, where G acts on R by k-automorphisms

as to preserve its grading. Let M be a Z-graded R[G]-module such that the action
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of G respects the grading on M . If M has DCC or ACC, then the action of G on

M and the induced action on M## are compatible under the natural isomorphism

M
∼=→M## given by Matlis duality (see Remark III.6).

Proof. Under the map M
∼=→M## =

⊕
i

Homk(Homk(Mi, k), k), u =
∑
i

ui ∈M maps

to
∑
i

φi, where for any f ∈ Homk(Mi, k), φi(f) = f(ui). For g ∈ G, we see that

((gφi)(f))(ui) = (φi(g
−1f))(ui) = f(gui).

Lemma III.8. Suppose that U and V are Z-graded rational G-modules, where dimk V

and each dimk Ui are finite. Then as G-modules,

(U ⊗k V )# ∼= U# ⊗k V ∗,

where
[
(U ⊗k V )#

]
n

precisely corresponds to
[
U# ⊗k V ∗

]
−n under the isomorphism.

Proof.

(U ⊗k V )# ∼=
⊕
n

Homk(
⊕
i

Vi ⊗k Un−i, k)

∼=
⊕
n

⊕
i

Homk(Vi ⊗k Un−i, k)

∼=
⊕
n

⊕
i

Homk(Vi,Homk(Un−i, k))(III.8.1)

∼=
⊕
n

⊕
i

Vi
∗ ⊗k Homk(Un−i, k)(III.8.2)

=
⊕
n

⊕
i

[V ∗]−i ⊗k
[
U#
]
−(n−i)

∼=
⊕
n

[
U# ⊗k V ∗

]
−n

∼= U# ⊗k V ∗.
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(III.8.1) is the adjointness of the tensor and Hom functors, and (III.8.2) is the map

(II.4.12). The only compatibility of the action that needs to be checked is (III.8.1);

here, we check the “backward” map. Given ψ : Vi → Homk(Un−i, k),

g · ψ : Vi ⊗k Un−i → k is defined by

v ⊗ u 7→ (g · ψ)(v)(u),

where (g · ψ)(v)(u) = ((gψg−1)(v))(u) = (gψ(g−1v))(u) = ψ(g−1v)(g−1u). Under

(III.8.1), ψ is sent to φ : Vi ⊗k Un−k → k, where, for v ∈ V , φ(v) = ψ(v)(u). This

means that g · φ(u⊗ v) = φ(g−1u⊗ g−1v) = ψ(g−1v)(g−1u) as well.
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CHAPTER IV

Proof of the Main Theorem

We prove the Main Theorem IV.8 in this section, which will be used (along with

other tools) to prove the Main Theorem on Minors V.10 in Chapter V. Throughout

this section, we need the following frequently-used hypothesis.

Hypothesis IV.1. Let k be a field of characteristic zero, and let R be a N-graded

Noetherian ring such that R0 = k, with homogeneous maximal ideal m. Let G be

a linearly reductive group over k acting on R by k-automorphisms such that R is a

rational G-module, and let M be a Z-graded rational R[G]-module. Suppose that the

actions of G on R and on M respect their gradings.

Remark IV.2. Under Hypothesis IV.1, it may be easily verified that SocM is a

rational G-submodule of M , and so is also a rational R[G]-module.

We will shortly state and prove Key Lemma IV.4, a “rational R[G]-module ver-

sion” of the following theorem of Lyubeznik:

Theorem IV.3 ([Lyu93, Theorem 3.4]). Given a polynomial ring R over a field k

of characteristic zero, an integer n ≥ 1, and ideals I1, . . . , In of R, an iterated local

cohomology module

M = H i1
I1

(
H i2
I2

(
· · · (H in

In
(R)) · · ·

))
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has only finitely many associated primes contained in a given maximal ideal of R. If

M is supported only at the homogeneous maximal ideal m, then M is isomorphic to

a finite direct sum of copies of ER(k).

In particular, this holds when M is any local cohomology module H i
I (R) that is

supported only at m, or when M is any H0
m (H i

I (R)).

Key Lemma IV.4. Suppose that R,m, G and M satisfy Hypotheses IV.1, and that

M is also an injective Artinian R-module supported only at m. Let V = SocM. Then

there exists a G-submodule Ṽ # of M# (see Definition III.1) such that Ṽ # ∼= V # as

rational G-modules, and as rational R[G]-modules,

M ∼=
(
R⊗k Ṽ #

)#

,

where
(
R⊗k Ṽ #

)# ∼= R# ⊗k V as rational G-modules.

Proof. If x1, . . . , xn generate m, we have an exact sequence of R-modules:

0 // V
i //M

θ //M⊕n,

where i is the inclusion of rational R[G]-modules, and θ(u) = (x1u, . . . , xnu) for

u ∈M . By taking graded duals, we obtain the following exact sequence of R-modules:

(M⊕n)
# θ# //M# i# // V # // 0,

where i# is also a map of rational R[G]-modules. Under the canonical isomorphism

(M⊕n)
# ∼=

(
M#

)⊕n
, given f1, . . . , fn ∈M#,

θ#(f1, . . . , fn) = x1f1 + . . .+ xnfn.
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This means that Im(θ#) = mM#, and

0 // mM# //M# i# // V # // 0

is an exact sequence of rational R[G]-modules, so V # ∼= M#/mM# as rational

R[G]-modules. Moreover, since G is linearly reductive, the map i# has a splitting, φ,

as a map of G-modules:

M# i# // V #

φ
kk .

