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INTRODUCTION

All given rings are commutative with 1. By and large, we restrict attention to rings
that are generated by finitely many elements either over an algebraically closed field K
or over the integers. Such rings may be thought of as having the form R/I where R is a
polynomial ring in finitely many variables x1, ..., x, over a field K or over Z.

In particular, the rings we talk about are almost always NOETHERIAN, i.e., every
ideal is finitely generated.

We shall eventually discuss the three problems mentioned in the abstract:

1) What can one say about fixed rings (rings of invariants) of a linearly reductive algebraic
g g g
group acting on a polynomial ring? (More about the notions involved later.)

(2) In a polynomial ring in two variables over a field, is it true that for any three elements
f, g, h, one has that the product of their squares is in the ideal generated by their
cubes, i.e., is f2g2h% € (f3, g3, h3)?

(3) For a polynomial ring R over a field K or Z, if S O R is a ring that is a finitely
generated R-module (i.e., MODULE-FINITE over R) is it true that R is a direct
summand of S (over R)?

(S is module-finite over R if there are finitely many elements s1, ..., s; of S such that
every element of S can be written as r1s; + --- + r;s; with the r; in R. Note that such a
representation is usually not unique.)

But before discussing these problems and the relevance of characteristic p, I want to
recall a little bit of geometry.



ALGEBRA IS
GEOMETRY

Let K be an algebraically closed field. Then A% is just another name for K™, but
thought of as an algebraic set or algebraic variety rather than as a vector space.

More precisely, a (closed) algebraic set X in A} is just the set of solutions of some
polynomial equations in n variables z, ...,z, over K: we write V(f1,..., fm) for the
(simultaneous) solutions of the m equations
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If an algebraic set is the union of two proper algebraic sets it is called REDUCIBLE;
otherwise, it is IRREDUCIBLE. Every algebraic set is a finite irredundant union of IR-

REDUCIBLE algebraic sets in a unique way. Irreducible algebraic sets are called ALGE-
BRAIC VARIETIES.

Example 1:
V(.’Elxz) = V(.Tl) N V(.Tz)

Example 2:

Consider a 2 by 3 matrix of indeterminates (x;;) and let A; be the minor obtained by
deleting the 7 th column. Thus, A; = 212223 — x21213, etc. Then:

V(Ag, Ag) = V(z11, 212) UV (A1, Ag, Ag)

Morphisms X — Y of algebraic sets (over K) are given by maps that can be expressed,
coordinatewise, by polynomials when X and Y are thought of as embedded in, say, K"
and K™ respectively. X has a (ZARISKI) TOPOLOGY: the closed sets are precisely the
subsets of X that are algebraic sets.

If one has an algebraic variety X, one can think about the ring obtained by restrict-
ing all the polynomial functions on A% to X. This ring, denoted K[X], is called the
COORDINATE ring of X. Note the following:

1) The coordinate ring of A% is the polynomial ring K|zq, ..., x,].
K

(2) Points of X correspond one-to-one with maximal ideals of K[X]. (z € X corresponds
tom, = {f € K[X]: f(z) = 0}.



(3) X is a variety (irreducible) if and only if K[X] is an integral domain.

Philosophically, one may want to think of any commutative ring as a ring of functions
on a geometric object.

DIMENSION

Dimension (Krull dimension) can be defined in an arbitrary commutative ring with
identity so that when K = C the dimension of C[X] is the same as the complex dimension
of X, i.e., half the real dimension. One uses the supremum of lengths of chains of prime
ideals. But since this may seem rather artificial on first glance, we simply note the following
properties of dimension for algebraic sets:

1
2
3
4

The dimension of A% is n.
The dimension of X UY is the supremum of dim X and dimY.

(1)
(2)
(3) If X is isomorphic to a Zariski open set in Y, a variety, then dim X = dimY.
(4)

If X — Y is a surjective map of varieties which has finite fibers, then dim X = dimY.

