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1. Introduction.

Throughout this paper, unless otherwise specified, all rings are commutative, associa-
tive, with identity, and Noetherian, and all modules are unital and finitely generated. In
[HH4] the authors introduced the notion of the tight closure for an ideal or submodule,
both for Noetherian rings of positive prime characteristic p and for finitely generated
algebras over a field of characteristic 0. Expository (or partially expository) accounts

of the theory are given in [HH1-3], [Hul], and [Ho9]. [HHS] contains a detailed study
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of the notion of phantom homology (roughly speaking, homology is phantom when the
cycles are in the tight closure of the boundaries). The theory of tight closure and related
matters are studied further in [HH6], [HH9-11], and in [AHH], [Ab1-3], [FeW], [Gla],
[Sm1-3], [Sw1,2], [Vell,2], [W2] and [Will,2].

The notion of tight closure has sparked the study of rings in which every ideal is
tightly closed, which are called weakly F-reqular rings. A ring is called F-regular if it
and all of its localizations are weakly F-regular.

The theory of tight closure has had a tremendous number of applications, many of
them unexpected. It yields new proofs that rings of invariants of linearly reductive
groups acting on regular rings are Cohen-Macaulay (cf. [HR1-2], [Ke], [B], [HoE] and
[HH4]) and a new perspective on that fact and its generalizations. (Briefly, regular rings
are F-regular, direct summands of F-regular rings are F-regular, and F-regular rings
are Cohen-Macaulay.) It also furnishes a new proof (see [HH4], §5) of the Briancon-
Skoda theorem on integral closures of ideals in regular rings in a greatly strengthened
form in the equicharacteristic case (cf. [BrS], [LS], [LT], and [Sk] for background).
This theory also allows one to prove various local homological theorems (known in the
equicharacteristic case and conjectured in mixed characteristic: cf. [PS1-2, Rol-5, Hol-3,
Hob5-7, EvG1-3, and Du] for further information) in greatly improved forms: see [HH4],
§10 and [HHS8|, §§4-6, where this program is carried out. It is one of the tools utilized
in [Hu3] to prove unexpectedly strong uniform Artin-Rees theorems. Moreover, the
study of tight closure led to the discovery of the Cohen-Macaulay property for absolute
integral closures RT of excellent local domains R in characteristic p (see [HH7] and the

final paragraph of this introduction), and continues to have very interesting interactions
with the study of RT.

Finally, we mention that the theory of tight closure provides a very useful handle on
the problem of controlling what happens when one performs operations, such as colon,
intersection, product and sum, even repeatedly, on ideals generated by monomials in a
system of parameters: in many situations the resulting ideal is contained in the tight
closure of the “formal” or “expected” answer which one would get if the parameters were
actually an R-sequence (or indeterminates). See §7 of [HH4] for a detailed treatment.

The greatest part of this paper is devoted to improving the theory of test elements
(§6) and then applying this improved theory to the study of smooth base change (§7).
To explain our motivation, we first recall the definition of tight closure for ideals in
a Noetherian ring R of positive prime characteristic p. (See §3 for the more general
definition for submodules of a module and for more detail.) Let I C R be an ideal and
let © € R. Then we say that x is in the tight closure I* of I if there exists an element
¢ € R, not in any minimal prime, such that for all sufficiently large integers ¢ of the
form p¢, where e is a nonnegative integer, cx? € Il9, the ideal of R generated by the
qth powers of the elements of I. Notice that ¢ is allowed to depend both on x and I. In
the case where R is reduced (which is the main case for our purposes), one can actually
choose ¢ so that cx? € Il for all ¢ = p¢, e > 0. In many applications one would like
to be able to choose an element ¢, independent of x or I, so that ¢ works in all tight
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closure tests (i.e. x € I* if and only if ca? € I for all ¢ = p¢). For simplicity, we
are not discussing tight closure of modules in detail at this point, but one also wants
the same element ¢ to work in all tight closure tests for modules. Such an element, if
it exists, is called a test element. Furthermore, one wants ¢ to retain this property if
one passes to a local ring of R or even to the completion of that local ring. If ¢ has this
stronger property it is called a completely stable test element. One of the main results
of §6 asserts that if R is reduced and essentially of finite type over an excellent local
ring of characteristic p, then any element ¢ € R not in a minimal prime such that R, is
regular has a power which is a completely stable test element.

In particular, this provides an abundance of test elements for reduced excellent local
rings. We are able to conclude, for example, that if R is locally excellent and weakly
F-regular then R is Cohen-Macaulay. See Theorem 6.27.

We do not know whether every excellent reduced ring of characteristic p has a test
element, even if we assume finite Krull dimension. Some results in low dimension are
given in [Ab2].

One consequence of the theory of test elements obtained here is that if A : R — §
is an arbitrary homomorphism of Noetherian rings of characteristic p, then if S has a
completely stable test element or if R is essentially of finite type over an excellent local
ring, then tight closure is preserved by this base change (for example, if € R is in the
tight closure of I C R, then h(x) is in the tight closure of I5). Previously, in results
of this type we had to make unpleasant technical assumptions to prevent elements used
in tight closure tests in R from mapping into a minimal prime of S. For example, the
results of §4 and §6 of [HHS| are greatly improved by this result.

The very natural seeming results on smooth base change obtained in §7 are highly
dependent on the results of §6. The point is that when one has a homomorphism R — S
it is difficult to compare tight closures over R with those over S unless one has a test
element in R that is also a test element in S. The key point is that when R — 5 is
smooth and ¢ € R is such that R, is regular, then S, is also regular. This enables us
(see Theorem 6.22) to prove the existence of elements of R that are test elements for
both rings.

The theory of test elements has found a surprising application apart from tight closure
in [Hu3], where a very strong uniform Artin-Rees theorem is proved.

A reasonably satisfactory theory concerning the behavior of tight closure under
smooth base change has been obtained in §7. The reader should note that the term
“smooth” here is used for flat homomorphisms R — S of Noetherian rings such that
all fibers are geometrically regular: the term “regular” is often used in the literature
instead. This is equivalent to the usual notion of smoothness when the S is finitely
presented over R. The main results of §7 are summarized at its beginning, in Theorems
7.1, 7.2, 7.3 and 7.4, and the reader may wish to consult them at this point. The prob-
lem of comparing the behavior of tight closure over R and S when one makes a smooth
base change turns out to be extraordinarily difficult, even once one knows that there
are “joint” test elements. This difficulty may already be seen in the fact that we do not



even know whether tight closure commutes with localization in the general case. In §7
we show that, in a strong sense, the difficulty with localization is the only difficulty: see

Theorems 7.1 and 7.18.

Corresponding results on base change for F-rational rings of characteristic p (rings
in which every ideal generated by parameters is tightly closed) are obtained in [Vell,2].
It is also worth noting that in [Sm1,2], [Vell,2], and in [HH11] a notion of “test element
for parameter ideals” is considered.

When R has a test element, the ideal 7(R) generated by the test elements has turned
out to be a very interesting invariant of R (all the elements of 7(R) not in a minimal
prime are test elements). We are able to prove some results about the behavior of 7(R)
under certain kinds of base change for complete local rings: see, for example, Theorems
7.2 and 7.36. (The ideal 7(R) is defined whether R has a test element or not: see
Definition (3.7) and Proposition (3.8) further details.)

One of the main results of [HH9] asserts that if R is a locally excellent Gorenstein
ring of positive prime characteristic, then R is F-regular if and only if R is a direct
summand of every module-finite extension ring. (The latter condition is studied in [Ma)]
and in [Hol].) We want to point out that this result is highly dependent on Corollary
7.34 established here, whose proof, in turn, requires most of what comes prior to it in
66 and §7 of this paper.

One of the most persistently frustrating aspects of the theory of tight closure has
been the problem of proving results on when tight closure commutes with localization,
i.e., given N C M and a multiplicative system W, when does W1 (N*) = (W~ N)*.
In [AHH] we use the results of this paper to prove partial results in this direction under
various hypotheses: one is when M = R and N is an ideal generated by a part of a
system of parameters or by monomials in parameters. Another is for the case of ideals
(or modules) expanded from a regular ring to a module-finite extension ring. A third is
for pairs of modules N C M such that M /N has a finite phantom projective resolution
in the sense of [Abl]. The reader is referred to [AHH] for further information. In each
instance certain additional hypotheses are needed that we shall not discuss in detail
here.

What we do want to emphasize at this point is that in all these cases the arguments
depend heavily on assuming that the base ring possesses a test element of some sort.
Moreover, once a localization result is established, Theorem 7.18 immediately implies
that there is a corresponding result for arbitrary smooth base change.

The paper is organized as follows: §2 contains certain conventions for notation and
terminology, and §3 reviews briefly some definitions and facts that we need from [HH4].
In §4 we discuss issues connected with tight closure and F-regularity in the case of
Gorenstein rings, as well as the notion of F-rationality (which means that parameter
ideals, which are defined in the third paragraph of §2, are tightly closed; see also [FeW]).
It is an open question whether, for finitely generated algebras over a field of characteristic
zero, F-rationality is equivalent to having rational singularities. In the Gorenstein case,
F-rational, weakly F-regular, and F-regular are all equivalent.



In §5 we review, in a strengthened form, some results about strong F-regularity and
test elements that were obtained in [HH3] in the case where the Frobenius endomorphism
is a finite morphism, and that are needed for our new study of test elements in §6.

As already mentioned, §7 contains the main results on smooth base change.

In §8 we give a proof that if K is a field of characteristic p of infinite transcendence
degree over its prime field and R is a finitely generated K-algebra that is weakly F-
regular, then R is F-regular. We are indebted to M. P. Murthy who showed us how to
prove this in the case where K is uncountable, and suggested that it ought to be true
under the weaker assumption given above. We also want to thank Murthy for pointing
out an error in an earlier version of this paper.

This paper deals exclusively with tight closure theory in characteristic p. The char-
acteristic 0 theory will be pursued in [HH10].

We conclude this introduction by mentioning one more result which gives a different
perspective on tight closure. The authors have recently shown (see [HH7]; [HH5] and
[Hu2] give expository accounts) that if R is an excellent local domain of characteristic
p, then the integral closure RT of R in an algebraic closure of the fraction field of R
(which is called the absolute integral closure of R) is a big Cohen-Macaulay algebra for
R. The results of [HH9] imply that if I is an ideal of R then IRT™ N R C I*. So far as
the authors know, it is possible that I* = IR N R in very great generality. In fact, for
locally excellent domains R, it is true that if for every prime ideal P containing I the
ideal IRp in Rp is generated by part of a system of parameters, then I* = IRT N R.
The general case is proved in [Sm1,2]. (The special case where the number of generators
is at most three is done in [HH11].) One can, in any case, define a closure operation
(call it, for the moment, R*-closure) using contracted expansions from R*. Each of the
two kinds of closure suggests properties that the other kind ought to have, and this has
been very useful to us in developing the theory. If the two kinds of closure do turn out
to be different, then there ought to be a body of results for RT-closure that parallels
what is done here for tight closure.

2. Notation and conventions.

In any commutative ring R, R° denotes the complement of the union of the set of
minimal primes. Thus, if R is a domain, R° = R — {0}.

By a local ring (R, m, ) we mean a Noetherian ring R with a unique maximal ideal
m such that ' = R/m is the residue field.

A parameter in a Noetherian ring R is an element of R°. A sequence of elements

T1,...,xy 18 called a sequence of parameters if their images form part of a system
of parameters in every local ring Rp of R at a prime ideal P containing the ideal
I=(21,...,2,)R. In this case we refer to I as an ideal generated by parameters or as

a parameter ideal.

Throughout, p always denotes a positive prime integer. We make the following con-
ventions for discussing rings of positive prime characteristic p. We shall use e to denote
a variable element of the set N of nonnegative integers and ¢ for a variable element of
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the set {p® : e € N}. Thus, “for all €” is synonymous with “for all ¢ € N” while “for
some ¢” is synonymous with “for some ¢ of the form p® with ¢ € N”.

We denote by F or Fr the Frobenius endomorphism of a ring R of characteristic p,
and we denote by F¢ the ¢! iteration of F, so that F¢(r) = r¢ where ¢ = p¢. If R is
a reduced ring of characteristic p we write R'/¢ for the ring obtained by adjoining ¢**
roots of all elements of R. The inclusion map R C R'/¢ is isomorphic with F¢: R — R.
We write R™> for Uqu/q. The ring R™ is a chronic exception to the rule that given
rings are assumed to be Noetherian.

If I C Rand ¢ = p, then Il denotes the ideal (i : i € I)R, which is also the
expansion F(I)R of I under the Frobenius map F': R — R. Note that if T denotes a
set of generators for R, then {t7:t € T} generates T4,

We shall make considerable use of the Peskine-Szpiro functors F;, = F¢, where R has
characteristic p and e € N. For any R-algebra S, S®r_ gives a functor from R-modules
to S-modules which takes finitely generated R-modules to finitely generated S-modules.
When S is R itself viewed as an R-algebra via F¢, the e!” iteration of the Frobenius
endomorphism, we refer to this functor as the Peskine-Szpiro or Frobenius functor: see
[PS1]. Thus, F* is a covariant functor from R-modules to R-modules that preserves
finite generation. Note that F¢(R) = R, that F¢(R") =2 R" (not canonically), and
that if we apply F° to a map R" — R™ with matrix (a;;) we obtain a map R" — R™
with matrix (a?j), where ¢ = p°. The R-module structure on F¢(M) is such that
r'(r @m) = (r'r) @ m. On the other hand, ' @ (rm) = (r'r?) ® m. Observe also that
Fe(R/I) = R/I where q = p°.

There is a canonical map M — F¢(M) that sends m to 1 @m. If ¢ = p® and w € M,
we write w? for the image of w in F¢(M). With this notation, (z 4 y)? = ¢ + y?
and (rz)? = r?z%. Moreover, F°(R™) may be identified with R” in such a way that if
w = (ar,...,a,) then w? = (af,... a?). Thus, this notation for modules is consistent
with our notation for the Frobenius endomorphism of R.

If N C M, we shall write N4 (or, more precisely, N][&]) for Im(F*(N) — F¢(M))(=
Ker(F(M) — F¢(M/N)) by the right exactness of @). We may also characterize N1
as the R-span in M of the elements w? for w € N. Of course, N4 depends heavily on

what M is (or, more precisely, on what N — M is). Note that M][\Z] = F¢(M), and we
sometimes write M4 for F¢(M). The context should make clear what is meant.

Note that if M = R and N = I C R, then Igg] in this notation is the same as what
was earlier described as I19.

3. Tight closure and test elements.

In this section we give some basic definitions and results from [HH4] that are needed
throughout. All rings are assumed to be Noetherian, of characteristic p, and the con-
ventions of §2 apply.

(3.1) Definition. Let N C M be finitely generated R-modules. We say that w € M 1s
in the tight closure N* (or, more precisely, Ny,;) of N in M if there exists an element
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¢ € R° (see §2) such that for all sufficiently large ¢ = p°, cw? € N][\Z]. In particular,
when N =1 C R, w € I* means that cw? € Il for all sufficiently large q.

It is easy to check that the image of Ny,;/N in M/N is the same as the tight closure
of the submodule 0 in M /N. This enables one to reduce many problems to studying the
tight closure of the zero submodule. On the other hand, one can move in the opposite
direction by mapping a finitely generated free module G onto M, letting H be the
inverse image of N in G, and studying H* in G: H*/H = N*/N under the obvious
identification G/H = M/N.

(3.2) Definition. A ring R is called weakly F-reqular if every ideal is tightly closed.
R is called F-reqular of W'R is weakly F-reqular for every multiplicative system W in

R (equivalently, if Rp is weakly F-reqular for every prime ideal P of R). See Remark
(8.4) of [HHA4].

We do not know whether tight closure commutes with localization, nor even whether
weakly F-regular implies F-regular. Proposition 3.3 and Theorem 3.4 contain partial
information about what we do know that will be needed repeatedly in the body of the

paper.

(3.3) Theorem. Let R be a Noetherian ring of characteristic p and let N C M be
R-modules.

a) N* is a submodule of M containing N and (N*)* = N*. If Ny C Ny C M, then
Nf CN;.

b) (Irrelevance of nilpotents.) If J is the nilradical of R, then JM C N*. Moreover,
if N' denotes the inverse image (N + JM)/JM of N in M/JM, then N* is the
inverse image i M of the tight closure N'* of N' in M/JM, where N'* may be
computed over either R or R,.q.

¢) If R is reduced or if Anng(M/N) has positive height, then x € M is in N* if and
only if there exists ¢ € R° such that cx? € N][&] for all ¢ = p°.

Proof. See [HH4], Proposition 8.5, parts (a), (b), (¢), (e), and (j). O

(3.4) Theorem. Let R be a Noetherian ring of characteristic p.

a) If R is weakly F-reqular, then every submodule of every finitely generated R-module
18 tightly closed.

b) R is weakly F-reqular if and only if its localization at every mazimal ideal is weakly
F-regular.

¢) If R is weakly F-regular then R is normal. If R is weakly F-reqular and is homo-
morphic image of a Cohen-Macaulay ring, then R is Cohen-Macaulay.

d) A regular ring is F-regular.

Proof. All references in this paragraph are to [HH4]. Part a) follows from Proposition
8.7 and b) is Corollary 4.15. Part c¢) now follows from Theorem 7.15 a) applied to a
local ring S of R at a maximal ideal: S will be equidimensional (since it is normal),
parameters are then automatically permutable (since the local ring is catenary and



equidimensional), and so if xy,...,2, is a system of parameters for S we have that
(x1,...,2;)S 15 3415 € ((21,...,2:)S)* (by Theorem 7.15 (a)) = (21,...,2;)S (since
is weakly F-regular). Finally, d) is Theorem 4.6 (it is easily deduced from the flatness
of the Frobenius endomorphism of a characteristic p regular ring [Kul]). O

We also recall the notions of test element and weak test element.

(3.5) Definition. Let R be a Noetherian ring of characteristic p and let ¢’ = e for
some integer ¢ € N. We say that ¢ € R° 1s a ¢'-weak test element if for every finitely
generated R-module M and every submodule N C M, an element v € M s in Ny, of

and only if cx? € N][&] for all ¢ > ¢'.

We say that ¢ is a locally (respectively, completely) stable ¢'-weak test element if
its image in (respectively, in the completion of) every local ring of R is a ¢'-weak test
element.

If ¢ is a ¢'-weak test element for ¢’ = 1 then ¢ is called a test element. Corresponding
terminology is used in the locally stable and completely stable cases.

(3.6) Proposition. Let R be a local ring of characteristic p.
a) If ¢ € R is a ¢'-weak test element for R, then ¢ is a ¢'-weak test element for R.

b) If R is a weakly F-reqular and has a completely stable weak test element ¢, then R
18 weakly F-reqular.

Proof. Part a) follows from Proposition 8.13, part (¢) of [HH4]. For b), note that by
Proposition 4.16 of [HH4] it suffices to check that ideals primary to the maximal ideal
are tightly closed in R, and this is immediate from Proposition (6.1) (¢). O

Notice that part a) implies that a completely stable test element is locally stable.
We next define an invariant ideal 7(R) which, when R has a test element, turns out
to be the ideal generated by the test elements.

(3.7) Definition. Let R be a Noetherian ring of characteristic p. Define 7(R) =
Nar Anng(0%,), where M runs through all finitely generated R-modules.