If Ṽ # ⊆M# is the image of φ, then Ṽ # ∼= V # ∼= M#/mM# as rational G-modules.

Since M is Artinian, M# is Noetherian, and by Nakayama’s lemma, a k-basis for

Ṽ # generates M# minimally as an R-module. Since R ⊗k Ṽ # is an R-module via,

for s ∈ R and
∑
i

ri ⊗ vi ∈ R⊗k Ṽ #, s ·
∑
i

ri ⊗ vi =
∑
i

sri ⊗ vi, as R-modules,

R⊗k Ṽ # �M#, where(IV.4.1) ∑
i

ri ⊗ vi 7→
∑
i

rivi.

For
∑
i

ri⊗vi ∈ R⊗k Ṽ #, g ·
∑
i

ri⊗vi =
∑
i

g ·ri⊗g ·vi, and since M# is an R[G]-module,

g ·
∑
i

rivi =
∑
i

(g · ri)(g · vi) in M#, so (IV.4.1) is a surjection of rational G-modules.

By Theorem IV.3, M ∼= ER(k)⊕α for some α ∈ N. As AnnER(k) m ∼= k (see Propo-

sition II.2.18), V = SocM is a finite-dimensional k-vector space of dimension α. This

means that Ṽ # (which is isomorphic to V ∗ as G-modules) also has dimension α over

k, and since M# ∼= R⊕α (see Remark III.4), (IV.4.1) must be an isomorphism. Since

M has DCC, noting that the G-module structures of M and M## are compatible by

Lemma III.7, by taking graded duals, we have that M ∼= M## ∼=
(
R⊗k Ṽ #

)#

as

rational R[G]-modules. Moreover, by Lemma III.8, as rational G-modules,

(
R⊗k Ṽ #

)# ∼= R# ⊗k
(
Ṽ #
)∗ ∼= R# ⊗k V ∗∗ ∼= R# ⊗k V.
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Lemma IV.5. Suppose that G is a linearly reductive group and that R is a k-vector

space that is a Z-graded G-module, such that G preserves its grading and dimk Ri <∞

for all i ∈ Z. Suppose that V is a G-module. If some simple G-submodule of V is a

G-submodule of R, then

(R# ⊗k V )G = 0 ⇐⇒ R# ⊗k V = 0.

In particular, if R, m, G, and M satisfy Hypothesis IV.1, and M is also an injective

Artinian R-module supported only at m, then

MG = 0 ⇐⇒ M = 0.

Proof. The backward implication clearly holds. For the forward implication, suppose

that R# ⊗k V 6= 0 and that a simple G-submodule W of V is also a G-submodule of

R, so that W ↪→ Rn, for some n, as G-modules. Dualizing, R# ⊇ Rn
# � W ∗, which

splits as G-modules since G is linearly reductive, so W ∗ ↪→ R#. Thus, by Lemma

II.4.13, (R# ⊗k V )G 6= 0.

The last statement can be seen by applying the result to the case when V = SocM

and noting Lemma IV.4.

Lemma IV.6. Suppose that R, m, G, and M satisfy Hypothesis IV.1 and that M

is also a nonzero injective Artinian R-module supported only at m. Assume that all

simple G-submodules of SocM are also G-submodules of R. If

SocM = V1 ⊕ . . .⊕ Vα
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as G-modules, where each Vi is nonzero, then

M = (R# ⊗k V1)⊕ . . .⊕ (R# ⊗k Vα)

as rational R[G]-modules, where each R# ⊗k Vi is nonzero, and

MG = (R# ⊗k V1)G ⊕ . . .⊕ (R# ⊗k Vα)G

as RG-modules, where each (R# ⊗k Vi)G is nonzero. In particular, if MG is a inde-

composable RG-module, then SocM is a simple G-module.

Proof. The first implication follows from Lemma IV.4 after applying R#⊗k (−). The

second follows by applying (−)G and noting that each summand is nonzero by Lemma

IV.5.

Lemma IV.7. Let G be a linearly reductive group over a field k acting on a k-algebra

R, and let N be a rational R[G]-module. Let J = (f1, . . . , fn) be an ideal of RG, and

let I = JR. Then for every index i, H i
I (N) is also a rational R[G]-module, and

every simple G-submodule of H i
I (N) is also a G-submodule of N . Moreover, there is

a canonical isomorphism of RG-modules

(
H i
I (N)

)G ∼= H i
J

(
NG
)
.

Proof. Since N is a G-module, for f ∈ RG, Nf = lim
−→

(
N
·f→ N

·f→ N
·f→ . . .

)
as G-

modules: If g ∈ G and u
fm
∈ Nf , which corresponds to [u] in the mth copy of N in

the direct limit, then g · u
fm

= g·u
fm

, which corresponds to [g · u] in the mth copy of N

in the direct limit.