INTERSECTIONS
AND
INTERSECTION
MULTIPLICITIES

Two planes in three space may be parallel, but if they intersect at all, they must intersect
in at least a line. More generally, vector subspaces V and W of K™ (they intersect, since
0 is a common point) must have an intersection of dimension at least dim V +dim W —n.

Less well known is that the same is true for varieties in A% over an algebraically closed
field K!

Now suppose that we have varieties V and W in A% with the origin as an isolated point
of intersection, that dim V' = r and that dim W = s with r + s = n. For simplicity we
consider the case where W is a vector space defined by the vanishing of r linear forms, i.e.,
W =V(Ly,...,L,). If K = C we can define the intersection multiplicity of V and W at
the origin as the number of points, near 0 in the usual (Hausdorff) topology on C"* ~ R?"
in the intersection of V' with a typical linear space W, = V(Ly —e€y,..., L, — €,.) obtained
by “perturbing” W slightly by the choice of € = (€1, ...,€,.). The answer should be the
same for all choices of €1, ..., €. close to 0 and off some proper closed set.
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Example 3:

In AZ with coordinate variables x, y the intersection multiplicity of V(y) and V(y — z?)
at the origin is two, because V(y — ¢) and V(y — %) have two points of intersection near
the origin, (£v/e, €) for all small € # 0.

One can often compute intersection multiplicities more simply. First, the LOCAL RING
of a variety at a point is the ring obtained by adjoining inverses for all functions in the ring
that do not vanish at that point. Each element of the local ring does define a function on
a (Zariski) open neighborhood of the point, and this is the analogue of the rings of germs
of continuous or C'*° or holomorphic functions at a point defined in various other kinds of
geometry.

(More generally, a ring is called a LOCAL RING if it has a unique maximal ideal, and
one can form the local ring Rp of R at a maximal or even prime ideal P by adjoining
inverses for all elements not in P. In the local rings above, the maximal ideal consists of
functions vanishing at the point under consideration.)

Then the intersection multiplicity of V' and W can sometimes be computed by simply
killing the equations of V' and W in the local ring of A% at the origin, and then taking
the vector space dimension of the quotient over K.

Example 3 revisited:

When we kill the equations in Example 3 we get C[z, y|/(y — 2%, y) = Clz]/(2?) = C+Cxz,

which is two dimensional.

BUT WHEN DOES THIS COMPUTATIONALLY SIMPLE PROCEDURE WORK?

(It is not necessary to invert elements that do not vanish at the origin in this particular
example, because they become invertible in the quotient — this corresponds to the fact that
the origin is the ONLY point of intersection of the two curves, not just an isolated point

of intersection.)

GEOMETRY
IS ALGEBRA:
COHEN-MACAULAY
RINGS

A Noetherian local ring R is called COHEN-MACAULAY if there is a sequence of
elements x1, ..., x4 in the maximal ideal of R such that
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(1) Every element of the sequence is a nonzerodivisor modulo its predecessors (we refer to
elements generating a proper ideal and such that this condition holds as a REGULAR
SEQUENCE).

(2) Every element of the maximal ideal has a power in (z1, ..., zq).

In such a sequence one always has d = dim R. When a local ring has dimension d, there
are always sequences of elements x1, ..., x4 of the maximal ideal such that every element
of the maximal ideal is nilpotent modulo the ideal (z1, ..., z4). Such a sequence is called
a SYSTEM OF PARAMETERS (s.o0.p). One may also say:

A Noetherian local ring is Cohen-Macaulay if and only if some (equivalently, every)
system of parameters is a regular sequence.

A Noetherian ring is COHEN-MACAULAY if all its local rings are. There are lots of
other characterizations. In the N-graded case, R is Cohen-Macaulay if and only if it is
a finitely generated FREE module over a polynomial subring K[uq,...,uq] generated by
homogeneous elements u; (which can be taken of equal degree).

Example 4:

K[z% zy,y% C K[z,y] IS Cohen-Macaulay: it’s free over K[z2,y?] (basis 1, zy).
K[z?, 23 2y,y] C K|z,y] is NOT Cohen-Macaulay. E.g., it has generators 1, 23, zy over
K[x?,y], but these have the relation y(z3) = z?(zy). (At (0,0), 22, y is a s.0.p. but not a
regular sequence.)