(3.8) Proposition. Let R be a Noetherian ring of characteristic p.
a) If ¢ € R, then ¢ € 7(R) if and only if whenever N C M are finitely generated

R-modules and x € Nj; then cx? € N][&] for all q.

b) R has a test element if and only if T7(R) is not contained in any minimal prime of
R. In this case, T(R) is the ideal generated by the test elements, and 7(R) N R° s
the set of test elements.

Proof. This is Proposition (8.23), parts (a) and (b), of [HH4]. O



4. Gorenstein rings and F-rational rings.

(4.1) Definition. A Noetherian ring of characteristic p is called F-rational if every
ideal generated by parameters (see the third paragraph of §2) is tightly closed.

This terminology is introduced in [FeW]: the motivation is that if one makes the
same definition for algebras of finite type over a field of characteristic 0, there are no
known examples which distinguish between F-rational rings and rings with rational
singularities. It is shown in [Sm1,3] that, under mild hypotheses, an F-rational ring
of characteristic p has pseudo-rational singularities in the sense of Lipman and Teissier
[LT] and that for affine algebras over a field of characteristic zero, those of F-rational
type have rational singularities. (The algebra S has F-rational type if there is a finitely
generated algebra R over a finitely generated domain of characteristic zero A over the
integers such that the closed fibers of A — R are F-rational and S =2 K @4 R for some
field K containing A.) See also [Ab3], [Vell,2].

A number of results in this section may also be found, in a slightly different form, in

[FeW].

(4.2) Theorem. For Noetherian rings of characteristic p the following hold.

a) A weakly F-regular ring is F-rational.

b) An F-rational ring is normal.

¢) An F-rational ring which is a homomorphic image of a Cohen-Macaulay ring is
Cohen-Macaulay.

d) A local ring (R, m) which is a homomorphic image of a Cohen-Macaulay ring is
F-rational if and only if it 15 equidimensional and the ideal generated by one system
of parameters s tightly closed.

e) A homomorphic image of a Cohen-Macaulay ring is F-rational if and only if its
localization at every mazimal ideal 1s F-rational.

f) A localization of an F-rational ring which is a homomorphic image of a Cohen-
Macaulay ring 1s F-rational. In particular, a localization of a weakly F-reqular ring
which 1s a homomorphic image of a Cohen-Macaulay ring 1s Cohen-Macaulay.

g) A Gorenstein ring is weakly F-reqular if and only if it is F-rational.

h) If (R,m) is a local ring which is a homomorphic image of a Cohen-Macaulay ring
and x € m 1s a nonzerodivisor such that R/xR is F-rational, then R is F-rational.

Before proving this, we establish Theorem (4.3) below. (At this point we want to
note a correction to Lemma (7.10) of [HH4]. In the statement of (7.10) it should have
been assumed that all minimal primes of () have the same height. This is the case
in the situation where (7.10) is used (the middle of the second paragraph on p. 65 of
[HH4]). We mention this here since Theorem (7.9) of [HH4] is used in proving part d)
of Theorem (4.3) below.) Cf. Proposition (6.28) for a global version of (4.3d) below.

(4.3) Theorem. Let (R,m) be an equidimensional local Noetherian ring of character-
istic p which 1s a homomorphic image of a Cohen-Macaulay ring and let x1,...,2q4 € m
be part of system of parameters.



a) If the ideal (x1,...,24)R s tightly closed then so is the ideal (xy,...,2;)R for

0<:<d.
b) If either the ideal (x1,...,24)R or the ideal (x1,...,x49-1)R s tightly closed then
T1,...,xq 18 a reqular sequence in R.

¢) If d = dim R and either of the ideals (x1,...,24)R or (x1,...,24-1)R is tightly
closed, then R 1s Cohen-Macaulay.
d) If J = (a1,... ,xq—1)R then J* :p 24R = J*.

Moreover, if d = n = dim R and if (x1,...,2,)R 1s tightly closed, then so is every
wdeal generated by part of a system of parameters: i.e., R is F-rational.

Proof. We first prove d). Let u € J* :p z4R. Then z4u € J* and so there exists
co € R° such that co(xqu)? € JW for all large ¢. Thus, for all large ¢, we have that
cout € Jl p 2R = (2f,...,25_ )R :g 2)R. Let ¢ € R° and ¢ (a power of p) be
as in the last statement of Theorem (7.9) of [HH4]. Then we have that for all large
q, c(couq)q/ € (J[q])[ql], ie., (ccg/)uqql € J4T and this shows that u € J*. The other
inclusion is obvious, and so d) is established.

The proof of a) reduces, by reverse induction on ¢, to the case where d > 1 and
i = d—1. Let u be any element in the tight closure of J = (#1,...,24—1)R. Then
u € (J 4+ xqR)* = J+ xqR by hypothesis, say v = j + x4r. It follows that v — 5 €
J*+J=J"andsor € J*:p x4R = J* by part d), which we proved just above. Thus,
J* = J+ x4J%, and the fact that J* = J now follows from Nakayama’s lemma.

To see b), note that the ideal J; = (21,...,2;)R is tightly closed for 0 < ¢ < d —1
in either case. But, again by part d), this implies that z;4; is not a zerodivisor modulo
Jifor 0 <i <d-—1,since J; :gp xiy1 = JF :r xig1 = JF (by part d)) = J;. Part ¢) is
immediate from b).

Let x1,...,2, € R and y1,...,yn € R be two systems of parameters for R and
suppose that (z1,...,2,)R is tightly closed. To show that (yi1,...,y;)R is tightly
closed, it will suffice to show that (yi,...,yn)R is tightly closed. But H"(R) =
h_r)ntR/(:Jc’i, = liriltR/(yf, ...,yt) where the map from the term indexed by t

to that indexed by t + 1 is induced by multiplication by xy---x, (respectively, by
Y1+ Yn) and is injective. Thus, R/(y1,...,yn) injects into R/(z},..., 2L for any suf-
ficiently large t. To show that (y1,...,yn)R is tightly closed in R, it suffices to show
that 0 is tightly closed in R/(y1,...,yn)R, and, hence, to show that 0 is tightly closed
in R/(z%,..., 2L )R. Thus, we have reduced to the case where y; = .

We can complete the argument by showing that if (xy,...,2,)R is tightly closed
then so is (z,...,2L)R for every t. But if the latter were not tightly closed then some
element representing a socle element from R/(z!,..., z! )R must be in its tight closure,
and this element will have the form (z1---2,)""'u, where u represents an element of
the socle in R/(x1,...,2,). But then ¢ ((:1;1 » -:L'n)t_lu)q € ((«,... ,xfl)R)[q] implies
that

cul € (l‘gt, oy @R g (2 a2 = (2), . 20)R
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(since the z; are a regular sequence), and so, if this holds for all ¢ > 0, then u is in the
tight closure of (x1,...,2,)R, a contradiction. [

(4.4) Remark. More generally, the argument shows that if R is Noetherian of char-

acteristic p and xy,...,24 is a sequence of elements such that I = (ay,...,24-1)R or
(x1,...,24)R is tightly closed, then the sequence is an R-sequence provided we know
that:
1) (w1,...,2i))R)* :p 2ip1 R C ((21,...,2;)R)* for relevant values of 7,

and

ii) Nakayama’s lemma can be applied.

There are many variant situations in which i) holds. See, for example, Proposition

6.28.

Proof of (4.2). a) is immediate from the definitions. b) follows by the same argu-
ment used to prove that weakly F-regular rings are normal: see (5.10) and (5.11)
of [HH4]. Similarly, ¢) follows from the same argument used to prove that weakly
F-regular rings are Cohen-Macaulay: note that b) implies that the ring is normal
and so locally equidimensional. (Any ideal of height n contains a sequence of ele-
ments x1,...,2, such that for 1 < ¢ < n, xy,...,2; consists of parameters. Then
(x1,...,2i—1)R :gp ©;R C ((21,...,2;-1)R)* by Theorem 7.15 of [HH4] and this ideal
is equal to (21,...,2;—1)R by the definition of F-rationality.)

The second condition in d) is obviously necessary, and it is sufficient by Theorem
(4.3).

To prove e) first suppose that R, is F-rational for every maximal ideal m. Suppose
that (21,...,2,)R has height n in R and that y is in its tight closure but not in the
ideal. Then all this can be preserved while localizing at a suitable maximal ideal, giving
a contradiction. Thus, R is F-rational.

Now suppose that R is F-rational, and let P be any prime ideal of R. Choose
T1,...,2, € P to be an R-sequence, where n is the height of P (which is the same as
the depth of R on P). The images x1/1,...,2,/1 in Rp will be a system of parameters.
If we can show that the ideal (x1/1,...,2,/1)Rp is tightly closed in Rp, it will follow
from (4.3) that Rp is F-rational. This follows from Theorem 4.5 below.

It now follows that R is F-rational iff all its localizations at primes are, and this
implies that every localization of R is F-rational.

We next consider g). If R is Gorenstein, both its F-rationality and weak F-regularity
can be checked locally at maximal ideals. We need only show that if (R, m) is local
Gorenstein and every system of parameters generates a tightly closed ideal, then every
ideal is tightly closed. It suffices to prove this for m-primary ideals. But if I is m-
primary R/I can be embedded in a finite direct sum of copies of the injective hull of
K = R/m, and each of these can be replaced by a copy of R/(z!,...,z%) for sufficiently
large ¢t (where x1,..., 2, is any fixed system of parameters). Since 0 is tightly closed in
each R/(x%,... z%), this is also true in the direct sum and hence in every submodule
of the direct sum.
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Finally, we consider h). Since R/xR is a homomorphic image of a Cohen-Macaulay
ring and is F-rational, it is C-M. Hence, R is C-M and so equidimensional. Extend z to
a system of parameters x, x1,...,24 for R. Tt will suffice to show that these elements
generate a tightly closed ideal. Suppose ¢ € R® and cu? € (z%,23,...,2%)R for all
g > 0. Write ¢ = dx' where d is not in zR. Note that zR is a prime ideal and that d
represents a nonzero element of the domain R/zR. If cu? € (2%, 23,...,2%)R and ¢ > t
we have du? € (247", 21, ... 29)R for ¢ > 0 and reducing modulo Rz we obtain that
the image of u is in the tight closure in R/xR of (xa,...,24)(R/xR). It follows that

the image of v is in this ideal and so w is in the ideal (z,29,...,24)R. O

As mentioned in the Introduction, the next result is generalized to parameter ideals
(and in other directions) in [AHH]. However, these generalizations require some assump-
tions on the ring (such as the existence of test elements) that are not needed in case the
elements from a regular sequence.

(4.5) Theorem. Let R be a Noetherian ring of characteristic p and let xy,...,x, be
an R-sequence. Let S be a multiplicative system and let I = (x1,...,2,)R. Then
I*S™'R = (IST'R)*. In particular, if I tightly closed, then ISR is tightly closed.

Before giving the proof, we prove the following:

(4.6) Lemma. Let I be an ideal of an arbitrary Noetherian ring R and let S C R be a
multiplicative system.
a) There is an element s € S such that UyesI™ g w = 1" :g ™ for all m € N.
b) Suppose that R has characteristic p and I is generated by a reqular sequence xy,..., 2.
Then with s as in part a), Uwes Il :w = T4 s(n+D4 for 411 g = pe.

Proof. a)is well known but we sketch a brief argument. Choose s such that, if T' = ¢grr R,
then Annps = Annp ws for all w € S. Suppose w kills v modulo I, and v € I" but
u & I"™, r < m. Then su is in I""!. Repeating this argument m times shows that
sy is in I™.

We now consider b). Fix ¢ and an element u € I - 2w for some w € S. We shall
prove by induction on h € N that dj = s9t "y € 19 4 197" This will suffice, for when
h = gn this yields s("tD4y e [ld 4 1et»+1) C 114 when I has n generators.

If h = 0 we are simply asserting that s%u € I 4+ I = J9, and this follows from the
property of s in part a).

Now suppose that we have established that dj € I9 + 9" for a given h > 0. Say
dp = S;riax!4+3,r, 2" where v runs through n-tuples of nonnegative integers (v1, ..., vy)
such that every v; < ¢ and the sum of the v; is ¢+ h. Some w € S multiplies this element
into I'Y, giving an equation:

12 !
Yirie! = Siwrie! + g wryz” or S;a;x! + S,wr,x” =0,
v

where a; = wrl —ri’. Since the z; form a regular sequence and none of the monomials
occurring is formally in the ideal generated by the others, each wr, must be in I. But
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then sr, is in [ for each v, and so dp41 = sdj = Zisrgx? + ¥, sr,z? : the first term is
in 719, while the second is in T9H(h+D O

We note that in part b) it is not necessary to assume characteristic p nor to assume
that ¢ is a prime power, if one agrees that Il9 simply denotes (x1,...,29)R. However,

Il then depends on the choice of generators for I, not just on what I itself is.

Proof of (4.5). We note that I*S™'R C (IST'R)* for any ideal I. The hard part is to
show that (IST'R)* C I*S~!'R. If not, we can choose an element u/1 in (IS~'R)* but
not in I*S™'R.

Now the statement that u/1 € (IS™'R)* means that for some ¢ € R° and for all
q > 0 we can choose 5(q) € S such that s(q)cu? € I9. (A priori, we only know that ¢ is
not in any minimal prime of R disjoint from S. However, we can modify ¢ by adding to
it an element in all the minimal primes of R which meet S and precisely those minimal
primes not meeting S to which ¢ does not belong, and then raising the sum to a power.
The element we are adding is nilpotent when mapped to S™'R.)

With s as in (4.6a) we then have that s("TD4cy? = ¢(s"t'u)? € T4, and then
s" Ty € I*) so that u/1 € T*S™!'R. This completes the proof for (4.5) and, at last, for
(4.2)). O

We obtain some important corollaries by specializing to the case where the ring is
Gorenstein.

(4.7) Corollary. Let R be a Noetherian ring of characteristic p and suppose that R is
Gorenstein.
a) R 1s F-rational if and only if R is weakly F-reqular if and only if R is F-regular.
b) If (R,m) is local, then R is F-regular if and only if the ideal generated by a single
system of parameters s tightly closed.
¢) If (R,m) is local, © is a nonzerodivisor in R, and R/xR is F-reqular, then R is
F-regular.

Proof. a) follows because the property of being Gorenstein and F-rational is preserved
by localization. b) and ¢) are immediate from a) and (4.2). O

(4.8) Remark. F-regular Gorenstein rings have a number of good properties that dis-
tinguish them from other F-regular rings—at least in terms of what we can prove about
them. In the next section we shall see that if R is a reduced Noetherian ring of charac-
teristic p such that R'/? is module-finite over R, and R is a weakly F-regular Gorenstein
ring, then R is strongly F-regular in the sense defined in that section. In [HH9] we show
that a characteristic p Gorenstein ring is F-regular if and only if it is a direct summand,
as a module over itself, of every module-finite extension ring.

Finally, we note:
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(4.9) Proposition. Let R be a weakly F-regular ring that is a homomorphic image of
Cohen-Macaulay ring. Suppose that Rp 1s Gorenstein for every prime P which is not
mazimal. Then R s F-reqular.

Proof. The localization of R at every maximal ideal is weakly F-regular. It suffices to
show that the localization at every nonmaximal prime P is weakly F-regular. But Rp
is Gorenstein and F-rational, and so F-regular. [

(4.10) Remark. By results of Watanabe there exist two dimensional normal (hence,
Cohen-Macaulay) domains R finitely generated over a field such that 1) R is F-rational
but not F-regular (nor even F-pure) (see [W1]) and such that 2) R is F-rational and
F-pure but not weakly F-regular (see [W2]). The example in 2) is not Gorenstein (F-
rational Gorenstein rings are F-regular). These examples are also discussed in some

detail in §7 of [HH9].

5. Strongly F-regular rings and test elements.

In this section we survey the characteristics of a property of rings of characteristic
p that is, on the face of it, stronger than F-regularity but that may be equivalent to
it, or even to weak F-regularity (there is evidence of this in low dimension in [Will,2]).
This property, strong F-regularity, is only defined for reduced rings R such that R'/? is
module-finite over R: since the latter condition is satisfied by finitely generated algebras
over a perfect field K and by complete local rings R with perfect residue class field K
(in fact, in both cases, one only needs that K'/? he finite over K), it is not unduly
restrictive.

Throughout the rest of this section, unless otherwise specified, R denotes a reduced
Noetherian ring of positive prime characteristic p such that R'/? is module-finite over
R (although we often repeat this hypothesis in stating theorems). Of course, R4 ig
then module-finite over R for all ¢ = p®. For the most part, we are summarizing the
results of §3 of [HH3], and so most proofs are omitted. We should note two points: first,
in many instances, the rings in [HH3| were assumed to be domains, when, in fact, it is
only necessary to assume that the ring be reduced. Second, the result on test elements
in Theorem 5.10, which is quite critical in obtaining the results of §6, is strengthened
from what is asserted in [HH3|, Theorem 3.4, in three ways:

1) One shows that the elements ¢ discussed are test elements for modules, not just for
ideals.

ii) One can conclude that ¢ is in 7(R) whether or not ¢ is in R°: thus, there is no need
to assume the ¢ € R°.

iii) R need only be reduced, not necessarily a domain.

However, the proof is omitted, except for some brief remarks, since it is the same as

that given for Theorem 3.4 of [HH3|.



15

(5.1) Definition. We say that a reduced Noetherian ring R such that R'/P is module-
finite over R 1s strongly F-reqular if for every ¢ € R® there exists q such that the R-linear
map R — R that sends 1 to ¢'/? splits as a map of R-modules, i.e., iff Re'/4 C R'/4
splits over R.

(5.2) Discussion. In rings that are not reduced we impose the condition that R IR
be module-finite instead (an equivalent condition is that R be module-finite over its
subring F(R) = R? = {r? : r € R}). (Rings satisfying this condition are sometimes
called “F-finite.”) However, the splitting condition we are studying implies that R is
reduced. So long as we are focusing on this condition, we might as well work with the
isomorphic inclusion map R — R'/P.

(5.3) Remark. Suppose that R is reduced and that we do not know that R'/P is module-
finite over R. Parts of the theory developed below generalize if we change the definition
of “strong F-regularity” to the statement that for every ¢ € R° there exists ¢ such that
the R-linear map R — R'/¢ which sends 1 to ¢'/? is pure as a map of R-modules (a
map is pure if it is injective and remains so after tensoring with any third R-module).
But we have chosen not to pursue this idea in detail at present.

A different generalization, “strong F-rationality” is studied in [Vell,2].

(5.4) Remarks. a) The issue of whether a homomorphism of finitely generated modules
over a Noetherian ring splits is local and is unaffected by a faithfully flat extension of
the base ring (since the question can be translated into whether a certain map of Hom’s
is onto: see [Hol]).

b) f R C S and f: R — M is split by g, where M is an S-module, then R C S
splits: send s to g(sf(1))).

¢) In the definition above, if a splitting exists for one choice of ¢ € R° and ¢ then
R C RV splits for every ¢'. (It suffices to split R C RY? and hence R C R'?: now
use b).

d) Note also that if R — R4 sending 1 to ¢'/? splits for one choice of ¢, the map
R — RV sending 1 to M splits for every ¢/ > ¢: the map R — R4 described is
isomorphic to the map RY/4 — R4 sending 1 to ¢'/7 and so that map splits over
Rq/ql, and this splitting may be composed with R-splitting R C R1/7" whose existence
we showed in ¢).

The following result exhibits a number of the good properties of strong F-regularity.