Hence, Nf is a G-module such that all simple G-submodules of Nf are also G-

submodules of N . Since products of any of the fj are fixed by G, every term in the
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following complex (see Theorem II.2.7) is a G-module:

0→ N
δ0−→

n⊕
j=1

Nfj
δ1−→ . . .

δn−2−→
n⊕
j=1

Nf1...f̂j ...fn

δn−1−→ Nf1f2...fn → 0.

Since the maps δj on each summand are, up to a sign, further localization maps,

they are G-equivariant. This makes the cohomology modules, H i
I (N), G-modules

as well, and they inherit the property that all their simple G-submodules are also

G-submodules of N . Additionally, these local cohomology modules are R[G]-modules

since N is one: given any g ∈ G, r ∈ R, and
[
u
fm

]
∈ H i

I (N),

g

(
r

[
u

fm

])
= g

[
ru

fm

]
=

[
(gr)(gu)

fm

]
= (gr)

(
g

[
u

fm

])
.

For the last statement, first notice that for any f ∈ RG (e.g., the product of any of

the fj),
(
NG
)
f

= (Nf )
G. Taking invariants also commutes with taking direct sums,

so H i
J

(
NG
)

is isomorphic the cohomology of the complex

0→ NG d0−→

(⊕
j

Nfj

)G

d1−→ . . .
dn−2−→

(⊕
j

Nf1...f̂j ...fn

)G

dn−1−→ (Nf1f2...fn)G → 0,

where di is the restriction of δi to the invariant part of the ith module in the complex.

Since G is linearly reductive, the functor V 7→ V G of G-modules is exact, and we may

conclude that (H i
I (N))G ∼= H i

J

(
NG
)
.

Main Theorem IV.8. Let R be a polynomial ring over a field k of characteristic zero

with homogeneous maximal ideal m. Let G be a linearly reductive group over k acting

by degree-preserving k-automorphisms on R, such that R is a rational G-module.

Assume that A = RG has homogeneous maximal ideal mA, let d = dimA, and let

I = mAR. Then Hd
I (R) 6= 0 and I is generated up to radicals by d elements and not

fewer, so that H i
I (R) = 0 for i > d. Moreover, the following hold:
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(a) If i < d, then m is not an associated prime of H i
I (R); i.e., H0

m (H i
I (R)) = 0.

If Hd
I (R) is supported only at m (e.g., this holds if, after localization at any of the

indeterminates of R, I requires fewer than d generators up to radical), then

(b) V := SocHd
I (R) is a simple G-module, and

(c) As rational R[G]-modules, Hd
I (R) ∼= ER(k)⊗k V.

Proof. By Lemma IV.7, we know that for every i, (H i
I (R))G ∼= H i

mA
(A) as RG-

modules. The invariant part of Hd
I (R), Hd

mA
(A), is nonzero since d = dimA, so

Hd
I (R) 6= 0. The maximal ideal mA of A is generated, up to radical, by d = dimA

elements, so its expansion to R, I = mAR, will also be generated up to radical by the

same d elements: If mA =
√

(f1, . . . , fd) in A, then
√
I =
√
mAR =

√
(f1, . . . , fd) in

R, since if some x ∈
√

(f1, . . . , fd) ⊂ R, then xN is in the ideal (f1, . . . , fd) of R for

some N , which sits inside the ideal (f1, . . . , fd)A expanded to R, which is itself inside√
(f1, . . . , fd)R = mAR.

For part (a), assume that i < d. By Lemma IV.7, H i
I (R) is a rational R[G]-module,

so its submodule of elements killed by some power of m, H0
m (H i

I (R)), is also a

rational R[G]-module. By definition, (H0
m (H i

I (R)))
G

is the RG-submodule of H i
I (R)

consisting of invariant elements that are killed by some power of m; thus, it is the

RG-submodule of H i
I (R)G ∼= H i

mA
(A) (by Lemma IV.7) consisting of elements killed

by a power of m. By the theorem of Hochster and J. Roberts [HR74, Main Theorem]

or of Boutot [Bou87, Théorème], since G is linearly reductive and A = RG, A must be

Cohen-Macaulay. Since i < d = dimA, H i
mA

(A) = 0, so in particular, its submodule

(H0
m (H i

I (R)))
G

must also vanish. By Theorem IV.3, H0
m (H i

I (R)) is isomorphic to a

finite direct sum of copies of ER(k). Therefore, by Lemma IV.5, since its invariant

part vanishes, H0
m (H i

I (R)) must also vanish.

Now suppose that Hd
I (R) is supported only at m. Since R (and so A also) is a

domain, the canonical module of A (which exists since A is a homomorphic image
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of a polynomial ring by Theorem II.2.27), ωA, must be rank one and isomorphic to

an ideal of A, so torsion-free (see Theorem II.2.28). Thus, ωA is an indecomposable

A-module. (If ωA = M ⊕ N , since its rank is one, tensoring with Frac (A) must kill

either M or N . However, elements of A cannot kill those of ωA, as it is isomorphic

to an ideal of a domain.) Therefore,

HomA(ωA, EA(A/mA)) ∼= Hd
mA

(A) ∼= (Hd
I (R))G

must also be indecomposable, so SocHd
I (R) is a simple G-module by Lemma IV.6.