But one of the most geometrically significant facts about Cohen-Macaulay rings is the
following:

At an isolated point z of intersection of two COHEN-MACAULAY varieties V, W in
A%, if dim V + dim W = n, then one can find the intersection multiplicity of V' and W
at = by simply killing the defining ideals of both V and W (i.e., all functions that vanish
on one or the other) in the local ring of A% at x, and then the intersection multiplicity is
simply the dimension of the quotient as a vector space over K.

This characterizes Cohen-Macaulay rings!

RINGS OF
INVARIANTS

An ALGEBRAIC GROUP (Zariski closed subgroup of GL(n, K)) is called LINEARLY
REDUCTIVE if every representation is completely reducible. In characteristic zero, these
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include finite groups, products of GL(1, K) (algebraic tori), and semi-simple groups. Over
C such a group is the complexification of compact real Lie group. A key point is that when
a linearly reductive algebraic group acts on a K-algebra R, if R® is the ring of invariants
or fixed ring {r € R : g(r) = r for all ¢ € G} there is a canonical retraction map map
R — R%, called the REYNOLDS OPERATOR, that is R®-linear.

Example 5:

Let G = GL(1,K), act on R = K[z, x2,y1,Yy2] such that if @ € G then a sends each x;
to z;a~" and each y; to ay;. RY = K([z1y1, 21y, Tay1, Taya] = K[ui1, w12, U1, usa]/(A)
where A = det (u;;). Note that R is not a UFD because of the relation w1tz = ti2tsa1.

Example 6:

Let G = GL(1,K), act on R = K[x1,...,%Zr,Y1,...,Ys] such that if a € G then a sends
each z; to w;a~! and each y; to ay;. RY = K[xy; @ i, j] = Kluij]/I2(uij) where (u;;) is
an r x s matrix of indeterminates and the ideal killed is generated by all 2 x 2 minors of

(wig)-

Example 7:

Let G = GL(t,K), let X beanr xt, Y atxsand U an r X s matrix of indeterminates
and let G act on R = K|[x;j, Yk : %, J, h, k] such that A € G sends the entries of X to those
of XA~ and the entries of Y to those of AY. Then RY = K[XY], the ring generated
by the entries of XY over K, and R® = K[u;j : i,5]/I;+1(U), where the ideal killed is
generated by the size ¢ + 1 minors of the matrix U. If t = 1 this is the previous example.

Example 8:

Let G = SL(r,K), let X be an r x n matrix of indeterminates and let G act on R =
K[z;j :i,7] such that A € G sends the entries of X to those of AX. Then RY is the ring
generated over K by the r X r minors of X over K, the homogeneous coordinate ring of a

Grassmann variety. In general, there are certain quadratic relations on these minors.

What subtle property do all these rings have in common?

These rings of invariants are all Cohen-Macaulay!

There are few linearly reductive groups in char. p > 0, so that in a sense this is mainly
a char. 0 theorem. The first proof, in [M. Hochster and J. L. Roberts, Rings of invari-
ants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math.
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13 (1974), 115-175], involved a convoluted reduction to char. p > 0! Later, Boutot,
in [J.-F. Boutot, Singularités rationelles et quotients par les groupes réductifs, Invent.
Math. 88 (1987), 65-68] gave a proof using resolution of singularities and the Grauert-
Riemenschneider vanishing theorem. But the development of tight closure theory, which
systematically exploits char. p methods and obtains results in char. 0 by reduction to char.
p, has provided the simplest proof.

PROPERTIES OF
TIGHT
CLOSURE

TIGHT CLOSURE is an operation on ideals of Noetherian rings containing a field. (It
is also defined on submodules of modules but we largely ignore this here.) It is defined first
in char. p > 0, then for finitely generated algebras over a field of char. 0 by REDUCTION
TO CHARACTERISTIC p and finally for all Noetherian rings containing a field.