(5.5) Theorem. Let R be a reduced Noetherian ring of characteristic p such that R'/?
18 module-finite over R.
a) R is strongly F-reqular iff Rp is strongly F-regular for every prime (respectively,
for every mazimal) ideal P of R. Hence, if R is strongly F-regular, so is W™'R
for every multiplicative system W.
b) If S is faithfully flat over R and strongly F-regular then so is R.
¢) If R is regular, then R is strongly F-reqular.
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d) If R s strongly F-reqular, then R is F-reqular. In particular, R is normal, and
18 a finite product of domains, each of which 1s strongly F-reqular. Conversely, a
finite product of strongly F-reqular rings 1s strongly F reqular.

e) If R’ is strongly F-reqular and R is a direct summand of R' as an R-module, then
R is strongly F-regular. In particular, a direct summand (as a module over itself)
of a reqular ring 1s strongly F-reqular.

f) If R 1s weakly F-regular and Gorenstein, then R is strongly F-regular.

Proof. The argument is essentially the same as the proof of Proposition 3.1 of [HH3],
and is omitted. O

In [Will,2] it is shown that a reduced weakly F-regular ring R of dimension at most
three such that R'/? is module-finite over R is strongly F-regular.

(5.6) Remark. The argument for part f) in [HH3] actually shows again that a Goren-
stein local ring is strongly F-regular provided the ideal generated by a single system of
parameters is tightly closed. We have already seen (§4) that a Gorenstein local ring is
F-regular (not just weakly F-regular) if the ideal generated by one system of parameters
is tightly closed: it is not necessary that R'/? be module-finite over R.

(5.7) Remark. When R'/P is module-finite over the reduced ring R we can always
choose ¢ € R° such that (Rl/p)c o (Rc)l/p is free over R, : for such a ¢, R, is regular
and, hence, strongly F-regular.

(5.8) Remark. Suppose that R'/? is module-finite over the reduced ring R and that
¢ € R° is such that R, is strongly F-regular. Then for every d € R’ there is an integer
g = p°, an integer t > 0 and an R-linear map R'/¢ — R that sends d'/¢ to ¢!. To see
this, choose ¢ sufficiently large that there is an R.-linear map ¢ : (Rl/q)c — R, such
that g(d'/?) = 1. Since R'/? is module-finite over R, ¢'g(R'/?) C R for sufficiently
large ¢, and then c'g, restricted to R'/¢, has the required property. Notice that we may
replace t by any larger integer: in particular, we may assume that it is a power of p.

(5.9) Theorem. Let R be a reduced Noetherian ring of characteristic p such that R'/?
18 module-finite over R.

a) Let ¢ be any element of R® such that R. is strongly F-regular (such elements always
exist). Then R is strongly F-reqular if and only if there exists ¢ = p® such that the
R-module inclusion Re'/t C R splits over R.

b) The set {P € Spec R : Rp is strongly F-regular} is Zariski open in Spec R.

Proof. The argument is the same as for Theorem 3.3 of [HH3]. O

The constructions of test elements given in [HH4] provide only a very limited class.
One of the pleasant consequences of the theory of strong F-regularity is that one can
use it to show that every R such that R'/? is module-finite over R has a test element
and, in fact, an abundance of test elements: every element in the ideal which defines
the locus of primes P where Rp is not strongly F-regular has a power which is a test
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element. In particular, in the case of an isolated local singularity, there is a power of
the maximal ideal all of whose elements that are in R° are test elements. This follows
from:

(5.10) Theorem. Let R be a reduced Noetherian ring of characteristic p such that
RY? is module-finite over R. Then every element ¢/ such that Re is strongly F-reqular
has a power ¢ which is i T(R) (which in this case is the ideal generated by the test
elements). One can always choose such an element ¢’ such that ¢’ € R° and R. s
reqular.

More precisely, ¢’ has a power ¢ such that there is an R-linear map h of R'/? to R
which sends 1 to ¢, and for ¢ € R® with this property such that R, is strongly F-regqular,
e isin T(R).

What 1s more, if ¢ has the properties that R. is reqular and that there s an R-linear
map h of R'? to R that sends 1 to ¢, then this situation is preserved when one takes
the image of ¢ in either a local ring S of R or in the completion of S. It follows that
every element ¢’ € R° such that R. is reqular has a power ¢ such that ¢ is a completely
stable test element for R.

Proof. The proof of the first assertion in the second paragraph is the same as for the
corresponding statement in the proof of Theorem 3.4 in [HH3]. In order to check that
c3 is a test element it suffices to consider the case of pairs of modules N C G = R!.
With this remark, the second assertion in the second paragraph then follows exactly
the lines of the argument given in the proof of Theorem 3.4 in [HH3].

The last statement in the first paragraph follows from (5.7). This shows that there
is a test element for R, and this implies that 7(R) is the ideal generated by the test
elements (which then agrees with 7(R) N R°). The assertions in the second paragraph
then imply all the assertions in the first paragraph.

The statements in the last paragraph are then clear: note that since R'/? is module-
finite over R, we have from [Ku2] that R is excellent, and so the fibers of the map S — S

~

are regular. This enables us to show that (5). is regular whenever R, is regular. 0O

6. Test elements in finitely generated algebras over excellent local rings.

The main results of this section are Theorem 6.1 and Theorem 6.2 immediately below,
Theorem 6.21 and Theorem 6.22 (which yield common test elements), and Theorem
6.24, which shows that, under mild conditions on R or S, tight closure is preserved
by arbitrary base change, R — S, without hypotheses concerning whether R° or test
elements of R map into S°. The conditions require that at least one of the rings R, S
have “sufficiently many sufficiently good” test elements. For example, it suffices if S
has a completely stable (weak) test element, or if R is essentially of finite type over an
excellent local ring.

(6.1) Theorem. Let R be a ring of characteristic p.
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a) Suppose that (R,m,K) s local ring such that R — R has regular fibers and let
¢ € R° be any element such that (Ryed)e is reqular. Then ¢ has a power which is
a completely stable ¢'-weak test element for R. If R 1s reduced, then ¢ has a power
which 1s a completely stable test element for R.
In particular, if R 1s an excellent local ring, then R has a completely stable ¢'-weak
test element; if, moreover, R is reduced, then R has a completely stable test element.

b) Let R be an algebra of finite type over a local ring (B,m,K) such that B — B
has smooth fibers (e.g., such that B is excellent). Let ¢ be an element of R° such
that (Ryed)c i reqular. Then ¢ has a power which is a completely stable weak test
element for R. If R s reduced, then ¢ has a power which 1s a completely stable test
element for R.

Theorem 6.1 will be deduced from:

(6.2) Theorem. Let R be an algebra of finite type over a complete local ring (B, m, )
of characteristic p. Let ¢ € R° be such that (Ryed)c 18 Gorenstein and F-regular. Then
¢ has a power which 1s a completely stable q'-weak test element for R. If R is reduced,
then ¢ has a power which 1s a completely stable test element for R.

This result is contained in Theorem 6.20 below. The proof of Theorem 6.1 immedi-
ately follows the proof of Theorem 6.20.

In §7 we shall obtain an improvement of Theorem 6.1, Theorem 7.32 (see also The-
orem 7.33) in which the hypothesis on ¢ is weakened to the condition that (Ryed). be
F-regular and Gorenstein (instead of regular).

The technique of the proof of Theorem 6.2 is to pass to a flat purely inseparable
extension ring S of R in such a way that S'/? is module-finite over S (so that the
theory of §5 applies to S) while controlling the ramification of primes sufficiently to
guarantee that S. is F-regular (and Gorenstein: hence, strongly F-regular). This will
entail a considerable digression concerning the behavior of complete local rings under
various operations that enlarge their residue class fields.

We shall also need to prove some results about the behavior of tight closure under
flat inseparable extension: This question is treated in (6.15) through (6.18).

(6.3) Discussion. Let K be a fixed coefficient field for an arbitrary complete local ring
(R,m, K). Given an overfield L of K, we shall write Lx[[R]] or, more simply, L[[R]],
for the completion of L @k R at the ideal m(L @x R). (Lx|[[R]] does depend on the
choice of the coefficient field K, so that, strictly speaking, K should be indicated in
the notation.) Note that if R = K[[z]] is a formal power series ring, where = denotes
T1y...,2y, then L[[R]] 2 L[[z]]. (The obvious maps L @x R — L[[z]], L[z] — L[[R]]
induce continuous maps with the same targets but with their domains completed.)
Suppose that R is module-finite over a complete local ring B with the same coefficient
field K. We claim that L[[R]] 2 R ®p L[[B]]. Since R is module-finite over B, the
maximal ideal of B expands to an ideal primary to the maximal ideal m of R and so
R®p L[[B]] is complete with respect to the expansion of m. This yields a continuous map
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L[[R]] — R ®p L[[B]]. The obvious B-algebra maps L[[B]] — L[[R]] and R — L[[R]]
yield a continuous map R ®@p L[[B]] — L[[R]]. The compositions in either order yield a
map which is evidently the identity on the dense subring R@x L 2 R®@p (B Q@K L).

Thus, if R = K|[[z]]/I, where @ = x1,..., 2y, then L[[R]] = L[[z]]/IL[[z]]. Alterna-
tively, if we think of R as module-finite over B = K[[z]], then L[[R]] 2 R ®@p L[[z]]. In
any case, L[[R]] is faithfully flat over R, and its maximal ideal is the expansion of the
maximal ideal of R.

Notice that for any intermediate field X C K’ C L we have natural inclusions
R C K'[[R]] C L][R]] and that Ly [[K}[[R]]]] & Lx[[R]] in a natural way.

Note that Ly[[R]] discussed here coincides with R®x L discussed in (7.39): this
is somewhat more general than the version of complete tensor product given in [S],

Chapitre V, A2.

(6.4) Discussion. We retain the conventions of (6.3). Let K = Ko C Ky C Ky C
-+ C K., C... be an infinite sequence of fields whose union is a field L. Then we may
form the union U, K [[R]]. Since this ring is a direct limit of Noetherian local rings and
faithfully flat maps such that the maximal ideal of the domain of each map expands to
the maximal ideal of its target, this union is a Noetherian local ring, faithfully flat over
R, whose residue field is L, and whose completion is L[[R]]. (If there exists a Noetherian
ring T faithfully flat over (or even a pure extension of ) all the rings in a directed union,
the directed union is Noetherian: given a strictly increasing sequence .J; of finitely
generated ideals from the union, we have that J;T stabilizes. But each of .J;, Jyyq is
the expansion of an ideal coming from one of the rings in the union, say J; = I,
Jt_|_1 = 1756—1—17 where [; C It_|_1. But then I,T = It_|_1T = I = It_|_1 = Jy = Jt_|_1.)

(6.5) Discussion. Now suppose that R is a complete local ring with a coefficient field
K of characteristic p. We shall say that an increasing sequence of subfields {K.}. of
the perfect closure K of K is admaissible for K if first, Ko = K, second, for all e,
K. C K.i1 C Ké/p (so that if ¢ = p® we have K C K, C K4 for all e) and third,
there is a finite set of elements 6, ...,0x of K'/? such that for all e, 8y,...,60x spans
Ké/p as a vector space over K .y1. For a fixed sequence of this type we shall denote by
Ko (R) the ring UK [[R]] discussed in (6.4). Note that the completion of K (R) is
(Ue K )[[R]]-

(6.6) Lemma. Let R be a complete local ring of characteristic p with coefficient field
K and let {K.}. be an admissible sequence of extension fields for K.

a) If S is a complete local ring module-finite over R with the same coefficient field
then Koo (S) =2 S @r Ko (R).

b) If R is module-finite over (respectively, homomorphic image of) a regular ring
A = K[[x1,...,25]], then S = K (R) is module-finite over (respectively, a ho-
momorphic image of ) the reqular ring Koo (A).

¢) R — K (R) is a flat, purely imseparable map with Gorenstein fibers. Moreover,
Ko (R) 1s Henselian.
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d) If S = Koo (R), then S is a finite module over SP C S (i.e. the Frobenius map is a
finite morphism). If S is reduced, then, equivalently, SU/P s module-finite over S.
In particular, S s excellent.

Proof. a) follows from the fact that for every e, K [[S]] &2 S @r K.[[R]], and b) is
immediate from a). We next prove ¢). Ko (R) is Henselian because it is a direct
limit of Henselian rings and local homomorphisms. It is purely inseparable over R
because (K [[R]])? C R for every ¢ = p°. Flatness follows from a) and the case where
R = K[[z1,...,2,]], where it is obvious.

It remains to check that the fibers of the map R — S = K (R) are Gorenstein.
If P is a prime of R we have that S/PS = K. (R/P), and so it suffices to check
that the generic fiber is Gorenstein when R is a domain. Suppose that R is module-
finite over a regular subring A with coefficient field K and that the fraction fields of
A and R are § C G. The generic fiber is therefore § @5 (A — {0})7' Ko (4). Now,
T = (A —{0}) " K. (A) is a localization of a regular ring and, therefore, regular, and
so it suffices to note that if T' is an arbitrary Gorenstein ring containing a field F and
§ is a finite algebraic extension field of &, then § @4 T is Gorenstein. (Briefly, G is the
result of killing an R-sequence in a polynomial ring over &, since a maximal ideal of a
polynomial ring over a field is a complete intersection, and so § @4 T is the result of
killing an R-sequence in a polynomial ring over T. Cf. [WITO].) This completes the
proof of ¢).

From b) it follows that to prove d) it suffices to consider the case where R = A =
K[[z1,...,2,]]. We want to show that S'/? is module-finite over S. Let {u;} denote
/p

the finite set of monomials in the elements :1;3 in which each exponent is an integer

between 0 and p — 1. Let {6;,...,0x} be elements of K'/? that span Ké/p over K41
as in the definition of an admissible sequence of fields. It will suffice to show that the
elements j,u; span S'/? over S. Since S is the union of the rings K.[[z1,...,z,]], it
will suffice to note that (K. [[zy,...,z,]])"/? = ( /(i/p)[[x}/p, . 7:1;711/19]]7 which is spanned
over Keqq[[z1,...,2,]] €S by the elements 6.

It follows at once ([Ku2]) that S is excellent. O

(6.7) Discussion. To make use of this result, we need a large source of admissible
sequences for fields K. Part b) of (6.8) below will be our main provider. We first
recall that a p-base for a field K of characteristic p is a family A of elements of K such
that K’ = KP(A) and such that for every finite subset ¥ C A if ¥ has s elements then
[KP(X) : KP] = p°. Every set of generators for I over KP has a subset which is a
p-base. See [N], §31. In this situation, the fields {KP[\] : A € A} are mutually linearly
disjoint extensions of KP in K of degree p, and, if for every A € A we choose a power
q(\) of p, then the fields {K[\'/4M] . X\ € A} are mutually linearly disjoint extensions
of K in K of respective degrees ¢(\). Thus, as a vector space basis for K over K we
may take the set of all monomials A\{' ...\ in distinct elements Ay,..., A\s of A such
that each exponent n; is a nonnegative fraction, less than 1, whose denominator is a
power of p.
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(6.8) Lemma. Let K be a field of characteristic p.

a) Let k be a subfield of K such that K is separable over k and trdeg, K = r is
finite. Let K, = {K[k'/)} where ¢ = p°. Then {K,}. is an admissible sequence of
fields for K. In fact, N = [K'/? : K[E'/P]] < p", and if 6y,...,0N span K'/? over
K[E'?] then they span (K[ 1)'/? over K[k'/%] for all q.

b) Let A be a p-base for K, let T be a cofinite subset of A (i.e. A —T is finite), and
let KL be the subfield of K> generated over K by the (p¢)th roots of all elements
in T. Then {K!'}. is an admissible sequence of field extensions for K.

Proof. a) We first note that K'/? is a finite algebraic extension of K[k'/?] of degree
at most p”. To see this, observe that otherwise we could choose Ny > p” elements in
K whose pth roots are linearly independent over K[k'/?]. This situation is preserved
if we replace I by the field generated by these Ny elements over k. Thus, we may
assume that K is finitely generated over k: In this case K is separably generated over
kE and we may write K = k(u)[z] where u indicates the elements wuy,...,us and z is
a single element which is separable algebraic over k(u). Now, when z is separable
algebraic over a field G, G'/?[2] already contains a pth root of z. (The field extensions
G'/P C GY/?[2'/P] and G C G[z] are isomorphic, and have the same degree, m; but
G[z] and G'/P are linearly disjoint over G, and so [G'/?[z] : G'/P] = m as well. Since
G'/?[2] € G'/?[2'/?] and both have degree m over G'/?, they are equal.) It follows that
(E(u) [P = (k(u))'/?[2] = kl/p(ui/p, . ,u}g/p)[z], which has degree at most p® < p”
over k'/P(uy,. .., u,)[z]. This establishes that [K'/? : K[k'/?]] < p".

Suppose that 6y, ...,0x span K'/? over K[k'/P]. Tt is then clear that the 6; span
(K[EYN)YP over K[k'/P1] for all ¢ = p¢, since (K[k'/4))!/? = K'/P[E'/?4], and the
admissibility of the specified sequence K. follows.

b) Let o1,...,04 be the elements of A not in I'. We take 6y,...,6y to be the

1 /p . . . . .
./ in which every exponent is a nonnegative integer < p—1.

The result is now an easy consequence of the last statement in Discussion 6.7. [

monomials in the elements o

We shall need the following result from [Mat] (30.E):

(6.9) Lemma. Let {L;};es be an arbitrary nonempty family of subfields of a field L
with N;L; = K. Let A; = Lj[[z1,...,2,]] € B = L{[z1,...,2,]] and let F; denote the
fraction field of Aj. Then N;F; = G, the fraction field of A = Kl[z1,...,2,]].

Similarly, the intersection of the fraction fields of the polynomial rings L[z, ..., xy]
is the fraction field of Klxq,...,x,].

Note that the second statement is completely elementary: by induction on n, one
may reduce to the case of a single variable, where it follows from the fact that when one
writes an element in the fraction field of L[z] in lowest terms, with monic denominator,
the result is unique, and hence independent of the field to which one thinks of the
coefficients as belonging.

We shall also need:
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(6.10) Lemma. Let F be a field, let {F;}jer be a family of subfields, directed by D,
with intersection L, let K be a subfield of L, and let Q) be a subfield of F that 1s a finite
algebraic extension of K. Suppose that L and Q) are linearly disjoint in F over K. Then
there exists an element j € J such that F; (as well as all smaller members of the family)
18 linearly disjoint from Q over K.

Proof. Fix a basis wy,...,wy for Q over K. As we decrease J; the dimension of the
vector space V; spanned by the w; over J; can only increase, but can never be more
than N. Therefore, we can choose J; so that this dimension is maximum. We want to
prove that the w; are independent over ;. If not, after renumbering we may suppose
that wy,...,w, is a basis for V; with r < n. Then w,4; is an J;-linear combination
of wy,...,w, in a unique way. At least one of the coefficients occurring is not in L.
Since the family is directed, we can find a smaller field in the family that excludes this
coefficient. Over this field, wy, ..., w,, w,41 are independent, contradicting our choice

of F;. O

(6.11) Discussion and notation. Let K be a field of characteristic p and let A be a p-
base for I{. Let T' be a cofinite subset of A. Then we may define an admissible sequence
of fields KI' = K[A'/P" : X € T'] for K as in (6.8b). If R is a complete local ring with
K as coefficient field then we may define R = K. (R) = U.KT[[R]]. Note that the
completion of R is KT[[R]], where KT = U, K.