Part (c) is a restatement of the second part of Key Lemma IV.4.
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CHAPTER V

Proof of the Main Theorem on Minors

Remark V.1. If a topological group G acts continuously on a topological space Z

permuting a finite collection of closed sets V1, . . . , Vm ⊆ Z, then G must fix each Vi:

For each 1 ≤ i ≤ m and v ∈ Vi, the map Θv : G → Z given by Θv(g) = g · v is

continuous, so Θ−1
v (Vi) = {g ∈ G | g ·v ∈ Vi} is closed in G. Similarly, if Θv : G→ An

is given by Θv(g) = g−1 · v, then the set (Θv)−1(Vi) is also closed. Thus, the sets⋂
v∈V1

Θ−1
v (Vi) = {g ∈ G | gVi ⊆ Vi} and

⋂
v∈V1

(Θv)−1(Vi) = {g ∈ G | Vi ⊆ g · Vi} are

closed in G, so their intersection, {g ∈ Vi | g · Vi = Vi} = stabG Vi (the stabilizer of Vi

in G) is also closed in G.

As G permutes the Vi, we have a map φ : G → Sm (the symmetric group on m

letters). Since φ−1(stabG(Vi)) = stabSm(i), φ induces G/ stabG(Vi) ↪→ Sm/ stabSm(i).

As Sm/ stabSm(i) is finite, so is G/ stabG(Vi), and each stabG(Vi) is a finite index

subgroup of G. If stabG(Vi) ( G, then since G is closed, its cosets would disconnect

G, which is impossible. Thus, each stabG(Vi) = G, and G fixes each Vi.

Lemma V.2. Let G be a connected linear algebraic group, let R be a rational G-

module, and let M be an R[G]-module such that AssR (M) is finite. Then every

associated prime of M is stable under the action of G.

Proof. Suppose that p = AnnR u, for some u ∈ M . We claim that for any g ∈ G,

g · p = AnnR(gu). To see that g · p ⊆ AnnR(gu), take x ∈ AnnR u. Since M is
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an R[G]-module, we have that (gx)(gu) = g(xu) = g · 0 = 0. To see the opposite

inclusion, suppose that x ∈ AnnR(gu). Then x = g(g−1x), and g−1x ∈ p = AnnR(u) :

(g−1x)u = (g−1g)((g−1x)u)

= g−1(g((g−1x)u))

= g−1(x(gu)),

which is zero. Moreover, g ·p is prime: Take x, y ∈ R such that xy ∈ g ·p, so xy = ga,

a ∈ p. Then (g−1x)(g−1y) = g−1(xy) = a ∈ p, so either g−1x ∈ p or g−1y ∈ p; i.e.,

either x ∈ g · p or y ∈ g · p. Therefore, G acts on the set AssR (M).

For g ∈ G, the map φg : R→ R, where, for r ∈ R, φg(r) = g · r, induces a natural

map ψg : SpecR → SpecR, where ψg(p) = φ−1
g (p), giving a continuous action of G

on SpecR. We know that G acts on the finite set AssR (M); suppose that p1, . . . , pm

are all the associated primes of M in R. If, for some g ∈ G, g ·pi = pj, then under the

action of G on SpecR, g · V(pi) = V(pj), which means that G acts on the collection

of V(p1), . . . ,V(pm). Thus, by Remark V.1, G acts trivially on AssR (M).

Hypothesis V.3. Let k be a field of characteristic zero, let X be an r × s matrix of

indeterminates, where r < s, and let R = k[X] be the polynomial ring over k in the

entries of X. For 0 < t ≤ r, let It(X) be the ideal of R generated by the t× t minors

of X, which is prime by [HE71, Theorem 1]. Furthermore, let I = Ir(X) be the ideal

generated by the maximal minors of X.

Remark V.4 (Square matrix case). Suppose that R satisfies Hypothesis V.3, but

assume instead that r = s. Here, I = (∆), where ∆ is the determinant of X, and the

only nonzero local cohomology module is H1
I (R), which is isomorphic to R∆/R.

Remark V.5 (Action of the special linear group on the polynomial ring of interest).

Let k, R, and I satisfy Hypothesis V.3, and let G = SLr(k), which is linearly reductive
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since the characteristic of k is zero. Considering Γ ∈ G as an r×r matrix, the action of

Γ on the k-algebra R is defined by where the entries of X are sent. The (α, β)th entry

of X is sent to the (α, β)th entry of Γ ·X. Thus, G acts by k-algebra automorphisms

that correspond to invertible row operations on the matrix X. Additionally,

• The maximal minors of X are fixed by the action of G, so the ideal I generated

by them is G-stable. Moreover, a classical invariant theory result of Weyl states

that RG is the k-subalgebra of R generated over k by the maximal minors of

X [Wey39, Theorem 2.6.A]. This means that I = mRGR, where mRG is the

homogeneous maximal ideal of RG.

• In fact, RG is the homogeneous coordinate ring of the Plücker embedding of

the Grassmann variety of r-planes in s-space, which has dimension r(s − r);

therefore, dimRG = r(s− r) + 1.