(The theory of tight closure was first developed explicitly by M. Hochster and C. Huneke,
although it rests on ideas implicit in earlier work of C. Peskine, L.. Szpiro, and P. Roberts,
as well as earlier work of Hochster and Huneke. The first main paper developing the theory
is [M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briangon-Skoda
theorem, J. Amer. Math. Soc. 3 (1990), 31-116.]

We skip the definition for the moment and focus on some important properties (some
of these are valid in complete generality, while all are valid in considerable generality —
certainly, for domains finitely generated over a field). We first recall that a Noetherian
ring is REGULAR if its local rings are, and a local ring R is regular if its maximal is
generated by dim R elements. When R contains a field this means that R is isomorphic
with a formal power series ring over a field. The local rings of a variety over C are regular
iff it is a smooth analytic manifold. In particular, polynomial rings over a field (or the
integers) are regular.

Let R, S be rings, R — S a homomorphism, and I, J ideals of R. We denote by I* the
tight closure of I.

1
2

(1) I CI* = (I*)* and if I C J then I* C J*.

(2) I*S C ( S)* (PERSISTENCE of tight closure).
(3) If R is regular, every ideal is tightly closed.

(4) If R C S is a module-finite extension, IS N R C I*.
(5)

5) If R is a local domain and z1, ..., x4 is part of a system of parameters, then for each

t the annihilator of z;4; modulo (x1, ..., z) is contained in (21, ..., z)*.
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These basic properties lead to a host of theorems. First: a ring is called WEAKLY
F-REGULAR, (“F” stands for Frobenius here) if every ideal is tightly closed, and F-
REGULAR if this holds for localizations as well. (3) implies that regular rings are F-
regular, and (2) implies that direct summands of F-regular rings are F-regular. But then
(5) implies that (weakly) F-regular rings are Cohen-Macaulay. It follows that direct sum-
mands of regular rings containing a field are Cohen-Macaulay! (This is an open question
in general.) This proves that rings of invariants of reductive groups acting on polynomial
rings are Cohen-Macaulay!

An element x € R is in the INTEGRAL CLOSURE of I C R if for every homomorphism
h : R — V, where V is regular local of dimension at most 1 (a so-called DISCRETE
VALUATION RING or DVR), z € IV. It is immediate from (2) and (3) that the tight
closure of an ideal is in the integral closure — the tight closure is usually much smaller.
For example, in K|[z,y| every ideal is tightly closed but zy is in the integral closure of
(22, y?%). (A necessary and sufficient condition for x to be in the integral closure of I in
a Noetherian domain R is that there exist ¢ # 0 such that cz™ € I™ for arbitrarily large
values of n. In particular, if 2¥ € I* then z is in the integral closure of I, since 1-z*" ¢ T*h

for all h > 1.)

THE
BRIANCON-SKODA
THEOREM

A remarkable theorem proved originally by analytic methods by Briangon and Skoda
in characteristic 0 and by Lipman and Sathaye in general using ideas from duality theory
asserts that in a regular ring of Krull dimension n, the integral closure of the n th power
of an ideal generated by n elements is contained in the original ideal. Moreover, in a local
ring of Krull dimension n, every ideal is contained in the integral closure of an ideal with
at most n generators (assuming the residue field is infinite). Thus, in a regular ring of
dimension n, the integral closure of the nth power of any ideal is contained in the ideal,
since the issue is local. Tight closure yields one of the easiest proofs of this, and provides
a generalization when the ring contains a field: one does not need the ring to be regular,
but the conclusion is that the integral closure of the n th power of an n generator ideal is
contained in the tight closure of the ideal (hence, in the ideal if the ring is regular).

Now, fgh is integral over (f3, g3, h3) in any ring, and so its square is in the ideal if the
ring is regular of dimension 2. I would be very curious to see an elementary proof of this
for the ring K[z, y]. This answers the question raised in (2) of the abstract (and in the
Introduction).