All of the results of (6.6) apply. Thus, R is faithfully flat and purely inseparable
over R, with Gorenstein fibers. R' is module-finite over (R")? and R' is an excellent
Henselian ring. When S is module-finite over R with the same coefficient field K, ST =
S ®g RY. In particular, if RT is module-finite over a regular ring 4 = K[[z1,...,2,]]
then R is module-finite over the regular ring A" = U.K![[z1,...,2,]]. Moreover, if
I" C T then R* — R' is faithfully flat and purely inseparable. The inseparability is
obvious since R is purely inseparable even over R. The faithful flatness is clear in the
case where R = K{[xz1,...,x,]] is regular and may then be obtained in general by using
the fact that R is module-finite over a regular ring and making a base change.

When S is a finitely generated algebra over a complete local ring R with a p-base A
for its coefficient field K, we shall write ST for S @r R": this ring is faithfully flat and
purely inseparable over S for each T' cofinite in A. ST is finitely generated over R" and
so has the property that ST is module-finite over (ST)P for every T' cofinite in A.

(6.12) Lemma. Let K be a field of characteristic p and let A be a fized p-base for K.
let KV, AT etc. be defined as in (6.11). Let x denote the string x1,... ,2,.
a) NP KT = K as T runs through all cofinite subsets of A.
b) Let A = KJ[[x]]. The intersection of the fraction fields of the rings K'[[x]] as T
runs through all cofinite subsets of A is the fraction field of A.
h°) Let A = K[x]. The intersection of the fraction fields of the rings K [x] is the
fraction field of K[x].
¢) The intersection of the fraction fields of the rings AT as T runs through all cofinite
subsets of A 1s the fraction field of A.
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Proof. a) Recall the description of the K-basis for K> = K given in the last sentence
of (6.7). Similarly, the set Br of monomials A7" ... A" in distinct elements Aq,..., A5 of
I' such that each exponent n; is a nonnegative fraction, less than 1, whose denominator
is a power of p, form a vector space basis for K" over K. When an element p of K>
not in K is written as a K-linear combination of elements in the specified basis B, for
K™= at least one monomial other than one must occur. We need only choose I" small
enough to exclude this monomial from Br to make sure that p & KT, since Br C By.

b) and b®) are then immediate from a) and Lemma 6.9.

¢) follows from b), since A¥ C K'[[zy,...,2,]]. O

(6.13) Lemma. Let (B, m,K) be a complete local ring with coefficient field K of char-
acteristic p, and let A be a fired p-base for K. Let BY be as in (6.11). For a finitely
generated B-algebra R, let R = B" @p R.
a) If R is reduced or a domain then there exists T'g cofinite in A such that Rp is also
reduced or a domain for all T C T.
b) If P is a prime ideal of R then there exists a cofinite set To C A such that Q = PRY
is prime for all T C T, and whenever PR" is prime the fiber of R — R" over P
18 a field.

Proof. a) First suppose that R is a domain. We represent B as a finite module over a
regular ring A = K[[zy,...,7,]] C R. Now R =2 RopB" = Rop(B@aAY) = R4 AT,
so that there is no loss of generality in assuming that B = A = K[[z]]. Since R is finitely
generated as an A-algebra its fraction field €2 is finitely generated as a field over the
fraction field L of A. Let Fr denote the fraction field of AT. We want to show that we
can choose T cofinite but sufficiently small that R ® 4 A" is a domain, which will be the
case iff it is reduced, since A" is purely inseparable over A. This ring is contained in
Q @7, Ir, and so it suffices to show that we can choose I' so that Q @7, Fr is reduced.
It is clear that if one choice of T succeeds then so do all smaller choices. It is also clear
that the problem gets harder as € gets larger. By replacing € by a larger field we may
assume without loss of generality that it is obtained from L by first making a purely
transcendental extension L(y) = L(y1,...,ys) followed by a finite purely inseparable
extension followed by a finite separable extension. The purely inseparable part will be

i/q, e ,yi/q) for some finite purely inseparable extension L’ of L and

contained in L'(y
some ¢. The separable part may be ignored. We change notation, writing y for y'/?, and
we may thus assume that Q@ = L'(y) where L’ is a finite purely inseparable extension of
L. Tt suffices to show that we can choose I' so that L'(y) @, I is reduced. This ring
is a localization of a polynomial ring over L' @, Fr, and so it suffices to show that for
a fixed finite purely inseparable extension L’ of L we can choose I' cofinite in A so that
L' @1, Fr is reduced, and this is the case iff L' and Jr are linearly disjoint over L in L°.
Since L' and L are linearly disjoint over L and NpFp = L as I' runs through the cofinite
subsets of A by (6.12¢), it follows from Lemma 6.10 that for all sufficiently small choices
of the cofinite sets ', L' and Jr are linearly disjoint over L. This establishes a) when R
is a domain. Also note that for any prime ideal P of R, PR' is prime for all sufficiently
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small cofinite sets I' C A, since R' /PR = (R/P)" and we may apply part a) to R/P.

Suppose that R is reduced. For every minimal prime P; of R and for all sufficiently
small cofinite sets ' we have that P;R" is prime, and since finite intersection of ideals
commutes with flat base change it follows that N; P;R" = (N;P;)R" = (0) in R', and so
R" is reduced for all sufficiently small cofinite sets T

To complete the proof of b) we need only see that when Q = PR' is prime then the
fiber RY,/PRY is a field. But since R is purely inseparable over R, this ring has only
one prime ideal. Since (R' /PR")p is a domain of dimension 0, it is a field. O

We next note:

(6.14) Lemma. Consider rings R, Ry, and S that are Noetherian of characteristic p.
a) Let {Rx}x be a direct limit system such that the limit ring R is Noetherian. Suppose
that all the direct limit system maps are pure and carry parameters to parameters
(both conditions are automatic if the maps are faithfully flat). Then for every ideal
J of R, if J 1s generated by an ideal I C R, then J* = Ux>,(IRx)*.
Hence, if each Ry is weakly F-reqular (respectively, F-regular) then R is weakly
F-reqular (respectively, F-reqular).

b) Suppose that R C S is pure and R° C S°. Suppose that ¢ € R is a ¢'-weak test
element in S. Then ¢ 1s a ¢ -weak test element in R. In particular, if R — S 1s
faithfully flat and ¢ € R is a ¢ -weak test element in S, then c is a ¢ -weak test
element in R.

c¢) Suppose that R C S is faithfully flat and that ¢ € R° is a completely stable ¢'-weak
test element for S. Then ¢ 1s a completely stable ¢'-weak test element for R.

Proof. a) Note that, given .J, since it is finitely generated, we can always choose such a
and I C R,. It is clear that each (IR,)* C J*. Now, given v € J* we can choose ¢ € R’
such that cv? € IR for all large ¢. Choose A sufficiently large that ¢, v € Ry. Since
Ry — R is pure, we obtain cv? € IRy for large ¢ as well. Since ¢ € R® and Ry — R
is pure, ¢ must be in R} (every minimal prime of R lies under a prime of R, and hence
lies under a minimal prime of R). This establishes the first statement in a). If all the
Ry are weakly F-regular, then J* = Ux>,(IRx)* = Ux>,IRx = IR = J. Finally, if
every Ry is F-regular, and W is a multiplicative system in R, let Wy = W N Ry and
note that W1 R is the direct limit of the system {W;'Ry}x.

b) Let w € 0%;. Then 1@ w € (S ®r 0)* in (S @r M) and so we have that for all
q>4q,c(low)!=0in F&(S®pM). But this means that 1@ (cw?) is 0in S®@g F°(M).
Since R — S is pure, F*(M) — S @gr F¢(M) is injective. Thus, cw? is 0 in F*(M), and
so ¢ is a ¢'-weak test element.

¢) We must show that the image of ¢ is a ¢'-weak test element in (Rp) for every
prime P of R. Choose a prime @ of S lying over P. The image of ¢ in (Sq) is a ¢'-weak
test element in (Sg ), and (Sq) is faithfully flat over (Rp). The result now follows from
part b). O

Before proceeding further we need to discuss certain instances in which tight closure
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behaves well under flat, purely inseparable extension. This digression is comprised of
(6.15) through (6.18). The result that we particularly need at present is part b) of
Theorem 6.17.

(6.15) Discussion. If R C S are rings of characteristic p we say that S is purely
inseparable over R if every element in S has a ¢'* power in R for some ¢ = p°. In this
case, there is a unique prime ideal of S, Rad PS, lying over every prime ideal P of
R, and every prime ideal @) of S arises in this way from a unique prime ideal of R, its
contraction to R (since each element of () has a power in the contraction). This gives
a homeomorphism of Spec S with Spec R.

Given an injective homomorphism R — S of Noetherian rings of characteristic p
and finitely generated S-modules V. C W, we say that tight closure tests for V.C W
can be performed with multipliers in R if for every element x € Vjj, there exists an
element ¢ € R° N S° such that cz? € W in F¢(V) for all ¢ >> 0. If this is true for all
pairs V. C W (with ¢ € R° N S° allowed to depend on V, W and @ € V) we say that
tight closure tests over S can be performed with multipliers in R. Of course, this holds
whenever there is a (¢’-weak) test element in R that is also a (¢'-weak) test element in
S. What we want to point out here is that when S is purely inseparable over R, tight
closure tests over S can always be performed with test elements in R. The point is that
any element ¢ € S used in the tight closure test will have a ¢'* power in R for some
q=Dp°

We recall from §10 of [HH4] that if N C M are finitely generated modules over a
Noetherian ring R of characteristic p, an element w € M is said to be in the Frobenius
closure of N in M if there exists ¢ = p® such that w? € N][&].

(6.16) Theorem. Let R — S be a flat homomorphism of Noetherian rings. Let N C M
be finitely generated R-modules such that N7, = N.

a) If S is purely inseparable over R and NI g5 tightly closed in Fe/(M) esther for
all ¢ = pe/ or for some ¢ sufficiently large that Se C R, then the tight closure
of S@r N in S @r M 1s contained in the Frobenius closure. If, moreover, S 1is
F-pure, then S @r N s tightly closed in S @r M.

b) If S is purely inseparable over R, M /N s supported only at one mazimal m of R,
mS s radical (= mazimal) in S, and the socle of M /N is one-dimensional, then
S @pr N 1s tightly closed in S @rp M.

¢) If M/N s supported at one mazimal ideal m of R, mS is a mazimal ideal of S,
tight closure tests for N C M can be performed with multipliers in R, and the socle
of M/N 1is one-dimensional, then S @pr N 1is tightly closed in S @p M.

Proof. In all three parts we may assume that N = 0: we replace M by M/N.
a) Suppose that w € S @r M is in the tight closure of 0, say w = S s; @ m;.

Then we can choose ¢’ such that sg/ € R for every ¢ and such that 0 is tightly closed in
Fe/(M). Thus, w? in FEI(S QrM) = S®r Fe/(M) may be identified with 1 ® u where

= Z?:lsqlm[ql] € Fe/(M). Let ¢ € $° be such that cw?? = 0 for all ¢ > 0. Replacing

? ?
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¢ by a power we may assume that ¢ € R. It follows that 1 @ cu? = 0 for all ¢ > 0, and
so p € 0% in F¢(M). Thus = 0 in F¢ (M), and so w? =0 in FEI(S @r M).

b) and ¢). By virtue of Discussion 6.15, b) is a special case of ¢). Let w denote a
socle generator in M. Then 1 ® w generates the socle in S @r M by (7.7¢) in the next
section, and so it will suffice to show that 1®w is not in the tight closure of 0 in S ® M.
But if ¢ € R? is such that ¢(1Qw)? =0in S@r F¢(M) for all e > 0, then, 1@ (cw?) =0
in S®@gr F(M) for all ¢ > 0. Since we can consider M, S ® M as modules over R,
Sms respectively, and R,, — S,,s is faithfully flat, we obtain cw? = 0 for all ¢ > 0 and
sow € 0* =01in M, a contradiction. [

(6.17) Theorem. Let R — S be a flat homomorphism of Noetherian rings of charac-
teristic p.

a) If R is weakly F-regular, R — S 1is purely inseparable, S is F-pure, and N C M
are finitely generated R-modules, then S @p N 1s tightly closed in S @p M.

b) If R is weakly F-reqular, R — S is purely inseparable, and for every mazimal
ideal m C R, mS s radical (= mazimal) in S, then S is weakly F-reqular.

¢) If R is weakly F-reqular, every mazimal ideal n C S s of the form mS for
a mazimal ideal m of R, and tight closure tests for S-modules can be performed with
multipliers in R, then S is weakly F-regular.

Proof. a) is immediate from (6.16a), and b) is a special case of ¢). To prove ¢) it suffices
to show that for every maximal ideal n of S there is a sequence of irreducible n-primary
ideals (); cofinal with the powers of n such that (); is tightly closed in S for each 7, since
every finite length S-module will be embeddable in a direct sum of S/@Q;. But we can
choose such a sequence of m-primary irreducible ideals in R, since R,, is normal and,
hence, approximately Gorenstein (cf. [Hod]), and each of these ideals, when expanded to
(equivalently, tensored with) S yields an n-primary irreducible ideal of S that is tightly
closed by virtue of (6.16¢). O

Note that in part ¢) there is no assumption about the inseparability of S over R,
but that this raises the issue of whether one can find elements of R that will suffice to
perform all tight closure tests in 5.

(6.18) Ezample. Let K be a field containing an element ¢ that is not a p'* power, let L =
K[0] where § = t'/7 let R = K[[x,y, 21, ..., za]]/(f) where f = 2P —tyP — 2t —..._ ;hn
where every h; is strlctly bigger than p and not divisible by p (e.g., we may let all the
hibep+1)andlet S=Lx R= Ll[z,y,21,...,2a]]/(f). Note that (z1,...,2,)R is
a prime ideal in R and, hence, tightly closed, but that x — 0y is in the tight closure of
(z1,...,2n)S. Thus, tight closure does not commute with flat inseparable base change,
even when one is merely enlarging the residue field of a complete local ring in such a
way that the maximal ideal does not ramify. Note that R and R[f] are hypersurfaces
and become regular if we localize at any z; : in particular, both are normal if n > 2.

We are now ready to prove the following crucial
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(6.19) Lemma. Let (B,m,K) be a complete local ring with coefficient field I (re-
spectively, a finitely generated algebra over a field K), let R be a finitely generated
B-algebra of characteristic p and let ¢ € R° be such that R. is weakly F-reqular and
Gorenstein. Let A be a fized p-base for the coefficient field K of B. For T' cofinite in
A let R = B" @p R. Then there exists a choice of Tg cofinite in T such that for all
I C Ty, R is weakly F-reqular and Gorenstein.

[

Proof. Every nilpotent in R is killed by a power of ¢, since R, is weakly F-regular and,
hence, reduced. The issues are unaffected by replacing R by Ryea by [HH4] (8.13d), and
we henceforth assume that R is reduced. Let X = Spec R.. Since each R is purely
inseparable over R, each Rl is purely inseparable over R,, and we may identify each
Spec RL with X. Since the fibers of the flat map R — R' are Gorenstein by (6.6¢)
and R, is Gorenstein, we have that R is Gorenstein. Since RL is a finite module over
itself via the Frobenius endomorphism and Gorenstein, the weakly F-regular locus is
the same as the strongly F-regular locus and is open, by (5.5f) and (5.9b). Thus, the set
of points in Spec RL where the ring is not weakly (= strongly) F-regular corresponds to
a closed set Zr in X. The closed sets in X satisfy DCC', and so we can choose a set T'g
with finite complement in A such that Zr  is minimal. We shall complete the argument
by showing that Zr must be empty for I' C T'g. Since Zr decreases with I' (since R
is faithfully flat over BT for I’ C I': see the last paragraph of (6.11)), we may assume
that I' = Po.

Assume, to the contrary, that Zpr is not empty, and let () be a prime ideal of R not
containing ¢ corresponding to a point in Zr. It will suffice to show that there is a choice
of TV such that Rg is weakly F-regular, for then Zrnrs will be strictly smaller than Zrs

a contradiction. By (6.17b) Rg will be weakly F-regular provided that QRg is a prime
(= maximal) ideal, since Rg — Rg is flat and purely inseparable. But QRF/ is prime
for all sufficiently small cofinite IV C A by (6.13b). O

We are now ready to prove one of our main results:

(6.20) Theorem. Let (B,m,K) be a complete local ring with coefficient field K of
characteristic p, let R be finitely generated as a B-algebra and let ¢ € R° be such that
(Rred)c is weakly F-reqular and Gorenstein. Then ¢ has a power which is a completely
stable ¢'-weak test element in R. If R 1s reduced, then ¢ has a power which 1s a completely
stable test element in R.

Proof. By [HH4] (8.13d) we may pass to Ryed, and so it suffices to prove the last
statement. Let A be a p-base for K and for each I' C A with finite complement let
R" = B @5 R with B as defined in (6.11).

We may then choose ' cofinite in A so small that R' is reduced by (6.13a) and such
that its localization at the element ¢ is F-regular and Gorenstein by (6.19). By (5.10), ¢
has a power which is a completely stable test element in R' since, by (6.6d) and (6.8b),
(Rr)l/p is module-finite over R". Since R' is faithfully flat over R, this same power of
¢ is a completely stable test element in R, by (6.14¢). O
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Proof of Theorem 6.1. a) By [HH4] (8.13d) we may pass to Ryeq. It suffices to show
that if R is reduced and R, is regular than ¢ has a power which is a completely stable
test element in R, for it is then automatically a completely stable test element in R as
well, by (6.14c). But since R — R is flat with regular fibers, so is R, — (R)c, and since
the base R, is regular so is (R)c The result is now immediate from (6.20).

The remark about excellent rings now follows from the fact that in an excellent ring
the singular locus is open, and in a reduced ring the singular locus is nonempty and its
defining ideal has height at least one: thus, one may always choose ¢ € R° such that R,
is regular.

b) Again, we may assume that R is reduced. Since the fibers of B — B are smooth,
the map R — R @p B is flat with regular fibers, and since R, is regular it follows that
(R®p B)c is regular. We can now apply (6.20). O

We obtain a corollary on the existence of common test elements which will prove
very useful in our study of base change in §7.

(6.21) Theorem. Let (R,m,K) — (S,n,L) be a flat local map of local rings such that
(Ro)_lsred 18 reqular, the singular locus in Sieq 18 closed, and such that the map S — S
has reqular fibers. Then there is an element ¢ € R° that is a completely stable ¢'-weak
test element in all of the rings R, R, S and S. If S is reduced then there is an element
c € R° that 1s a completely stable test element in all the rings R, R, S and S.

Proof. Let J be the defining ideal of the singular locus in Syeq. Then the image of R° in
Sred must meet .J, and it follows that we can choose ¢ € R° such that (Syeq). is regular.
It now follows from (6.1) applied to S that ¢ has a power that is a completely stable
¢'-weak test element in S (or a test element, if S is reduced), and since S is faithfully
flat over R, S, and R, the result follows from (6.14c). O

We also state a global version in which we relax the flatness condition considerably:

(6.22) Theorem. Let R ", S be Noetherian rings of characteristic p each of which
18 finitely generated as an algebra over a local ring such that the maps from these two
local rings to their completions have smooth fibers. Suppose that h(R°) C S° (this
is automatic if h is flat), that the singular loci in Ryea and Syeq are closed, and that
((R°)™'S)sea 1s reqular. Then there exists ¢ € R° such that (Ryed)e and (Sred)e are both
reqular, and so ¢ has a power ¢’ such that ¢’ is a completely stable weak test element
for R and h(c') is a completely stable weak test element for S. If R and S are reduced,
then ¢ has a power ¢’ which is a completely stable test element in R such that h(c') is a
completely stable test element in S.