Remark V.6. Under Hypothesis V.3, R is a rational R[G]-module: Since the action

of G is induced by that on the linear forms, R is certainly an R[G]-module. Moreover,

R will be the directed union of Vn :=
⊕
i≤n

Ri, each a finite-dimensional G-module.

Lemma V.7. Suppose that k, R, and I satisfy Hypothesis V.3, and assume that

d = r(s− r) + 1. Then SocHd
I (R) is a one-dimensional k-vector space.

Proof. Let G = SLr(k) act on R as in Remark V.5. Let A = RG, let mA be its

homogeneous maximal ideal, and let V = SocHd
I (R).

Since A is the ring of invariants of the semisimple group G, A is Gorenstein by the

theorem of Hochster and J. Roberts [HR74, Corollary 1.9]. Therefore, its canonical

module is isomorphic to A (see Corollary II.2.26), and as G-modules,

(R⊗k V ∗)G ∼=
(

(R⊗k V ∗)##
)G

(V.7.1)

∼=
((
R# ⊗k V

)#
)G

(V.7.2)
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∼=
((
Hd
I (R)

)#
)G

(V.7.3)

∼=
((
Hd
I (R)

)G)#

(V.7.4)

∼=
(
Hd

mA
(A)
)#
,(V.7.5)

which is isomorphic to A. (V.7.1) is by Matlis Duality (see Remark III.6). (V.7.2)

and (V.7.3) are by Key Lemma IV.4, (V.7.4) holds since G is linearly reductive, and

(V.7.5) is due to Lemma IV.7.

By Main Theorem IV.8 (b), SocHd
I (R) is a simple G-module. Let W be the V -

isotypical component of R. Then W is graded, and is isomorphic to, as G-modules, a

finite sum of copies of V in each degree. Say Wj
∼=
⊕
nj

V is the V -isotypical component

of Rj. We have the following graded isomorphisms as G-modules:

A ∼= (V ∗ ⊗k R)G

∼= (V ∗ ⊗k W )G(V.7.6)

∼=

V ∗ ⊗k
⊕

j

⊕
nj

V

G

∼=
⊕
d

⊕
nj

(V ∗ ⊗k V )G

∼=
⊕
j

⊕
nj

(Homk(V, V ))G(V.7.7)

∼=
⊕
j

⊕
nj

HomG(V, V ),

the G-module maps from V to itself. (V.7.6) is due to Lemma II.4.13 and (V.7.7) is

as in Remark II.4.12.

Since A has a one-dimensional vector space in least degree (degree zero), we have

that HomG(V, V ) ∼= k. This corresponds to exactly one copy of V in least degree in

the simple G-module decomposition of R (i.e., for µ the least degree m for which V
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appears as a G-submodule of Rm, Wµ
∼= V , so nµ = 1).

In fact, if a nontrivial G-module occurs in R, it occurs with multiplicity greater

than one in the smallest degree of R in which it occurs. (This is, for example, a

consequence of [GW98, Theorem 5.2.7].) This contradiction implies that V must be

a trivial G-module. Since V is also a simple G-module by Main Theorem IV.8 (b), it

must be a one-dimensional k-vector space.

Remark V.8 (Another useful group action on the polynomial ring of interest). Let

k and R satisfy Hypothesis V.3, and let H be the connected group SLr(k)× SLs(k)

[GW98, Theorem 2.19]. Then H acts on R by k-algebra automorphisms as follows:

Considering Γ ∈ SLr(k) and Γ′ ∈ SLs(k) as r × r and s × s matrices, respectively,

the action sends the entries of X to those of ΓX (Γ′)−1.

• The action of SLr(k)× Idr×r sends xαβ to any linear combination of the inde-

terminates in its row, and that of Ids×s×SLs(k) does the same with respect to

columns; therefore, under the action of H, any xαβ is sent to any other xα′β′ .

The following observation is used in the proof of the Main Theorem on Minors

V.10.

Remark V.9. Let k, R, I, and It(X) satisfy Hypothesis V.3. Over Rx11 , we can

perform elementary row and column operations on X (first subtract
x1β
x11

times the

first column from the βth column of the matrix, β > 1, and then subtract xα1
x11

times

the first row from the αth row, α > 1, and finally, scale the first row), to obtain the

matrix 

1 0 . . . 0

0

... Y

0


,

where Y is the (r − 1)× (s− 1) matrix
[
xαβ − x1β

x11
xα1

]
1<α≤r
1<β≤s

.
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Let S = k
[
yαβ, x11, x

−1
11 , xα1, x1β | 1 < α ≤ r, 1 < β ≤ s

]
. Since only elementary

row and column operations were used to transform the matrix, they are invertible,

and the transformation defines an isomorphism

S → Rx11 , where(V.9.1)

yαβ 7→ xαβ −
x1β

xα1

x11.

Under (V.9.1), the ideal It+1(X) of Rx11 corresponds precisely to the ideal It(Y )

of S. Thus, (V.9.1) induces the isomorphism
(
H i
Ir(X) (R)

)
x11

∼= H i
Ir−1(Y ) (S) for

any i. Since H i
Ir−1(Y ) (S) ∼= H i

Ir−1(Y )

(
k[Y ]⊗k[Y ] S

)
, which is, in turn, isomorphic to

H i
Ir−1(Y ) (k[Y ])⊗k[Y ] S since S is flat over k[Y ] (see Theorem II.2.22), we have that

(
H i
Ir(X) (R)

)
x11
∼= H i

Ir−1(Y ) (k[Y ])⊗k[Y ] S.(V.9.2)

Main Theorem on Minors V.10. Let k, R, I, and It(X) satisfy Hypothesis V.3.