THE
DEFINITION
OF TIGHT CLOSURE

We shall stick with domains. Let R be a Noetherian domain of characteristic p. Then
x is in the tight closure of the ideal I = (uq, ..., us) if there exists ¢ € R\{0} such that
ca?’ € (uil’e, ..,uP")R for all e > 0. If we take p®th roots this says that ¢'/?° € IR/
for all e > 0. In some “formal” sense one can think of ¢'/?° as approaching 1 as e — 0o,
which suggests why one should think of an element x that satisfies this condition as being
“nearly” in I. The magic that underlies this definition is that in characteristic p one has
that the map sending r to P is a ring homomorphism: the Frobenius endomorphism. The
key point:

(z+y)P =" +yP

in rings of char. p.

The definition of tight closure is not easily swallowed in one gulp!

Example 9:

If K is any field of char. p > 0, p # 3, then in R = K[X,Y, Z]/(X3+ Y3+ Z3) = K|[z,y, 2]
one has that 22 € (z,y)*: in fact for any element ¢ € (z,y,2) one has that c¢(2%)?" €
(zP°,yP") for all e > 0. This gives a hint of the char. 0 notion of tight closure: 22 € (z,y)*
in this ring when K has char. 0 because the ring Z[x,y, 2] C K[z,y, 2] and 2?2 is in the
char. p tight closure of (z,y) when one works modulo m for m in a dense open subset of
the maximal ideals of Z (i.e., modulo all sufficiently large prime integers.)

Another immediate application of the properties listed for tight closure is the following;:
recall that if R C S is module-finite and I is an ideal of R, then IS N R C I*. This
implies that if R is weakly F-regular, then every ideal of R is contracted from S, and this
implies that R is a direct summand of S under very mild hypotheses. In particular, regular
rings containing a field are direct summands of their module-finite extensions, which is far
from obvious in characteristic p. (In char. 0 a trace argument shows that rings that are
integrally closed are direct summands of every module-finite extension.)

Oddly, the question of whether regular rings are direct summands is related to inter-
section theory: in the case of rings containing a field, it is equivalent to the following
question (and one can frame a similar question for the case where the ring does not con-
tain a field as well). Fix positive integers n, ¢, and r. Let x = 1, ..., Zn, Yy = Y1, -+ -, Un
and z = 21, ..., 2. be indeterminates. Let X be the variety corresponding to the ring
Klz,y,2]/(f) where f =2t -- -2t =Y yizl™ let Y = V(21,...,7,) C X, and suppose

9



that Z C X is a variety meeting Y only at the origin. Is dim Y + dim Z < dim X7 This
would follow at once if the origin, P, were a smooth point of X, which it is not — this is
like a result mentioned earlier for varieties in A%-. Results like this don’t hold in general
when X is not smooth, and it appears to be very hard to say when they do hold for a
particular P € Y C X, when Z is allowed to vary.

TIGHT CLOSURE
AND BIG
COHEN-MACAULAY
ALGEBRAS

Let R be a local domain of char. p > 0 that is integrally closed in its field of fractions.
Under very mild conditions (excellence) it is known that € I'* in R if and only if R has
a big Cohen-Macaulay algebra S such that x € I.S (this is in [M. Hochster, Solid Closure,
in Contemp. Math. 159 (1994) 103-172.]). It is closely related to a result of Huneke’s
and mine that under mild conditions on R as above the integral closure Rt of R in an
algebraic closure of its fraction field is a big Cohen-Macaulay algebra for R. This is false
in char. 0! Characteristic p is better!

It is an open question whether I* = ITRT N R in general: Karen Smith has shown this
for parameter ideals.

QUESTIONS

(1) Can tight closure theory be extended to rings that do not contain a field, e.g., to
finitely generated Z-algebras?

(2) Is Z[z,y] a direct summand of all of its module-finite extensions?

(3) Does tight closure commute with localization?

OTHER
APPLICATIONS

Some other applications of tight closure and areas where tight closure has made an
appearance that I won’t have time to talk about:

Local homological questions
Phantom homology
Macaulayfication
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Uniform Artin-Rees theorems

Results related to the Kodaira vanishing theorem
Further connections with singularity theory

Rings of differential operators

More on big Cohen-Macaulay modules and algebras
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