Proof. As usual, we may assume that both R and S are reduced. We can choose ¢ € R’
such that R, is regular and d € R, such that Sy is regular, and then we replace ¢, d by
cd. The result is then immediate from part b) of Theorem 6.1. O

We next prove some results concerning when tight closure is preserved under arbitrary
base change. We shall say that an excellent Noetherian ring R of characteristic p has
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abundant test elements if for every domain D module-finite over a homomorphic image
domain of R every element ¢ € D — {0} such that D. is regular has a power which is a
test element. We first note:

(6.23) Proposition. Let R be a Noetherian ring of characteristic p. If R 1s a finitely
generated algebra over an excellent local ring or if the Frobenius endomorphism F : R —
R 15 a finite morphism, then R has abundant test elements.

Proof. Both of the hypotheses imply excellence and pass to module-finite domains over
homomorphic images of R. The result then follows from (6.1b) in the first case and
from (5.10) in the second case. O

In fact, both classes of rings discussed in (6.23) satisfy a much stronger condition:
in every reduced, finitely generated algebra S over one of these rings, every element ¢
such that S. is regular has a power d such that d is in 7(T') for every ring T which is
either a local ring of S or the completion of a local ring of S. For these classes, the test
elements are more than abundant.

(6.24) Theorem. Let R — S be a homomorphism of Noetherian rings of characteristic
p. Let N C M be finitely generated R-modules and let w € M be an element of M in
N*. Assume that at least one of the following conditions holds:

1) R s excellent and has abundant test elements, or
i) R s locally excellent and S has a locally stable test element (or S is local), or
i) S has a completely stable test element (or S is a complete local ring).

Then 1 ® w s wn the tight closure of the image of S @pr N mn S @r M.

Proof. In proving this result we may map a finitely generated free module G onto M
and replace N by its inverse image in G and w by an element of G mapping onto it. In
the remainder of this argument we assume that M is free.

We first prove i). First note that Proposition (6.25) of [HH4] generalizes to the case
of modules. (The strengthened result asserts that w is in the tight closure of N C M
if and only if this holds modulo every minimal prime P of R, i.e. the image of w in
M /PM is in the tight closure of Im(N — M /PM) for every minimal prime P. One can
reduce to the case where M is free and the argument given in (6.25) of [HH4] is valid
without change.) Thus, if we have a counterexample to the theorem, we obtain one in
which S is a domain, for if 1 ® w is not in the tight closure of Im(S @r N — S @r M),
this will remain true when S is replaced by S/P for a suitable minimal prime P. Thus,
we may assume that S is a domain. Let Q = Ker(R — S).

Then we may replace S by R/Q as well. For if tight closure is preserved when we
apply (R/Q) @r —, it will also be preserved when we further apply S ®@g/q —, for it is
always preserved when one tensors with an extension domain of a domain (since nonzero
elements map to nonzero elements). Thus, there is no loss of generality in supposing
that S = R/Q for a suitable prime ) of R. Let Q@ = Qn O Qr—1 2 -+ O Qo be a

saturated chain of prime ideals of R descending from () such that () is a minimal prime
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of R. We shall prove by induction on ¢ that tight closure is preserved when we pass
from R to R/Q;, 0 <i < h. For i = 0 this is clear, for tight closure is always preserved
when one kills a minimal prime. To carry through the inductive step, we may replace
R by R/Qi-1.

We therefore see that, to complete the proof of i), it suffices to show that if R is a
domain and () is a height one prime ideal of R, then tight closure is preserved when
we pass to S = R/Q. To see this, let R’ be the integral closure of R in its fraction
field (which is module-finite over R, since R is excellent), and let @' be a prime ideal
of R' which lies over @, so that R/Q) — R'/Q' is injective and module-finite. Now,
tight closure is obviously preserved when we pass from R to R’ O R. Moreover, since
R’ is excellent normal and Q' is height one (so that Ry, is regular), there is an element
¢ € R — @' such that R is regular. After replacing ¢ by a power we see that we may
assume that ¢ is a test element for R’ not in Q'. It follows that tight closure will be
preserved when we pass from R’ to T = R'/Q)’. Thus, the image of 1 @ w in T @p M
is in the tight closure of Im(T @r N). To complete the proof, we must show that this
implies that the image of 1 @ w in S @r M is in the tight closure of S @ N. (Here,
S C T is a module-finite extension of domains.) This follows from Lemma 6.25 given
below (we have included a brief proof, although issues of this sort are studied in greater
generality in [HH9]).

To handle case ii), suppose that one has a counterexample. The fact that S has a
locally stable test element enables one to preserve the fact that the image of 1 ® w is
not in the tight closure of Im(S @r N) while replacing S by a localization at a prime.
Thus, one may assume that S is local. But then one may replace R by its localization
at the contraction of the maximal ideal of S (and N, M by their localizations). Since
R is then excellent local we are in case i), by (6.23).

Likewise, to prove iii), we first replace S by a localization and then by the completion
of that local ring: the fact that we have a completely stable test element enables us
to keep an element out of the tight closure while completing. Thus, we may assume
that S is complete local. We may then replace R, M, N by their localizations at the
prime ideal of R lying under the maximal ideal of S, and then by their completions with
respect to the maximal ideal of R. Once R is complete local we are again in casei). O

To complete the argument we still need:

(6.25) Lemma. Let S C T be a module-finite extension of Noetherian domains of
positive characteristic p. Suppose that N C M are finitely generated S-modules with M

free such that w € M has the property that its image in T @ M 1s in the tight closure
of TN =Im(T ®s N — T @g M). Then w is in the tight closure of N in M.

Proof. We can choose an S-linear map ¢ : T — S such that ¢(1) =d € S — {0} and we
can choose ¢ € T — {0} such that ¢(1 @ w)? € (TN)[q]T @ M for all g. We can choose

a nonzero multiple of ¢ in S, and so we may assume that ¢ € S — {0}. It follows that

for all ¢, cw? is a T-linear combination of elements of N][&] C T ®g M. Thinking of M
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as S? and applying the map ¢ to each coordinate, we find that dew? € N9 for all ¢,
which shows that w is in the tight closure of N in M. O

(6.26) Remarks. The conclusion of (6.24) is valid if condition i) is weakened to:

i?) For every homomorphic image domain D of R and height one prime @ of D, there
is a module-finite extension D’ of D, a prime Q' of D’ lying over (), and an element
c € D' — @' such that ¢ is a weak test element for D’.

Moreover, ii) and iii) still yield the same conclusion under the weak hypothesis that
S have a locally stable weak test element (respectively, a completely stable weak test
element). The proofs are essentially unchanged.

In §4 we observed that a weakly F-regular ring is Cohen-Macaulay provided that
it is a homomorphic image of a Cohen-Macaulay ring. We conclude this section by
recording the observation that the theory of test elements developed here makes the
latter hypothesis unnecessary, provided that one assumes instead that the ring is locally
excellent.

(6.27) Proposition. Let R be a locally excellent Noetherian ring of characteristic p.
a) If R is equidimensional, local and the ideal generated by one system of parameters
18 tightly closed, then R 1s Cohen-Macaulay and F-rational.
b) If R is weakly F-regular then R is Cohen-Macaulay.

Proof. The hypothesis of weak F-regularity passes to the local rings of R at maximal
ideals. Thus, b) follows from a). Now suppose that R is local, equidimensional and
that the ideal generated by one system of parameters is tightly closed. Since R has
a completely stable weak test element (R is excellent), the system of parameters re-
mains tightly closed when considered in the completion of R. Since R is excellent and
equidimensional, so is its completion. Since the completion is a homomorphic image
of a regular ring, it is Cohen-Macaulay, by Theorem (4.2¢,d). Thus, R itself is Cohen-
Macaulay, and so F-rational by (4.2d). O

The following is a global version of (4.3d) that makes use of theory of test elements.

(6.28) Proposition. Let R be a locally excellent Noetherian ring of characteristic
p and let x1,... x4 be elements of R such that for every minimal prime ideal P of
R, the images of x1,... ,xq are parameters in R/P (i.e., their images are part of a
system of parameters in every local ring of R/P at a prime containing their images).
Suppose that R has a locally stable weak test element. Let J = (x1,... ,24-1)R. Then
J* g axgR=J*.

Proof. Let u € R be such that zqu € J*. It suffices to show that u € J*. Let ¢ be a
locally stable ¢'-weak test element. If u is not in J* then we can choose ¢ > ¢’ with
cu? ¢ J. This situation will be preserved when we localize at suitable maximal ideal
of R. In the local ring S so obtained we still have that u is not in J*, since the image
of ¢ is still a ¢’-weak test element. (Notice that the minimal primes of S correspond to
a subset of the minimal primes of R under contraction and expansion.)
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Thus, we may assume that R is an excellent local domain. The cases where either
J = R or x4 is a unit are trivial. Thus, we may assume that all of the z; are in
the maximal ideal of R. Since R is excellent local, it has a completely stable weak
test element, and by Proposition (6.1¢) of [HH4], it follows that the image of u in the
completion R of R is not in (JR)* We thus obtain a counterexample where the ring
is complete, local, and equidimensional (since we had reduced to the case where R was
an excellent local domain). The result is now immediate from (4.3d). O

7. Smooth morphisms and tight closure.

Our objective in this section is to compare I*S and (I.5)* where R — S is a smooth
morphism of Noetherian rings (or satisfies some modified form of smoothness) of char-
acteristic p and I C R. Here, smooth means flat with geometrically regular fibers: we
discuss this notion briefly in (7.5) below. (Note that many authors use the term regular
for this notion, and reserve the word smooth for the case where S is finitely presented
over R.) More generally, we want to compare the image of S @r (N},;) in S @r M with
(S @r N)§g,n for modules N C M. One hopes that these will be the same, and we
can prove this in many instances.

One of the main problems is that we do not know that tight closure commutes with
smooth base change even when the base change consists simply of localization. We shall
prove that, in good cases, there is a sense in which the problem with localization is the
only problem. We should note that tight closure commutes with localization in case
M /N has finite length (cf. [HH4] (8.9)) and if M = R and N = I is an ideal generated
by a regular sequence: this is the essential content of Theorem 4.5. As indicated in the
Introduction, certain other special cases are handled in [AHH]. We do not know any
example where tight closure does not commute with localization, but we have not been
able to prove that it does in general.

Perhaps the most useful of the results we obtain on base change are summarized
in the Theorems 7.1 through 7.4 just below. However, we also want to call attention
to Theorem 7.29 and Theorem 7.31, which make explicit some of our general results in
important special cases (field extension, and adjunction of ordinary and analytic indeter-
minates), as well as to Theorem 7.42 and Theorem 7.45, which discuss the preservation
of tight closure in certain product situations where neither factor is necessarily regular.

(7.1) Theorem. Let h : R — S be a smooth morphism of Noetherian rings of charac-
teristic p, and suppose that R is locally excellent (or that every local ring of R contains
a test element for its completion). Let N C M be finitely generated R-modules.
a) If N s tightly closed in M and remains so under localization, then S@gr N 1is tightly
closed in S @r M and remains so under localization.
b) If S is projective as an R-module and N s tightly closed in M then S @r N 1is
tightly closed in S @r M.

Note that throughout this section, when R — S is flat and N C M we tacitly identify
S ®@r N with its image in S @r M.
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Theorem 7.1 is contained in Theorem 7.18 below.

(7.2) Theorem. If (R,m,K) — (S,n,L) is a flat local homomorphism of complete
local rings of characteristic p such that the closed fiber S/mS is regular and L]/ K is sep-
arable, then 7(S) = 7(R)S, where T indicates the ideal generated by the test elements if
there is at least one test element (see Definition (8.7) and Proposition (8.8) for details).

Theorem 7.2 is contained in Theorem 7.36.
We also note:

(7.3) Theorem. Let R — S be a flat homomorphism of Noetherian rings of charac-
teristic p.

a) Suppose that (R°)™'S is regular and that S is locally excellent. If for every mazimal
ideal m of S having contraction P to R, Rp 1s weakly F-regular and Sy, /PSp 1s
reqular, then S 1s weakly F-regular.

b) Suppose that R is weakly F-reqular, that S is locally excellent, and that R — S
has reqular fibers over both minimal primes of R and over closed points. Suppose
that every mazimal ideal of R lies over a mazimal ideal of S. Then S 1s weakly
F-regular.

c¢) Suppose that R is F-regular, that S is excellent, and that R — S has regular fibers.
Then S 1s F-regular.

d) Suppose that R, S are finitely generately algebras over a field K. If R is weakly
F-regular and the fibers over minimal primes and over closed points are reqular,
then S 1s weakly F-reqular.

Theorem 7.3 is contained in Theorem 7.25 below.

(7.4) Theorem. Let (R,m,K) be a local ring and let N C M be finitely generated R-

modules. Suppose that N is tightly closed in M. Then for every smooth homomorphism
R — S such that all maximal ideals of S lie over m, S@pr N 1s tightly closed in S@p M.

This is Theorem 7.21 below.

The proofs of these results will require a considerable effort.

Note that certain results of this kind in the case where the map R — S is flat and
purely inseparable are given in §6 (see Theorems 6.16 and 6.17).

(7.5) Discussion. Various notions of when a homomorphism of Noetherian rings is
“smooth” are used in the literature. For our purpose here it will be convenient to define
a homomorphism R — S of Noetherian rings to be smooth if S is flat over R and
for every field K of the form Rp/PRp = (R/P)), K @r S is geometrically regular
over I, where T is geometrically reqular over a field K if for every finite algebraic
extension L of K (equivalently, for every finite purely inseparable extension L of K),
L @ T is regular. In particular, in discussing smoothness, we shall not require that S
be essentially of finite presentation over R, as some authors do. It is easy to see that if
R — S is smooth and R is regular then S is regular.
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It R — S is smooth then for every R-algebra {2 essentially of finite type over R,
Q®pr S is again smooth over €. For every field Q finitely generated over K = Rp/PRp,
and, more generally, for every map R — {2 such that € is essentially of finite type over
R and regular, the ring Q @g S is regular. In fact, whether Q is regular or not, Q @r S
is smooth over €2, which forces it to be regular when 2 is regular. When R = K is a
field, S is smooth over K iff S is geometrically regular over K.

Smoothness is preserved by composition and is local both on the maximal ideals of
S and on the prime ideals of R lying under maximal ideals of S.

(7.6) Remark. It is tempting to believe that there should be results corresponding to
(7.1), (7.3) and (7.4), for example, when the flat map R — S is assumed merely to have
geometrically F-regular fibers (i.e. that L& g S is F-regular for every L which is a finite
algebraic extension field of a field I of the form Rp/PRp) instead of smooth fibers.
We have not been able to prove this. Likewise, (7.2) may well be true when R — S is a
smooth local map of complete local rings, without the hypothesis of separability on the

induced map of residue fields. See (7.34).
We begin with a slightly technical but extremely useful result:
(7.7) Lemma. Let (R,m,K), (R',m',K"), (S,n,L), and (S’,n', L") be arbitrary local

Noetherian rings, and suppose that we have a commutative diagram of local homomor-
phisms

S —— 5

[

R—— R

such that R' — S’ is flat, n = mS, and the images of L and K' in L' are linearly
disjoint over the image of K, i.e., such that L@y K' — L' is injective. Suppose that M
is an R'-module, that V is an R-module killed by m, and that 6 : V — M 1is R-linear.
Let 0 : S@rV — S"@pr M be the map induced by 6.

Then Ker 8 = S @g (Ker6). Note that, since m kills V' and Ker 8, we may identify
S@rV with L@rV and S @r (Ker 6) with L @ (Ker ).

If R=K and S = L are fields, the result holds even if the condition that the map
R' — S’ be flat is weakened to the condition that it be pure.

Proof. It will suffice to show that if 6 is injective then 6’ is injective, for we may then
apply this fact to the induced map V/Kerf — M. Evidently, V maps into My =
Ann,, M. Because S’ is flat over R’ we may replace M by M, for ' may be viewed as
the composition of the induced map L&V — S'®@ g My with the injection S’ @ g My —
S"®@p M. Thus, there is no loss of generality in assuming that mM = 0,and we may
consequently replace R' — S’ by R'/mR' — S'/mS’ (if we start in the case where
R = K and S = L we do not need the flatness of S’ over R’ to reduce to this case).
We may then replace R — S by K — L as well. Thus, in the remainder of the proof
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we shall assume that R = K and S = L are fields. Moreover, having reduced to this
case we now weaken the assumption that R’ — S’ be flat, and, henceforth, we only
assume that R’ — S’ is pure. Note that, by the purity of R’ — S’, M embeds into
S"@pr M. This implies that the restriction of 8’ to V is simply the composition of #
with the injection M — S’ @r M.

We use induction on N to prove that if vy,...vx € M are linearly independent over
K then the elements w; = 1®@v; € S’ @/ M are linearly independent over L. The cases
N =0, 1 are trivial and we assume that N > 2. We may choose a subset of the w; which
is a minimal set of generators, over R', for the R'-module ijle’wj C S"®@pr M: by
renumbering we may assume that these minimal generators are wy, ..., wy, and, clearly,
we may assume that h > 1. Then for N > j > h (this set may be empty: in that case,
summations extended over the values of j > h should be interpreted as having value 0)
we have

(*) wj = Zighr;iwi, where the r;i cR.

Now suppose that we have a nontrivial relation Z;V:l/\jwj = 0, with the \; € L. We
shall obtain a contradiction. By substituting the formulas given by (*) for the w; with
J > h we obtain X;<p(\; + Zj>hr"ji/\j)wi = (. If the coefficient of w; is not in n’ then
we may invert it, and we discover that w; € Bt ,S"w;. By the purity hypothesis on
R' — S’ we see that wy € 2" ,R'w; = H (otherwise, the map M/H — S’ @ (M/H)
will have wy + H in its kernel). But this contradicts the minimality of the generators
wy,...,wp for ;R'w; as an R'-module.

This shows that Ay + X577 A; € n/, so that if ) denotes the image of 7% in K’
we have that Ay + 3jspa’A; = 0in L'. Since L and K’ are linearly disjoint over K in
L', there is also an equation A\ + ¥;spa;A; = 0 with a; € K. But then the equation
Y Aiw; = 0 can be rewritten as Z?:Z/\iwi + YisnAi(w; — awq ) = 0, which contradicts
the induction hypothesis on N applied to the N — 1 vectors

V2y.e oy UhyUVp41 — Op41VU1,. .., UN — NV,

since these are linearly independent over K. [

(7.8) Corollary. Suppose that (R,m,K) — (S,n,L) is a flat local homomorphism of
local rings of characteristic p such that mS = n and L s separable over K. Let V be
an R-module killed by m and M an R-module. Let 6 : V — M be an F°-linear map.
Then Ker(F§ ®p 6) =2 S @ Ker#.

Proof. Apply Lemma 7.7, letting R’ = R and S’ = S, letting both vertical maps be the
given flat local homomorphism R — S, while taking the maps R — R’ and S — S’ to
be F; and Fé. The linear disjointness condition needed is equivalent to the separability
of L over K: if we identify L’ with L, K’ is identified with K, L with LY and K with
K. O
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(7.9) Proposition. Let R be a Noetherian ring of characteristic p, let m be a mazimal
ideal, let M be a finitely generated R-module and N a submodule such that M/N s
supported only at m. Let V denote Annyym =2 (N iy m)/N. Suppose that ¢’ € R
and let W, denote the kernel of the map V. — F¢(M)/N = F¢(M/N) sending the
element represented by w € N :yy m to ¢'w? + NI,

a) Let N' = {w € M : dwld e N for all ¢ > ¢'}, so that N' = N* if ¢ is a ¢'-
weak test element. Then N = N' if and only if there exist finitely many integers
q(1),...,q(r) = q" such that W,y 0 --- 0O Wy = 0. More precisely, (N' (0 (N
m))/N may be identified with Ng>qy W,

b) Suppose, moreover, that (R, m, K) is local and that (S,n, L) is a flat local R-algebra
such that n = mS and L/K is separable. Suppose that there exists an element
w€SArRM—S®rN such that d'w? € (S Qr N)[q] for all ¢ > ¢'. Then there
exists an element w of M — N such that ¢'w? € N for all ¢ > ¢, i.e., such that
w € N'. Moreover, w may be chosen so that is its image in M/N 1s in V.