(a) Let d = max{i : H i
I (R) 6= 0}, so that d = r(s− r) + 1 by Theorem I.1.2. Then

Hd
I (R) ∼= ER(k).

(b) H i
I (R) 6= 0 if and only if i = (r − t)(s− r) + 1 for some 0 ≤ t < r.

(c) Furthermore, if i = (r − t)(s− r) + 1, then

H i
I (R) ↪→ ER(R/It+1(X)) ∼= H i

I (R)It+1(X) .

In particular, AssR (H i
I (R)) = {It+1(X)}.

Proof. First consider d = r(s − r) + 1, the dimension of the invariant ring RG un-

der the action of G from Remark V.5. By Main Theorem IV.8, H i
I (R) = 0 for

41



any i > d. Applying this again to the smaller matrix Y from Remark V.9, we

see that H i
Ir−1(Y ) (k[Y ]) = 0 if i > (r − 1) ((s− 1)− (r − 1)) + 1; in particular,

Hd
Ir−1(Y ) (k[Y ]) = 0. Therefore, (V.9.2) indicates that

(
Hd
Ir(X) (R)

)
x11

= 0. By sym-

metry, Hd
Ir(X) (R) vanishes after localizing at any xαβ, and so Hd

Ir(X) (R) is supported

only at the homogeneous maximal ideal m of R.

Therefore, by Theorem IV.3, Hd
I (R) ∼= ER(k)⊕α for some finite integer α. Since

AnnER(k) m = k (see Proposition II.2.18), SocHd
I (R) = AnnHd

I (R) m is a k-vector

space of dimension α. By Proposition V.7, α = 1, proving (a).

We now use induction on r, for all s ≥ r, to prove that if i = (r− t)(s− r) + 1 for

some 0 ≤ t < r, X is an r × s matrix of indeterminates, k is a field of characteristic

zero, and R = k[X], then

AssR
(
H i
I (R)

)
= {It+1(X)}, and(V.10.1)

H i
I (R)It+1(X)

∼= ER(R/It+1(X)),(V.10.2)

and for i not of this form, H i
I (R) vanishes. (This would prove (b) and (c).)

For the basis case, let r = 1. In this case, R = k[x1, . . . , xs]; if t = 0, then

i = r(s − r) + 1 = s. Since I = I1(X) is the homogeneous maximal ideal of R,

Hs
I (R) ∼= ER(k), and H i

I (R) = 0 for all i 6= s.

Now say that for all r0 < r and all s0 ≥ r0, for any 0 ≤ t0 < r0, if k is a field of

characteristic zero and R = k[X], where X = [xαβ] is an r0 × s0 matrix of indeter-

minates, and i = (r0 − t0)(s0 − r0) + 1, then AssR

(
H i
Ir0 (X) (R)

)
= {It0+1(X)} and(

H i
Ir0 (X) (R)

)
It0+1(X)

∼= ER (R/It0+1(X)) , and for all i not of this form, H i
Ir0 (X) (R)

vanishes.

Take X an r× s matrix of indeterminates, R = k[X], and I = Ir(X). By proving

(a), we have already shown (V.10.1) and (V.10.2) for i = d = r(s − r) + 1. For

i < d, m is not an associated prime of H i
I (R) by Main Theorem IV.8 (a), so some xαβ
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must be a nonzerodivisor on H i
I (R). (If not, all products of the xαβ, and their linear

combinations, i.e., all elements of m, would be zero divisors.) We could renumber

the indeterminates to assume that x11 is nonzerodivisor, but, in fact, each xαβ is a

nonzerodivisor on H i
I (R): Consider the action of the group H described in Remark

V.8. Since H is connected and AssR (H i
I (R)) is finite by Theorem IV.3 (due to the

grading on R, each associated prime is contained in m by Proposition II.1.8), Lemma

V.2 implies that each associated prime of H i
I (R) is stable under its action. Since every

indeterminate xαβ is in the orbit of every other indeterminate, because some xαβ is a

nonzerodivisor (i.e., not in any associated prime), every one is a nonzerodivisor. In

particular, x11 is a nonzerodivisor.

By the inductive hypothesis, all H i
Ir−1(Y ) (k[Y ]) = 0 unless 0 ≤ t0 < r − 1 and

i = ((r − 1)− t0)((s− 1)− (r − 1)) + 1 = (r − 1− t0)(s− r) + 1,

or equivalently, i = (r − t)(s − r) + 1 with 1 ≤ t < r. Since each such i is less than

d, x11 is a nonzerodivisor on H i
I (R), and (V.9.2) implies that the same vanishing

conditions must hold for the H i
Ir(X) (R). Combining this fact with (a), we see that

H i
Ir(X) (R) must vanish for i < d unless i = (r − t)(s− r) + 1 for some 0 ≤ t < r.