¢) Suppose that R has a q"'-weak test element ¢ and that ¢’ € R°. If N is tightly closed
n M then Wy =0 for all sufficiently large q. In fact, if we define T, O W, to be
the set of all elements in V represented by w € N :py m such that ¢'w? € (N[q])*
in F¢(M) then the sequence {T,} 1s decreasing and T, =0 for all ¢ > 0.

Proof. a) There is no loss of generality in replacing M, N by M /N and 0, respectively.
Thus, we may assume that M has finite length and that N = 0. If 0’ is strictly larger
than 0 it must contain an element which is killed by m, since M has finite length. Thus,
0=0if0=0nNV. Now, an element v € V isin 0’ iff v € W, for all ¢ > ¢, by the
definition of 0. Thus, 0' NV = Ng>¢ W,. It follows that 0 = 0" iff Ny>e W, = 0. Since
V' is a finite-dimensional vector space, this intersection is 0 iff some finite subfamily of
the {W, : ¢ > ¢’} has intersection 0.

b) If we assume that there is no such element in N’ then we can choose ¢(1),...,q(r) >
q' such that N; W,y = 0, which implies that N;S @rWy;) =0in S@r V. Since V and
the W,(;) are killed by m and mS = n, we may write L @ Wy(;) and L @ V instead.
Now, we may identify L @5 V with the socle in S@p M/S@r N = S®@r (M/N) (again
using that mS = n and that S is R-flat), and (7.8) allows us to identify L @ W, with
the kernel Wé of the map from L @x V to F&(S @r M)/(S @r N)[q] which sends the
class of w to the class of ¢/w?. Since ﬁWé(i) = 0, the desired conclusion follows from
part a) applied over S.

¢) As in part a) we may assume that N = 0 and that M is supported only at m. It
is clear that T, 2 W,. To see that T,, C T, suppose that ¢'vP? € 0* in F**'(M). Then

"= 0in FerITh(AL) for all p* > ¢”, and this implies that
c”(c’vq)pth1 = 0 in Fet(+D (A1) for all p* > ¢, since the exponent on ¢ in the latter
expression has increased. Thus, ¢'v? € 0* in F°(M), as we wanted. Since the T, are
decreasing, to complete the argument it will suffice to show that if v € N,T; then v € 0*.

But if v € N,T, then for all ¢, ¢'v? € 0* in F¢(M), and so c”(c’vq)‘l” = (c”c’q”)qu” -0
in Fe"'e”(M) for all ¢ = p®. Thus, v € 0* in M. O

h h
C//(C/qu)p — c//c/p qu
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Theorem 7.12 below contains a central part of the argument for proving that tight
closure behaves well under smooth base change in the sense indicated in Theorem 7.1.
Before giving this result, we need a lemma recalling some basic facts, and a discussion
of the existence of common test elements.

(7.10) Lemma. Let (R,m,K) — (S,n,L) be an arbitrary flat local homomorphism.

a) If z € n is not a zerodivisor on S/mS, then z is not a zerodivisor on S and
R — S/z8 is again a (faithfully) flat local homomorphism.

b) More generally, if z1,...,z4 € n form a reqular sequence on S/mS, then they form
a reqular sequence in S and R — S/(z1,...,24)S 1s again a faithfully flat local
homomorphism. The elements zy,...,zq also form an S-sequence on S @r M for
every nonzero finitely generated R-module M.

¢) Suppose that M has finite length over R with V- = Annps m, and that S/mS is zero-
dimensional with socle Q). Then we have an injection Q Qi V — S/mS @x V =
SQrV — S ®@r M, under which QQ @ V 1s sent onto the socle in S @r M.

d) If S/mS is Gorenstein, z1,...,z4 € n are elements whose images in S/mS are
a system of parameters, Iy = (z},...,25)S, and Er(K), Es(L) denote injective
hulls for K = R/m over R and L = S/n over S, respectively, then Eg(L) =
(lii>nt5/ft) @r Er(K) where the map S/I; — S/Ii41 1s induced by multiplication

by z1...zq. In other words, if I = (z1,...,24)S then Eg(L) = H}i(S) @r Er(K).
Moreover, for every module W of finite length over S which is an essential extension
of L, there exists a module M of finite length over R which 1s an essential extension

of K and an integer t such that W can be embedded in S/I; @r M.

Proof. a) is a special case of (20.F) Corollary on p. 151 of [Mat] and the first statement
in b) is immediate from a) by a straightforward induction. The second statement
reduces to the case where M = R/I is a cyclic module, since M has a filtration by
cyclic modules: but S/IS is flat over R/I, and we may then apply the first statement
of b).

For the last sentence of ¢), note that the first of the three maps is injective since K
is a field, and the third is injective because S is R-flat. The elements of the socle of
S @r M are killed by m, and so lie in Ann,, (S @r M), which, since S is flat, may be
identified with S @r Ann,, M = S@rV = (S/mS) @k V, and it is then clear that
Homg(L,(S/mS) @k V) = Homg/ms(L,S/mS) @ V=0Q @ V.

It remains to establish d). Since Ex(R) = UpERpm» (K) when Eg /,n (K) is identified
with Anng, () m" and, similarly, Es(L) = UhEs/mn s(L), we can reduce to the case
where R is an Artin local ring. Suppose we write E = Er(K). It will suffice to show
that for every ¢, E @pr S/I; is the injective hull of L over S/I;: S/I; is still flat over
R. Thus, we may assume that S is zero dimensional and flat over R, with a Gorenstein
closed fiber. Since E and R both have filtrations by ¢(R) copies of K, the length of
both E@r S and RQr S = S is ((R)((S/mS). By part ¢), E® S has a one-dimensional

socle, and since it has the same length as S, it must be an injective hull for L over S.
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The final statement is then immediate from the fact that both Er(K) and Es(L)
are the directed union of the finite length essential extensions of K over R and L over
S, respectively. O

(7.11) Discussion. In the results that follow we frequently need to know for an extension
R — S that there is an element of R that serves as a test element in both rings. We
recall from Theorem 6.21 that if R — 5 is a flat map of local rings such that (Ro)_lsred
is regular, the singular locus in Sieq is closed, and S — S is regular, then there is an
element ¢ € R° that is a completely stable ¢’-weak test element in all of the rings R, R,
S, and S.If S is reduced, ¢ can be chosen to be a completely stable test element in all
four rings.

We note that in the special case where (R, m,K) — (S,n,L) is a flat local homo-
morphism of complete local rings such that the closed fiber, S/m.S, is regular and L/ K
is separable, there is a much simpler way to see that there is an element ¢ € R which
is a ¢'-weak test element for both R and S. By [HH4] (8.13d) we may pass to the case
where R is reduced (the ideal of nilpotents in R expands to the ideal of nilpotents in

S).

Choose a copy of K C R to serve as coeflicient field and represent R as module-
finite over A = K[[zy,...,2,]]. Since L is separable over K, we may extend K to a
coefficient field L C S. Let yq,...,yq4 be elements of n whose images in S/mS form a
regular system of parameters. Then A C B = L|[z1,...,%n,Y1,...,y4]] € S and let

T = B ®4 R, which has an obvious map T — S. Since T, § are complete and flat
over their common subring R, which is fixed by the map, and since the induced map
of closed fibers is an isomorphism, T' = S. (The map is onto, since it is surjective on
the residue fields, it is clear that the maximal ideal of 7" maps onto that of S, and the
rings are complete. To get injectivity, note that it suffices to prove this modulo powers
of the maximal ideal of R. Thus, we may assume that R is Artin, and, by Noetherian
induction, that the kernel is contained in the ideal generated by the socle of R in T.
But the kernel is R-flat and killed by the maximal ideal of R. It follows that the kernel
is 0 or else R = K, and we are done in either case.) But the result is then immediate
from [HH4] (6.17): the weak test element for R constructed there retains that property
when we tensor with a locally excellent regular A-algebra. O

Theorem 7.12 is a central tool in our theory of how tight closure is affected by regular
base change. The first four parts, which are listed with lower case Roman numerals,
describe behavior without the assumption that the induced extension of residue fields
L/K is separable. The last three parts, listed as a), b), and c¢), give stronger results
which hold when L/K is separable.

Before giving the statement we recall from §10 of [HH4] the notion of tight closure with
respect to a famaily of ideals C directed by O. Given a Noetherian ring R of characteristic
p and a submodule N of a finitely generated R-module M, we say that u is in the tight
closure of N with respect to @ if there exists an ideal C' € € such that Cz? € N in
Fe(M) for all ¢ > 0. The usual notion corresponds to tight closure with respect to the
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family of ideals generated by an element of R°. The notion is used for the case where
C consists of a single principle ideal in part iii) of Theorem (7.12).

(7.12) Theorem. Let (R,m,K) — (S,n,L) be a flat local homomorphism such that

S/mS is reqular. Let N C M be finitely generated R-modules such that M /N has finite

length. Suppose also that there is an element ¢ € R° that 1is a ¢'-weak test element for

both R and S, which, by (7.8) above, is always the case if, for ezample, R and S are
complete and LK 1s separable. Let z1,...,zq € n be elements whose images in S/mS
are a reqular system of parameters. Then:

1) If SOrRN+(21,...,24)(S@rM) is tightly closed inS@rM, then SQrRN+I(S@rM)
18 tightly closed in S@pr M for every ideal I generated by monomaials in the elements
21y ey 2q. In particular, S @r N 1is tughtly closed in S @r M.

) If S@r N+ (21,...,24)(S@r M) 1s not tightly closed in S @r M, then there is an
element of the tight closure whose image in S @r (M/N) may be identified with an
element of L @i V', where V is the socle in M/N.

iii) Let S = S/(z1,...,24). If S@gr N is tightly closed with respect to {¢S} in S@r M
then S@Qr N +I(S@r M) is tightly closed in S @r M for all ideals I generated by
monomaials in the elements z1,...,24.

iv) If N is tightly closed in M and the socle of M/N is one-dimensional, then
S@r N+ I(S@r M) is tightly closed in S @r M for every ideal I generated by
monomaials in z1,...,24.

Moreover, if L/ K 1s separable then:

a) S@r (Nyy) = (SOr N)Sgpm-

b) If N is tightly closed in M then S @r N + I(S @r M) s tightly closed in S @p M
for every ideal I generated by monomaials i z1,...,24.

c) If N is tightly closed in M then S @r N s tightly closed in S @r M.

Proof. We may replace M, N by M/N and 0 without affecting any relevant issues.
Hence forth we assume that N = 0 and that M has finite length. Let V denote the
socle in M = M/N.

We first establish i) and ii). Let I; denote the ideal I 4 (z,...,z%). If we know
that I,(S @r M) is tightly closed for all ¢ then the result for I follows, since that will
place the tight closure of I(S @r M) in the n-adic closure of I(S @r M). Thus, there
is no loss of generality in assuming that I contains a power of each z;. It is easy to
see that such an I is the intersection of two larger such I's, unless it has the form
I = (z",...,25") for nonnegative integers a; (cf. [EHo]). But if I = I' N I”, then
I(S@rM)=I'(S@r M)NI"(S @r M): this follows from the fact that, by (7.10b),
the 2’s form a regular sequence on S @r M. Thus, if I'(S @r M) and I"(S @r M) are
tightly closed, so is I(S @r M). We have therefore reduced to studying the case where
I=(2{",...,2;"). There is nothing to prove if any a; is 0. We henceforth assume that
the a; are positive integers.

By (7.10¢), the socle in (S/I)@rM = (S@rM)/I(S@rM)is (Lz2)2rV = (Lo V)2

where z = jz;lj_l and V is the socle in M. If 0 is not tightly closed in (S/I) @ r M
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then some element of the socle must be in the tight closure of 0. Write this element as
wz where w € L&k V. Then for all ¢ > ¢ we have that cw?27 is 0 in FE((S/I)@r M) =
(S/Iy@r FE(M) = H/IWH, where H = S@r F¢(M) = F$(S@rM). By (7.10b), the
z; form a regular sequence on H, and it follows that (I H) g 295 = (27, ... 20 H.
Thus, cw? € (z],...,25)F&(S@r M) for all ¢ > ¢, and hence the element w € L& iV C
S @r M is in the tight closure of (z1,...,24)(S @r M). This establishes both part i)
and part ii).

To prove iv) it suffices to show that (zy,...,24)(S ®@r M) is tightly closed in S @r M,
and, by part ii), if not there is an element of L @5 V in the tight closure. Since V is
one-dimensional this element has a nonzero multiple v in V', and so we find that cv? =0
in (S/(=7.....29)S) @r F(M) for every ¢ > ¢'. Since v € M and S/(z{,...,25)S is
faithfully flat over R by (7.10a), we have that cv? = 0 in F°(M) for every q > ¢,
contradicting the fact that 0 is tightly closed in M.

To prove iii) note that if w € L&V C S@grM is in the tight closure of the submodule
(z1,...,24)(S @r M) then for all ¢ > ¢’ we have that cw? € (2{,...,z9)FS(S @r M).
Note that R — S is faithfully flat local. Let  denote images after tensoring with S over
R. Then ¢@?! =0in S Qp Fe(S @gr M), which is the same as Fe(g @pr M) calculated
over S. This shows that @ is in the tight closure of 0 in S ®p M with respect to ¢S,
and so must be 0. But the map S ®p M — S Qp M is injective when restricted to
S®rV 2 L@k V, since, by (7.10¢), the socle in S @ g M may also be identified with
L @x V. This completes the proof of part iii).

In the remainder of the argument we assume that L/K is separable. We must estab-
lish a), b), and ¢). First note that b) = c¢), since we may take I to be (0). Moreover,
¢) = a) is clear.

Thus, it suffices to check that b) holds, and by part iii) of the theorem it suffices to
show that a nonzero element of L @r V cannot be in the tight closure of 0 in S@rp M
with respect to ¢S. But R — S is faithfully flat local, mS is the maximal ideal in S,
and the extension of residue fields is separable. If there were such an element we could
apply (7.9b) to conclude that there exists a nonzero element v € V' such that cv? =0
for all ¢ > ¢', which contradicts the fact that 0 is tightly closed in M. O

(7.13) Remark. Note that (R,m,K) — (S,n,L) may be smooth even when L is not
separable over K: this happens even when R = K is a field. E.g., let & be a field
of characteristic p, let B = k[t,z] be the polynomial ring in two variables over k and
let A = k[t? + z]. Note that B = A[t] is a polynomial ring in one variable over A,
and that A — B is therefore smooth. Let S be the localization of B at B and let
R = K be the fraction field of A, which is a subring of S, since xtB N A = (0). Then
K = E(t? + 2) C k[t, 2], is smooth, but the map of K — L = k(t) sends the field

generator tP 4+ x to tP and, hence, is not separable.

Theorem 7.15 gives a sharp version of (7.12b) when R is complete: we no longer need
to assume that M /N has finite length. We first need:

(7.14) Lemma. Let (R,m,K) be a local ring of characteristic p and let N C M be
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finitely generated R-modules.

a) If R has a weak test element then N* = Ny(N + m'M)* in M.

b) Let R be complete, let R — S be flat local, let I C S be an ideal, and suppose that
for every finite length R-module H such that 0%, =0, I(S@pr H) 1s tightly closed in
(S®@gr H). Then for every finitely generated R-module M and submodule N which
is tightly closed in M, we have that SQrN +1(S®@rM) is tightly closed in S@r M.

Proof. a) Let N; denote the tight closure of N + m'M in M. We know from [HH4]
(8.13b) that N* is an intersection of m-coprimary tightly closed submodules Ny of M.
If + € M — N and we choose such an Ny with # € Ny then Ny D N +m'M for some ¢
and so Ny O Ny for some t. Thus, N* = ﬂt Ny.

b) We apply part a) to N = N* and so obtain that N = (), N;. Since M is complete,
by Chevalley’s theorem for every h we may choose t(h) such that Ny € N + mh M.
Since M/Nt(h) has finite length, S @ g Nyp) + I(S @r M) is tightly closed in S @pr M,
and so the tight closure of SQrR N+ I(S®@r M) in S®@pg M is contained in S @ g Niny +
I(SOrM)CS@r(N+m"M)+I(S@rM)=S@rN+I1(S@rM)+m"(S@r M)
for all h. Since every submodule of S ®@pr M is n-adically closed and m C n, we see that
S@r N +I(S@r M) is tightly closed. O

(7.15) Theorem. Let (R,m,K) — (S,n,L) be a flat local homomorphism such that
R is complete, the closed fiber S/mS s reqular and L/K is separable. Let N C M be
arbitrary finitely generated R-modules. Then:
2) S ©r (Vi) = (5 O S)aopar-
b) If N s tightly closed in M and zi,...,zq are elements of S that generate the
mazimal ideal of the fiber S/mS, then S @r N 4+ I(S @r M) is tightly closed in
S @r M for every ideal I generated by monomials in z1,...,z4.
c) If N is tightly closed in M then S @r N s tightly closed in S @r M.

Proof. b) = c¢) by taking I = (0) and ¢) = a) is clear. We need only prove b). But b)
is immediate from (7.12b) and (7.14b). O

We next extend (7.12abc) in a different direction:

(7.16) Theorem. Let (R,m,K) — (S,n,L) be a flat local homomorphism such that
the closed fiber S/mS 1s regular and L/K 1s separable. Let N C M be finitely generated
R-modules such that M /N has finite length. Suppose also that there is a ¢ € R° which
is a ¢'-weak test element for both R and R (which is always the case if R is excellent).
Then:
a) S@r (Ny) = (S OrN)5g,um-
b) If N s tightly closed in M and zi,...,zq are elements of S that generate the
mazimal ideal of the fiber S/mS, then S @r N 4+ I(S @r M) is tightly closed in
S @r M for every ideal I generated by monomaials in z1,...,z4.
c) If N is tightly closed in M then S @r N s tightly closed in S @r M.

Proof. b) = ¢) = a), and so it suffices to prove b). As usual, we may assume that
N = 0. It will certainly suffice to show that S @r N + I(S @pr M) is tightly closed in
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S@p M, working over S, so that there is no loss of generality in assuming that S is
complete Because R, R have a common weak test element, we know from 7.12¢) that
R @gr M = M still has the property that 0 is tightly closed. Thus, we may pass to R
and M. But then R, S have a common weak test element and we may apply 7.12b) to
obtain the desired conclusion. [

To escape from the assumption that M /N has finite length when R is not complete,
as well as to escape from the assumption that R is local, we shall need either to impose
the hypothesis that N remain tightly closed in M after arbitrary localization (this is
proved in a number of special cases in [AHH]) or else to impose the hypothesis that S
be projective (or N-flat, defined below) over R. We first prove:

(7.17) Theorem. Let (R,m,K) — (S,n,L) be a flat local homomorphism of Noe-
therian rings of characteristic p such that the closed fiber K — S/mS is geometrically
regular and suppose that there is an element ¢ € R° that is a ¢'-weak test element for
both R and R. Let N C M be finitely generated R-modules such that M /N has finite
length. Then (S@rN)* = S@r Ny, in S@Qr M. In particular, if N is tightly closed in
M then S @r N s tightly closed in S @r M.