Suppose that i = (r − t)(s − r) + 1 for some t > 0. The inductive hypothesis

tells us that Assk[Y ]

(
H i
Ir−1(Y ) (k[Y ])

)
= {It(Y )}, and since S is flat over k[Y ] [Mat80,

Theorem 12], AssS

(
H i
Ir−1(Y ) (k[Y ])⊗k[Y ] S

)
= {It(Y )S}. Thus, (V.9.2) implies that

AssR

(
H i
Ir(X) (R)x11

)
consists solely of It+1(X), the ideal that corresponds to It(Y )S

under (V.9.1). Since x11 is a nonzerodivisor on H i
I (R), the associated primes of(

H i
Ir(X) (R)

)
x11

are the expansions to Rx11 of the associated primes of H i
Ir(X) (R),

and AssR

(
H i
Ir(X) (R)

)
= {It+1(X)}, proving (V.10.1).

Hochster and Eagon showed that htR It(X) = (r− t+ 1)(s− t+ 1) (see Theorem

II.3.3), which means, in particular, that htk[Y ] It(Y ) = (r − t)(s − t) = htR It+1(X).
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Therefore, noting that x11 /∈ It+1(X) for any 1 ≤ t < r, we have the following

sequence of isomorphisms, proving (V.10.2):

(
H i
Ir(X) (R)

)
It+1(X)

∼=
(
H i
Ir−1(Y ) (S)

)
It(Y )S

(V.10.3)

∼=
(
H i
Ir−1(Y ) (k[Y ])

)
It(Y )
⊗k[Y ] S(V.10.4)

∼= Ek[Y ] (k[Y ]/It(Y ))⊗k[Y ] S(V.10.5)

∼= Ek[Y ]It(Y )

(
k[Y ]It(Y )/It(Y )k[Y ]It(Y )

)
⊗k[Y ] S(V.10.6)

∼=
(
H

ht It(Y )
It(Y ) (k[Y ])

)
It(Y )
⊗k[Y ] S(V.10.7)

∼= H
ht It(Y )
It(Y )

(
k[Y ]⊗k[Y ] S

)
It(Y )

(V.10.8)

∼= H
ht It(Y )
It(Y ) (S)It(Y )(V.10.9)

∼= H
ht It+1(X)
It(Y )SIt(Y )

(
SIt(Y )

)
(V.10.10)

∼= H
ht It+1(X)
It+1(X)RIt+1(X)

(
RIt+1(X)

)
(V.10.11)

∼= ERIt+1(X)

(
RIt+1(X)/It+1(X)RIt+1(X)

)
(V.10.12)

∼= ER (R/It+1(X)) .(V.10.13)

(V.10.3) and (V.10.11) are induced by (V.9.1). We have (V.10.4) and (V.10.8) because

S is flat over k[Y ] (see Theorem II.2.22). (V.10.5) is by the inductive hypothesis. Since

R is Gorenstein, we have (V.10.7) and (V.10.12) (see Theorem II.2.21). Proposition

II.2.16 provides (V.10.6) and (V.10.13), and Corollary II.2.23 provides (V.10.10).

44



CHAPTER VI

Vanishing of H1
m

(
H i
I (R)

)

Throughout this chapter, suppose that k, R, It(X), and I satisfy Hypothesis V.3,

and let m denote the homogeneous maximal ideal of R.

Remark VI.1 (The iterated local cohomology modules H0
m (H i

I (R))). By the Main

Theorem on Minors, V.10, H0
m (H i

I (R)) = 0 unless i = r(s − r) + 1, in which case,

H0
m (H i

I (R)) ∼= ER(k) since every element of ER(k) is killed by a power of m.

Other iterated local cohomology modules of particular interest are those of the

form H1
m (H i

I (R)) , since their vanishing helps us characterize H i
I (R):

Remark VI.2 (Vanishing of the iterated local cohomology modules H1
m (H i

I (R))).

Suppose that H1
m (H i

I (R)) = 0, where i = (r − t)(s − r) + 1 for some 0 < t < r. By

Theorem V.10, H i
I (R) injects into ER (R/It+1(X)), and It+1(X) ( m. If we call the

cokernel of this injection C, we have a short exact sequence

0→ H i
I (R)→ ER (R/It+1(X))→ C → 0,

which gives rise to the long exact sequence in local cohomology

0 // H0
m (H i

I (R)) // H0
m (ER (R/It+1(X))) // H0

m (C)

// H1
m (H i

I (R)) // H1
m (ER (R/It+1(X))) // . . .

45



Since the It+1(X) is the only associated prime of ER (R/It+1(X)) and of H i
I (R),

H0
m (H i

I (R)) = H0
m (ER (R/It+1(X))) = H1

m (ER (R/It+1(X))) = 0, which implies that

H0
m (C) ∼= H1

m (H i
I (R)) = 0.

Let M :=
⋂

1≤α≤r,1≤β≤s
H i
I (R)xαβ . Since It+1(X) ( m, M ⊆ H i

I (R)It+1(X). By the

Main Theorem V.10, H i
I (R)It+1(X)

∼= ER(R/It+1(X)), so M ↪→ ER(R/It+1(X)). This

induces an injection M/H i
I (R) ↪→ ER(R/It+1(X))/H i

I (R) ∼= C. By definition of M ,

every element of M/H i
I (R) is killed by a power of m, so applying H0

m (−), we see that

M/H i
I (R) = H0

m (M/H i
I (R)) ↪→ H0

m (C) = 0. Thus, M = H i
I (R) , and we have the

following characterization of H i
I (R) :

H i
I (R) =

⋂
1≤α≤r,1≤β≤s

H i
I (R)xαβ .

In Theorem VI.3, we will prove that the H1
m (H i

I (R)) vanish in a special case, so we

have this characterization. We make use of the spectral sequence described in Remark

II.5.1 in the case that I is as defined, J = m, and M = R; i.e.,

Ep,q
2 = Hp

m (Hq
I (R)) =⇒

p
Ep,q
∞ = Hp+q

m (R) .

Theorem VI.3. Assume that k, R, and I satisfy Hypothesis V.3, and that r = 2

and s ≥ 3, so that I is generated by the 2× 2 minors of the 2× s matrix X. Then

H0
m

(
H2s−3
I (R)

) ∼= Hs−1
m

(
Hs−1
I (R)

) ∼= Hs+1
m

(
Hs−1
I (R)

) ∼= ER(k),

and all other Hj
m (H i

I (R)) vanish. In particular, H1
m (H i

I (R)) = 0 for all i.

Proof. By Main Theorem V.10, we know that the only two nonzero local cohomology

modules of the form H i
I (R) are H2s−3

I (R) ∼= ER(k) and Hs−1
I (R) ↪→ ER(R/I).

Since every element of ER(k) is killed by the homogeneous maximal ideal m,

H0
m

(
H2s−3
I (R)

) ∼= ER(k), and because ER(k) is a zero-dimensional module, all higher

46



p
...

...
...

...
...

...

s + 2 · · · 0 0 0 · · · 0 0 0 · · ·

s + 1 · · · 0 Hs+1
m

(
Hs−1
I (R)

)
0 · · · 0 0 0 · · ·

s · · · 0 Hs
m

(
Hs−1
I (R)

)
0 · · · 0 0 0 · · ·

s − 1 · · · 0 Hs−1
m

(
Hs−1
I (R)

)
0 0 0 · · ·

...
...

...
...

...

2 · · · 0 H2
m

(
Hs−1
I (R)

)
0

d2,2s−3
s−1

ff

0 · · ·

1 · · · 0 H1
m

(
Hs−1
I (R)

)
0 · · · 0

d1,2s−3
s−1

ff

0 · · ·

0 · · · 0 H0
m

(
Hs−1
I (R)

)
0 · · · 0 ER(k)

d0,2s−3
s−1

ff

0 · · ·

· · · s − 2 s − 1 s · · · 2s − 4 2s − 3 2s − 2 · · · q

Figure VI.3.1: Ep,q
2 = Hp

m (Hq
I (R))

Hj
m

(
H2s−3
I (R)

)
vanish. If the 2× 2 minors of a 2× s matrix vanish, the second row

of the matrix must be a multiple of the first row; thus, dimR/I = s + 1. The only

associated prime of Hs−1
I (R) is I, so by Theorem II.2.8 (e), Hj

m

(
Hs−1
I (R)

)
= 0 for

j > s+ 1.

Consider the spectral sequence of iterated local cohomology modules from Remark

II.5.1 with I our ideal of interest, J = m, and M = R. The spectral sequence

differential, dp,qr : Ep,q
r → Ep+r,q−r+1

r , drops r−1 columns. The difference between the

two (possibly) nonzero columns in the array Ep,q
2 , 2s − 3 and s − 1, is s − 2, so the

only possibly nonzero differentials are the dp,qs−1 : Ep,q
s−1 → Ep+s−1,q−s+2

s−1 . (See Figure

VI.3.1.) Consequently, every Ep,q
s−1 = Ep,q

2 and every Ep,q
s = Ep,q

∞ .

The only nonzero local cohomology module H i
m (R) ∼= ER(k) satisfies i = 2s,

and the only possibly nonzero Hp
m (Hq

I (R)) such that p+ q = 2s is Hs+1
m

(
Hs−1
I (R)

)
.

As every spectral sequence map to and from Hs+1
m

(
Hs−1
I (R)

)
is zero, we have that

Hs+1
m

(
Hs−1
I (R)

) ∼= Es+1,s−1
∞ = ER(k). Moreover, every other Ep,q

∞ = 0.
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The only nonzero domain of a differential is E0,2s−3
s−1

∼= ER(k), so the sole (pos-

sibly) nonzero differential is d0,2s−3
s−1 : E0,2s−3

s−1
∼= ER(k) → Es−1,s−1

s−1 . After taking

cohomology with respect to the differentials dp,qs−1, we must get zero at both the

(s − 1, s − 1) and (0, 2s − 3) spots. This means that d0,2s−3
s−1 must be an isomor-

phism, and Hs−1
m

(
Hs−1
I (R)

)
= Es−1,s−1

s−1
∼= ER(k). Since all other maps are zero, and

after taking cohomology with respect to dp,qs−1 we must get zero at all other spots, all

remaining iterated local cohomology modules vanish.
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