Proof. The next to last statement follows from the last. We may assume that M has
finite length, that 0 is tightly closed in M, and we need only show that 0 is tightly
closed in S @r M. But since Assg M = {m}, S is flat over R, and mS is prime, it
follows that Assg{S @r M} is {mS}. If 0 is not tightly closed in S @g M, there is an
element of the tight closure whose annihilator is m.S. It follows that we may obtain a
new counter-example by localizing S at mS. But now n = mS and the extension of
residue fields is separable. Since R and R have a common weak test element, the result
now follows from (7.16¢) O

We shall say that an R-module S (in our context, S will usually be an R-algebra)
is intersection-flat or N-flat if S is flat and for every family of submodules {M)}xea
of every finitely generated R-module M we have S @r ([, Mx) = (), S @r My (quite
generally, there is an obvious map from the first module to the second). The N-flat
modules include R and are closed under arbitrary direct sum and passing to direct
summands. Thus, they include the projective R-modules. On the other hand, if R
is complete local and R — S is flat local then S is easily seen to be N-flat, using
Chevalley’s theorem. Moreover, R|[[z]], where R is Noetherian and = denotes a finite
string of variables, is N-flat over R, since for each N C M finitely generated we can

identify R[[z]] @r M and R][[z]] @r N with M[[z]] and N[[z]] respectively.

We are now ready to prove one of our main results:

(7.18) Theorem. Let h : R — S be a smooth homomorphism of Noetherian rings
of characteristic p such that R is locally excellent (or such that every local ring of R

contains a weak test element for its completion). Let N C M be finitely generated
R-modules.
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a) Suppose that Np s tightly closed in Mp for every prime ideal P of R. Then
(S@RrN)q is tightly closed in (S@QrM)q for every prime ideal QQ of S. In particular,
S @pr N 1s tightly closed in S @rp M.

b) Suppose that R has a weak test element, that S is a projective (or N-flat) R-module,
and that N s tightly closed in M. Then S @r N s tightly closed in S @r M.

Proof. a) If not, choose () € Spec S minimal such that the tight closure of (S @r N)g
is strictly larger than (S ®@gr N)g: assuming that there is at least one such @, we can
do this. It then follows that (S @r N)§5/(S @r N)q is killed by a power of Q. We
can replace S by Sg, R by Rp, where P is the contraction of ) to R, and M, N by
Mp, Np, respectively. Changing notation, we now have that (R,m,K) — (S,n, L) is
smooth local, that N is tightly closed in M, but that (S ®g N)gg 1//(S @r N) is a
nonzero module of finite length. As usual, we may assume in addition that N = 0.

The tight closure W of 0 in S @ p M has finite length, and so is killed by a power of
m. Let Wy be W N Annsganym = W N (S ®@r V), where V. = Annpysm, since S is
R-flat. If W # 0, then Wy # 0. On the other hand, since R has a weak test element,
N; N: = 0, where Ny = (m'M)3,. It follows that (),(N; N V) = 0, and since this is
a decreasing sequence of finite-dimensional vector spaces, we can choose t such that
NNV =0. Then (S @r N)N(S@rV) =0, and so S @r N; does not meet Wy. The
image of Wy in (S @r M)/(S @r Ni) 2 S @r (M/Ny) will still be in the tight closure
of 0 and will be nonzero. This means that M/N, gives a new counterexample: one in
which the module is of finite length. Since R contains a weak test element for R, we
have now contradicted (7.17). This completes the proof of part a).

b) Since R has a weak test element, N is an intersection of submodules N’ of M such
that M /N’ is of finite length and supported at a unique maximal ideal of R. Since S is
N-flat, it will suffice to show that each S @ N’ is tightly closed in S @ g M. But now
part a) applies, since each N’ remains tightly closed after localization. 0O

(7.19) Remark. Even when R is an excellent local ring or a local ring at a maximal
ideal of an algebra finitely generated over an algebraically closed field, we do not know
that if I is tightly closed in R then IR is tightly closed. It is still possible that elements
of JR lie in (IR)*, where J D I consists of elements of R contained in (IRp)* for some

prime P of R lying under a prime ) in the support of (IR)*/IR

(7.20) Corollary. If R is an excellent local ring of characteristic p and N C M are
finitely generated R-modules, then for every R-module N' with N C N' C M that

remains tightly closed under arbitrary localization, ]\ATJE C (N'Y. In particular, if N is

tightly closed i M and remains so under localization, then N is tightly closed.

Proof. The first statement follows from the second, while the second statement is im-
mediate from Theorem 7.16, since R will contain a weak test element for R and R — R
is smooth. O

We also have:
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(7.21) Corollary. Let (R,m, ) be a local ring and let N C M be finitely generated R-
modules. Suppose that N is tightly closed in M. Then for every smooth homomorphism
R — S such that all maximal ideals of S lie over m, S@pr N 1s tightly closed in S@p M.

Proof. A counterexample will remain a counterexample after we localize S at a maximal
ideal in the support of (S @r N)*/(S @r N). Thus, we may assume that (R, m, K) —
(S,n, L) is local. As usual, we may assume that N = 0. Since 0 is tightly closed in M,
it 1s the intersection of a decreasing sequence of submodules Nt C M such that each
Ny is tightly closed, and M/Nt is of finite length. But then Ny is the completion of a
submodule N; C M such that M/N; = M/Nt Since Ny C m"M for all + > 0 and for
any h, we have that Ny C m”"M for all t > 0 and for any h. It then suffices to prove
that S @gr Ny is tightly closed in S @ g M for all ¢, for this forces the tight closure of 0
in S®gr M into Nym"(S @ M) = 0.

But M /Ny has finite length, and remains tightly closed over R. Exactly as in the last
paragraph of the proof of (7 17) we may localize S at mS and get a new counterexample
But then we may pass to R and S : we shall have that the maximal ideal of R expands
to that of S and that the extension of residue fields is separable, and this contradicts
(7.16¢). O

We next observe:

(7.22) Corollary. Let (R,m,K) — (S,n,L) be a flat local homomorphism of Noe-
therian rings of characteristic p such that the closed fiber S/mS is reqular and L/ K 1s
separable. Suppose that R s excellent. Let N C M be finitely generated R-modules. If
N s tughtly closed and remains so under localization and zy,...,zq are elements of S
that generate the mazimal ideal of the fiber S/mS, then S@r N +I(S @r M) 1is tightly

closed in S @r M for every ideal I generated by monomials in zy,...,2q4.

Proof. We replace S by S, which only makes the problem harder. By (7.19), N is tightly
closed in M, and the result follows from (7.15b). O

(7.23) Remark. We believe, but do not know, that if (R, m,K) — (S,n, L) is smooth
and K — (S/mSY is separable then the induced map of completions is smooth as
well. There is no problem if L/K is separable or if S is essentially of finite type as
an R-algebra. However, in general, we do not know that a flat local homomorphism
(R,m,K) — (S,n, L) of complete local rings is smooth if K — S/mS is geometrically
regular. The problem is that we do not know that, when R is a domain, one can deduce
the smoothness of the generic fiber from the smoothness of the closed fiber (although
it is possible to carry out the argument either if L is separable over a finite purely
inseparable extension of K or if R has a desingularization). Cf. [EGA] IV (Seconde
Partie), Remarques (7.5.4) (i) and Proposition (7.9.8).

We next prove a basic result concerning when F-regularity is preserved by a regular
morphism.
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(7.24) Theorem. Let (R,m,K) — (S,n,L) be a flat homomorphism of Noetherian
local rings of characteristic p. Suppose that S — S is reqular and that the singular locus
i S s closed.

If R s weakly F-reqular and the generic and closed fibers of the map R — S are
reqular, then S 1s weakly F-regular.

In particular, if R — S s a flat local homomorphism of local rings such thatR 1s
weakly F-reqular and S 1s excellent and the generic and closed fibers are reqular, then
S 1s weakly F-reqular.

Proof. By Theorem 7.21, there is a test element ¢ in R for both R and S. Since R is
weakly F-regular it is normal, and, hence, approximately Gorenstein (cf. [HH4] (8.5)
and [Hod]): that is, there is a decreasing sequence {I;}; in R of m-primary irreducible
ideals cofinal with the powers of m. Choose elements zy,...,2z4 € S whose images in
S/mS are a regular system of parameters. By (7.10c) the ideals J; = IS+ (21,...,21)S
form a sequence of irreducible ideals of S cofinal with the powers of n. To prove that S
is weakly F-regular it will suffice to show that .J; is tightly closed for every t (every ideal
of S is an intersection of n-primary irreducible ideals .J, and each S/.J is embeddable
in some S/.J;). But this is immediate from part iv) of Theorem 7.12, since the socle in
R/I, is one-dimensional. [

We next globalize this result:

(7.25) Theorem. Let R — S be a flat homomorphism of Noetherian rings of charac-
teristic p.

a) Suppose that (R°)™'S is regular and that S is locally excellent (or that for each
mazimal ideal m of S the singular locus in Spec Sy, 1s closed and the map from Sy,
to (Sm) us reqular). If for every mazimal ideal m of S having contraction P to R,
Rp is weakly F-regular and S,,/PSy, 1s reqular, then S is weakly F-regular.

b) Suppose that R is weakly F-reqular, that S is locally excellent, and that R — S
has reqular fibers over both minimal primes of R and over closed points. Suppose
that every mazimal ideal of R lies over a mazimal ideal of S, which s the case if
R 1s a Hilbert ring and S 1s finitely generated as an R-algebra. Then S 1s weakly
F-regular.

c¢) Suppose that R is F-regular, that S is locally excellent, and that R — S has reqular
fibers. Then S 1s F-regular.

d) Suppose that R and S are finitely generately algebras over a field K. If R is weakly
F-regular and the fibers over minimal primes and over closed points are reqular,
then S 1s weakly F-reqular.

Proof. a) is immediate from (7.24), since the issue of whether S is weakly F-regular is
local on the maximal ideals of S by Corollary (4.15) of [HH4], and the hypotheses on
S pass to its localizations at maximal ideals. b) then follows at once. c¢) follows from
(7.24): we need to show that S¢ is weakly F-regular for every prime ideal @ of S, and if
@ lies over P in R we know that Rp is weakly F-regular and that all fibers of Rp — Sg
are regular.
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The conclusion in d) follows from b), since algebras finitely generated over a field are
Hilbert rings and are excellent. [

(7.26) Remark. We cannot hope to prove that if R is weakly F-regular then R[z] is
weakly F-regular for an indeterminate z, unless we can prove that weakly F-regular
implies F-regular. To see this, note that if (R, m) is local and P is a prime ideal of
R such that dim R/P = 1, then there are maximal ideals n of R[z] lying over P, e.g.
PR[z] + (rx — 1)R[z] where r is any element of m — P. If we knew that R[z] is weakly
F-regular, then since R[z], is faithfully flat over Rp it would follow that Rp is weakly
F-regular. Induction on dim R/ P would then give this for all primes P C m.

(7.27) Remark. We now know that when R — S is a flat local homomorphism from a
weakly F-regular ring R to an excellent ring S such that both the generic and closed
fibers are regular, then S is weakly F-regular. Roughly speaking, what makes this work
is that a tightly closed module stays tightly closed after base change if the quotient has
finite length and a one-dimensional socle. However, we should point out that under the
given conditions, it is not true that tight closure commutes with base change in general:

cf. Example 6.18.

(7.28) Corollary. If R is a weakly F-reqular (respectively, F-reqular) local ring of

characteristic p and if R is excellent (or the map R — R is reqular), then R is weakly
F-reqular (respectively, F-reqular).

In Theorems 7.29 and 7.31 below we indicate some important special cases of our
results on base change: in fact, in some of these cases we can improve on our earlier
results. It is worth noting that there are particularly strong results concerning passage
from R to L @ R when L is a finite separable extension of K. To this end, if R is
a Noetherian ring of characteristic p, let 7, (R) (respectively, 7, (R)) denote {c € R :
if + € 0* in some finitely generated R-module M then cx? = 0 in F°(M) for all ¢ >
q'} (respectively, the intersection of the contractions of 7, (B) for local rings B that are
completed local rings of R). (If any element of 7, (R) or 74 (R) is in R° then 74 (R)
(respectively, 7,(R)) is the ideal generated by the ¢'-weak (respectively, completely
stable ¢’-weak) test elements of R.)

(7.29) Theorem. Let R be a Noetherian ring of characteristic p containing a field K.
a) Let L be a finitely generated (respectively, an arbitrary) separable field extension
of K, and suppose that R is locally excellent (respectively, essentially of finite type
over K ).
i) If R is F-regular, then L @ R is F-regular. If R is a weakly F-regular and L
15 algebraic over K then L @ R 1s weakly F-reqular.
i) If R has a weak test element and N C M are finitely generated R-modules
such that N s tightly closed in M, then (L @x R) @r N is tightly closed in
(L&x R)@r M (of course, these may be identified with L @ N and L@ M,
respectively) over L @ R.
a®) Let L be a finite separable extension of K. Let S = L @k R.
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1) If R is weakly F-reqular, F-regular, or both F-rational and a homomorphic
image of a Cohen-Macaulay ring (= F-rational and Cohen-Macaulay), then
so1s S.

i) If N C M are finitely generated R-modules such that N s tightly closed in M
then S @r N is tightly closed in S @r M. Moreover, 7y(S) = 74 (R)S and
T4 (S)=T74(R)S.

b) Let L be a finite (respectively, arbitrary) purely inseparable extension field of K
linearly disjoint from the total quotient ring of R (and such that R is essentially
of finite type over K ) and let P be a prime ideal of R such that P(L @ Rp) is
radical (i.e. such that L s linearly disjoint over K from Rp/PRp), which implies
that P(L @k Rp) 1s mazimal. Then L @k Rp is weakly F-regular.

Proof. In all parts of the theorem, when L is not restricted to be finitely generated
over K the hypothesis that R be essentially of finite type over K is imposed simply to
guarantee that L @ R be Noetherian (it will be essentially of finite type over L). The
case for arbitrary L can then be deduced from the case where L is finitely generated
over K by a direct limit argument: see (6.14a). Thus, we assume henceforth that L is
finitely generated over I{ (and, hence, finite in case b)).

In part a), since K — L is separable, it is smooth, and so R — L @ R is smooth.
Since each local ring of L @ i R is essentially of finite type over a local ring of R, L&y R
is locally excellent. ai) now follows, in the F-regular case, from Theorem (7.25¢) or
from the proof of a°i) given below, while ai) follows, in the weakly F-regular case, from
Theorem (7.25b). aii) follows from part b) of Theorem 7.18: since L is free over K,
L @k R is free over R. We leave part a°) for last.

In part b), we have that L @ R is reduced and so may be identified with a subring
of R*°: thus, it is a flat purely inseparable extension of R, and we may apply (6.17h).

It remains to prove a®). We first consider the final statement. Let I denote 7, (R)
(respectively, 7, (R)) and let J denote 74 (S) (respectively, 7, (S)). First suppose that
L is Galois over K. Then .J is also stable under the induced action of G = Gal(L/K)
on L @k S and so J = L @x (J N R). (This is a vector space fact: L @x S is a
direct sum of simple modules L over the twisted group ring L[G] = T, cqLg with
(Ag)(Ng") = (Ag(N))(gg"), and so every G-stable L-subspace of L @5 S is a direct sum,
as an L[G]-module, of copies of L, and is therefore extended). Since an element of R
that becomes a ¢'-weak test element (or a completely stable one) in a faithfully flat
extension must already be one, .J will have the form L @5 Iy for a certain ideal Iy of R
contained in I. To complete the proof in the Galois case, it remains to show that I C .J
when we make a finite separable extension. Before pursuing this point, we observe that
when L is not Galois we can consider L' O L finite Galois over K (and L), and the
corresponding ideal J" in L' @ g R. Then J =.J' NS and J' = L' @ I (two instances
of the Galois case) so that J = (L' @x I)N (L @x R) =L@ I =18.

It remains to show that an element of I remains an element of J. The key point
is that every finitely generated S-module is a direct summand of a module extended
from R. We can embed M into L|G] @1, M : as an S-module, this is a direct sum of
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copies of M. Call this module N. We next claim that for each L[G]-module N, we
have N &2 L @5 N9, where G acts on L canonically. For this, it suffices to show that
L[G], as a left module over itself, is isomorphic with a direct sum of copies of L with
the canonical structure. In fact, there is an L[G]-module isomorphism of L @x L with
L[G] (where the L[G]-module structure on L @i L is induced by the canonical structure
on the first copy of L) sending A @ u to L eqAg(p)g € L[G]. Cf. [SGA 4%], p. 14.
The fact that this map of L-vector spaces has rank |G| is equivalent to the fact that
the elements of GG, thought of as functions from L to L, are linearly independent over
L. Since N = L[G] @ M the action of G on N is R-linear, and so N¢ is an R-module.
In fact, N 2 (L[G]9) @x M = (LB) @k M where 3 = ©,c¢g: as an R-module this is
isomorphic with r(L @ x M) = MG,

It is now quite easy to see that an element ¢ € 7, (R) is in 7, (5) for S =L @k R :
the point is that since every S-module is a direct summand over S of one of the form
L®g M, where M is an R-module, it suffices to check the defining condition on modules
of the form L @5 M, where the tight closure of 0 is L @ 073;.

Finally, suppose that ¢ € 7, (R). Suppose that ) is a prime ideal of S lying over P
in R. We know that ¢ € 7 ((Rp)). Now (S¢g) is a local ring, at one of the maximal
ideals, of L @ g (Rp). Thus, it suffices to show that if (R, m, ) is a complete local ring
containing a field K, L is a finite separable extension of K, and ¢ € 7, (R), then for
each maximal ideal Q of S if T = (L @k R)q then ¢ € 7, (T).

Let L = K[z]/f(2)K[z]. L @k R is a product of local rings and T is one of the
factors: in fact the maximal ideals in L @ R correspond to the irreducible factors of
f over the residue field © of R, the factorization lifts to R, and so T will have the
form R[z]/g(z)R[z] where ¢ is a monic polynomial that is irreducible and separable
modulo m. Now mT is the maximal ideal of T and Q' = T/mT = Q[z]/g(2)Q[z] is a
separable extension of Q. It follows from the discussion in the final paragraph of (7.11)
that T = Q' ®q R and so we may apply the result already established for ordinary test
elements when one tensors with a finite separable extension of a subfield to conclude
that ¢ € 7,(T).

Now suppose that N is tightly closed in M. It is clear that if L' @ N is tightly
closed in L' @ g M for a larger field L' then L @ N will be tightly closed in L @ M.
Hence, we may assume, as above, that L is Galois over K with Galois group G. If
d € S° is used in a given tight closure test we may use II ;¢ g(d) € R° instead. Thus,
we may perform all tight closure tests over S with test elements in R°. It follows easily
that (L @x N)* N M = N. But, since (L @x N)* is a G-stable L-vector space we have
that (L@Ox N)* =L@rx ((L@x N)*NM)=L®k N.

Now suppose that R is weakly F-regular. We know from the argument above that
every S-module is a direct summand of an extended R-module. Since 0 will be tightly
closed in every module of the form S ®@gr M, it is clear that S is weakly F-regular. If R
is F-regular, we note that each local ring Sg of S is the local ring of L @ x Rp, where
P is the contraction of (), at a maximal ideal. Since Rp is weakly F-regular, so is
L ®k Rp, and the result follows. Finally, if R is F-rational, C-M and n is any maximal
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ideal of S lying over m in R, we may choose x1,...,r4 € m so that they form a system
of parameters in R,,. The ideal (21,...,24)Rp, is tightly closed in R,,, and remains so
in L@k Ry = S, Since it is generated by a regular sequence it remains tightly closed
when we localize further to S, (cf. (4.5)). Since the 2; form a system of parameters for
Sn, we see that S, i1s F-rational, and n was arbitrary. 0O

Remark. We want to emphasize that we do not know, even for a weakly F-regular
algebra R finitely generated over a field K, that § = L @i R is again weakly F-
regular. We do not know this even when L = K(t), a pure transcendental extension
of transcendence degree one. The problem is that maximal ideals of S may lie over
prime ideals of R that are not maximal. In fact, if we knew that S is weakly F-regular
when we make a pure transcendental extension of transcendence degree one, it would
follows that every weakly F-regular finitely generated K-algebra is F-regular. For, by
induction, we would get this result for arbitrary pure transcendental extension fields of
finite transcendence degree, and then by a direct limit argument it would follow, using
(6.14a), for all pure transcendental field extensions. The result of M. P. Murthy given in
(8.1) would then suffice to show that the original ring R must have been F-regular. We
are grateful to Murthy for pointing out an error in an earlier version of this manuscript,
as well for allowing us to communicate the arguments given in (8.1).

(7.30) Discussion. The proof of Theorem 7.31 below is based on part b) of Theorem
7.18. However, a good deal of insight can be achieved by utilizing instead the fact that
polynomial and power series rings have many automorphisms, and an argument based
on this idea is given following the proof of Theorem 7.31.

Let R be a Noetherian ring containing infinitely many units «; such that if 1 # j
then o; — o 1s a unit. This condition is satisfied whenever R contains an infinite field
or a local ring with an infinite residue field.

Let = denote a string xy,...,2, of indeterminates over R. Let S = R[z] or R[[z]].
Let M be a finitely generated R-module. The R-automorphisms 6 of S induce R-linear
maps from S @r M to itself (we may also think of S @r M as M[z] or M[[z]], as
the case may be). Suppose that a submodule W of S @g M is stable under all these
maps. We want to make the observation that if Y, ,u,2” € W, then each u,z¥ € W.
(Here, v denotes a variable n-tuple of nonnegative integers and the sum is finite in the
polynomial case and possibly infinite in the power series case). By induction on the
number of variables, we may reduce to the case n = 1.

Now, for every unit o € R there is a unique (continuous in the power series case)
R-automorphism 8, of S sending = to az: if f = S;r;z’ then 0,(f) = Siria’z! € J.
The induced map on S @r M sends w = S;u;zt to wy = Diatu;zt.

Fix a positive integer N and choose aq, ..., an to be units of R such that if 7 # j then
a;—a; is a unit of R : this is possible because of our hypothesis on R. If w = Su;2' € W,
then every w, = S;a'u;x' € W, since wq = 0, (w). Applying this with a = aq,...,ay
we find that vazooz}(uixi) e W + :L'N'H(S @pr M) for all j. Since the size N + 1

Vandermonde matrix (oz?) is invertible, all the elements u;z' are in W + :L'N'H(S @r M)
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for i < N 4 1. But then every u;z' is in W + :L'N'H(S @pr M) for all N, and it follows
that every u;z' € W.

(7.31) Theorem. Let R be a locally excellent Noetherian ring of characteristic p. Let
x denote a string of indeterminates x1,...,x,.
a) If R is weakly F-regular then R[[x]] is weakly R-reqular. If R is weakly F-regular
and a Hilbert ring then R[z] is weakly F-regular.
b) If R is F-reqular then R[x] is F-reqular.
¢) Suppose that R has a weak test element. If S = Rlx] or R[[z]] and N C M are
finitely generated R-modules such that N is tightly closed in M, then S @r N s
tightly closed in S @r M.

Proof. Since R — R[z] is smooth, the statements in parts a) and b) about the polyno-
mial ring case are immediate from parts b) and ¢) of Theorem 7.25. To complete the
proofs of a) and b), it remains only to check the statement about R[[z]] in part a). Every
maximal ideal @ of R[[z]] can be written as mR|[[z]] + (2)R][[z]], where m is a maximal
ideal of R. It suffices to show that the completion of R[[z]]g is weakly F-regular for
each such ). The completion is isomorphic to (R, )][z]]. Since R, is excellent, it has a
weak test element, and so (R, ) is weakly F-regular. The result now follows from part
a) of Theorem 7.25.

It remains to establish ¢). In the polynomial ring case this is immediate from Theorem
(7.18b). In the power series case the fact that R[[z]] is N-flat over R together with the
fact that R has a weak test element enable us to reduce to the case where M /N is killed
by a power of a maximal ideal m of R. As usual, we may assume that M = M /N and
0 is tightly closed. This remains true when we replace R by (R,,). If 0 is tightly closed
in M[[z]] over (R, )[[x]] this is certainly true over R[[z]]. Thus, we may assume that R
is a complete local ring, so that R — RJ[[z]] is smooth, and the result now follows from

part b) of Theorem (7.18). O

We now comment on an alternative partial proof for part ¢) in the case where R
contains an infinite field K. It then follows from (7.30) that whenever ¥, u, 2" € 0* so
does each u,z”. Thus, it suffices to show that if ua? is in 0* in M[z] or M[[z]] then
v is in 0},. If there is a counterexample we can preserve the fact that u is not in 03,
while replacing R by the completion of its localization at a suitable maximal ideal. The
result is now clear, since we may use a weak test element ¢ € R°, and if cu? = 0 in
FS(S@rM)=Sapr F(M)=F¢(M)[z] or F¢(M)[[z]], then cu? =0 in F°(M).

Our next objective is to record improved versions of the results of §6. Theorem 7.32
below strengthens (6.1).

(7.32) Theorem. Let R be a Noetherian ring of characteristic p.

a) Let (R,m,K) be a local ring such that R — R has reqular fibers and let ¢ € R® be
any element such that (Ryed)c s F-reqular and Gorenstein. Then ¢ has a power
which is a completely stable q'-weak test element for R. If R 1s reduced, then ¢ has
a power which 1s a completely stable test element for R.
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b) Let R be an algebra of finite type over a local ring (B,m,K) such that B — B s
smooth (e.q., such that B is excellent). Let ¢ be an element of R® such that (Ryed ).
18 F-reqular and Gorenstein. Then ¢ has a power which 1s a completely stable weak
test element for R. If R s reduced then ¢ has a power which 1s a completely stable
test element for R.

Proof. We can argue precisely as in the proof of Theorem 6.1: we pass to the reduced
case, and then we need to see that (R)c (respectively, for b), that (R @p B)c) is F-
regular and Gorenstein. Since R — R has regular fibers (respectively, B — B is smooth
and, hence, R — R®p B has regular fibers) we have that (R®p B)c is F-regular (since

R. is, and we may apply part ¢) of Theorem 7.25), and Gorenstein (since R, is, and so

are the fibers). 0O

We also obtain an improved version of Theorem 6.21 on the existence of common
test elements. (Likewise, Theorem 6.22 is valid with the weakened hypothesis that
(R°)™!'S\eqa be F-regular and Gorenstein instead of regular.)

(7.33) Theorem. Let (R,m,K) — (S,n,L) be a flat map of local rings such that for
some ¢ € R°, (Sred)e 18 F-regular and Gorenstein. (There will be such a c if (R°)™! Syed
18 F-reqular and Gorenstein and the locus which fails to satisfy these conditions is closed
in Syed.) Suppose that S — S has reqular fibers. Then ¢ has a power that is a completely
stable ¢'-weak test element in all of the rings R, R, S and S. If S is reduced then ¢ has
a power that 1s a completely stable test element in all of the rings R, R, S and S.

Proof. The argument is the same as for (6.21): we can pass to the reduced case, and

~

we then observe that (5). is F-regular and Gorenstein. The rest of the argument is the
same as for (6.21). O

(7.34) Corollary. Let (R,m,K) be a reduced local ring such that for every x € m, R,
is Gorenstein and F-reqular. Suppose that R is excellent (or that R — R has reqular
fibers). Then R has an m-primary ideal whose intersection with R° consists of test
elements (thus, T(R) is m-primary).

Proof. This is immediate from (7.32). O

(7.35) Discussion. If (S,n, L) is a local ring then 7(S) is the intersection of the annihi-
lators of 03, as M runs through all S-modules of finite length. S has a test element iff
some element of 7(5) is in S°, i.e. iff 7(5) is not contained in any minimal prime if S,
in which case 7(5) is the same as the ideal generated by all the test elements. The test
elements in S always coincide with 7(5) N S°. See [HH4] (8.23) and its proof, where it
is also shown that one need only let M run through all finite length submodules of M
which are essential extensions of a copy of K. Moreover, it suffices to let M run through
any family of finite length essential extensions of K whose union is the injective hull of
K, since every finite length essential extension will be embeddable in one of these.

We next observe:
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(7.36) Theorem. Let (R,m,K) — (S,n, L) be a flat local homomorphism of complete
local rings such that L/K 1s separable and the closed fiber S/mS is reqular. Then
7(S)=7(R)S.

Proof. Let E be an injective hull for K over R and let M; denote Anng m!, which may
be identified with an injective hull for K over R/m'. Let zy,...,zq be elements of n
whose images in S/mS are a regular system of parameters. Let J; = (z1,...,2") and

W, = (S/Ji) @r M. Then by (7.10d), limW; is an injective hull for L over S, and by
—

(7.35), 7(5) = Ny Anng 03y, . By part b) of Theorem 7.12, Oy, = (S/J;) @ g (034, ). Let
B; = Anng (03, ). Since S/J; is R-flat by (7.10b), the annihilator of (S/J;) @r (03y,)
in S/J; is B4(S/Js), and it follows that the annihilator of (S/.J;) @g (03,) in S is
B,5 + .J;. Thus, T(S) = ﬂt(%tS—I—Jt) = mt,h(%tS+Jh) = ﬂt(ﬂh(%tS—I—Jh)) = N;B,S.
Now, by (7.35), 7(R) = N¢*B;. Since R is complete, by Chevalley’s theorem, for every
positive integer N, B; C 7(R) +m®" for ¢t > 0, and it follows that for every N > 0,
7(R)S = (N¢B¢)S C Ny(B1S) C 7(R)S + m™ S, which implies that 7(R)S = (N:B+5),
which is 7(S). O

(7.37) Remark. So far as we know, it may be true that whenever (R,m,K) — (S,n, L)
is a flat local homomorphism such that R is complete, S/mS is geometrically regular
over K, and (Syeq)q is regular for some d € R, then (z1,...,2,)M is tightly closed in
M for every finite length module M in which 0 is tightly closed, where the z’s are any
elements in n whose images in S/mS are a system of parameters. (We are no longer
assuming that L/ is separable.) If this is true, one obtains by exactly the same proof
given for Theorem (7.36) that if (R,m,K) — (S,n,L) is a flat local homomorphism
such that R is complete, S/mS is geometrically regular over K, and (Syed)q is regular
for some d € R° (this is needed to insure the existence of a common test element), then
7(S) = 7(R)S. Once this is known it will also follow that if ¢ is a completely stable test
element in R, S is excellent, and R — S is smooth, then ¢ is a completely stable test
element in S. The point is that one needs to see that for every prime @) of .S, the image of
¢ is a test element in (Sq), and one knows that the image of ¢ is a test element in (Rp ),
where P is the contraction of ) to R. At this point one does not know that (Rp) — (Sg)
is smooth (see Remark (7.23)), but we do not need this: only that there exists d € (Rp)°
such that ((Sg)red )a is regular and that the closed fiber is geometrically regular. Since
Rp — S¢ is smooth by hypothesis and Sg — (Sg) is smooth (S is excellent: this is the
only part of excellence we need), Rp — (S¢) is smooth, and so the closed fiber, which
is the same as the closed fiber of the map (Rp) — (Sq), is geometrically regular. Since
we can choose d € (Rp)° such that ((Rp)red)q is regular and since (Rp)red — (SQ)red
is smooth, we have that ((Sg)red)a is regular. Since Sg — SQ is smooth, ((SQ )red)d is
regular. Thus, the image of ¢ is a completely stable test element in 5.

Although we cannot, in general, handle the situation where fibers are geometrically
F-regular rather than regular, we can handle products in certain cases. We shall discuss
both ordinary tensor products of algebras of finite type over a field and complete tensor
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products of complete local rings with a common coefficient field. In both cases, the key
to the theory is the existence, under certain hypotheses, of test elements of the form
¢ ®d or c®d. We need some preliminary lemmas:

(7.38) Lemma. Let R be a complete local ring.

a) Suppose that R has an infinite residue field and let P be any property of rings. Let
S = Rl[z1,...,2,]]. Let J be the radical defining ideal of the closure of the set of
primes Q) of S such that Sg has property P. Then J is either the mazimal ideal of
S or else has the form IS, where I 1s a radical ideal of R.

b) Suppose that R is equicharacteristic. Then the map R — Rl[[x1,...,x,]] has reqular
fibers.

c) Suppose that R has a perfect coefficient field K C R, and let L O K be a field.
Then the fibers of the map R — L[[R]] are geometrically regular.

Proof. a) J is a radical ideal of S invariant under all automorphisms of S. We shall
prove that such an ideal has one of the two forms specified. We first consider the case
n =1, so that S = R[[z]]. Let f = 2°,r;2% be any element of .J. By the discussion in
(7.30), we know that every r;z! € .J, and since .J is radical, we see that r;z € J for i > 1
and it follows that .J has the form I.S + I'zS where I C I’ are ideals of R. For every
element u € m, the maximal ideal of R, there is a continuous automorphism of R[[z]]
that fixes R and sends @ to @ — u. It follows that IS + I'(x — u)S = IS + I'tS and so
mI' CI. If I' = R then m C I and so J is either the maximal ideal of S or S itself. If
I' C m we have that I'> CmI' C I C I’, so that RadI’ = Rad . Since I = JN R is
radical, we must have I’ = I and J = IS.

Now suppose that n > 1. Since every automorphismof R’ = R[[z1,...,z,-1]] extends
to S = R'[[z,]], J' = JN R’ is a radical ideal stable under every automorphism of R'.
If J is not the maximal ideal of S then .J = J'S where .J' is either of the form IR’ or
else .J' is the maximal ideal Q' of R'. But 'S is not stable under the automorphisms
of S which permute the z;. It follows that J = IS.

b) For this it suffices to show that when R is a domain the generic fiber is regular,
and it is harmless to replace R by a module-finite extension domain R’, since the new
generic fiber is faithfully flat over the original. If the coefficient field is characteristic
0 or perfect we can choose R’ so that it is the integral closure of a regular ring in a
separable finite algebraic extension of its fraction field, and this proves the result. In
characteristic p, if the residue field is infinite, the radical ideal .J defining the singular
locus in S = R][z1,...,2,]] is nonzero and has the form IS where I is an ideal of R or
else is the maximal ideal of S, by a). We may assume that R is not a field. We then
see that J must contain a nonzero element of R, as required.

¢) Let F be a finite algebraic field extension of the fraction field of R/ P, where P is a
prime ideal of R. We must show that F@r L[[R]] is regular. Choose a domain D module-
finite over R with fraction field F. Then F @ L[[R]] 2 F @p (D @r L[[R]]) = F ®p
(L[[D]]). Thus, we may assume that R is a domain with fraction field F, and it suffices
to show that F @r L[[R]] is regular. R is module-finite over a regular ring A = K[[z]],



54

where z indicates a string @1, ..., 2,, and we have that F @r L[[R]] & F @4 L[[A]]. We
can find a finite algebraic field extension F’ of F' such that F' is a separable extension
of K[[z'/4]] for some ¢ = p® (since K is perfect). Since enlarging F to F' only makes
the problem harder and since the separable part of the field extension will not disturb
regularity, we have reduced to the case where F is the fraction field of K[[z'/9]]. But
then F @g L[[R]] is a localization of K[[z'/])]] @g L[[z]] with R = K[[z]], and this is
L[[z'/4])], which is regular. O

(7.39) Discussion. We want to discuss the complete tensor product R% S in the situ-
ation where (R, m, K’) and (S,n, L) are complete local rings, k' C R is a subfield such
that the residue field K’ of R is a finite algebraic extension of I, and K is an arbitrary
subfield of S. More generally, we want to discuss M@ N where M is a finitely gener-
ated R-module and N is a finitely generated S-module. We shall take M@ N to be
the completion of M @ N with respect to the ideal J = m @x S+ R @k n. Note that
(R®r S)/J =2 K' @k L is finite dimensional as an L-vector space and is an Artin ring
(which is a complete intersection over L). It follows that R xS is a semilocal Noether-
ian ring which is local if K’ @ g L is a field (e.g. if K’ = K). If uy,...,u, generate M and
v1,...,0s generate N it is easy to see that the images of the u; @ v; generate M@ kN as
a module over R @ S. If R is module-finite over a complete local ring A containing K
and S is module-finite over a complete local ring B containing I then we may identify
ROxS =2 R®4 (A®KB)B © S and, more generally, MO N = M @4 (A®KB)B & N.
When S = L, a field containing K, and K’ = K we may identify R®x L with L[[R]]
discussed in (6.3). When K’ and L are both finite algebraic extensions of I, our notion
of complete tensor product coincides with the one given by Serre, [S], Chapitre V, A2.

Note that we can always represent R as a finite module over A = K|[[z]], where
denotes a string of formal indeterminates. In this case, AQ xS = S[[z]], and RO xS =
R @4 (S[[z]]). Moreover, RO xS is (faithfully) flat over both R and S : in the case of
R, one may see this by using the fact that it is clear when R = A = K[[z]] and making
a base change. In the case of S, one reduces to showing that R®x is an exact functor
on finitely generated S-modules: this follows from the fact that (R/m')®@x is exact for
all ¢, along with the observation that (RO xN)/m! (RO N) = (R/m') @k N.

We also note that R9x and @x S are faithfully flat functors from finitely gener-
ated R-modules and finitely generated S-modules, respectively, to finitely generated
(R& i S)-modules (one may also think of these functors as (R@x S)@r and (RO x S)@ s,
respectively). Moreover, M@ N = (MQx S) PRé xS (RO N).

(7.40) Lemma. Let R and S be Noetherian rings of characteristic p.

a) Let R be an algebra finitely generated over a field K such that the total quotient
ring T of R is separable over K (i.e., a product of separable field extensions). Then
U={P € SpecR: Rp is geometrically reqular over K} 1s Zariski open in Spec R,
and contains the minimal primes of R. Hence, there 1s an element ¢ € R° such
that R. 1s geometrically reqular over K.

b) Let (R, m, K) be complete, reduced, local with coefficient field K such that for every
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q = p°, KY[R]] is reduced (an equivalent statement is that K°[[R]] is reduced).
Then there exists an element ¢ € R® such that K'/9([R]]. is geometrically reqular
over K4 for all q.

¢) Let (R,m,K) be a complete local ring with coefficient field K. Let D be a com-
plete local domain with coefficient field L O K, let D' be any complete local domain
between D and D' for fized q and let F, F' be the fraction fields of D, D' respec-
tively. Then ' @p/ (RO D') is faithfully flat over § @p (RO D).

d) Let R, S be complete local rings with coefficient fields K, L (respectively, finitely
generated algebras over fields I, L). Suppose that K C L. Let the symbol “@”
denote complete tensor product @ over K in the first case (cf. (7.39)) (respec-
tively, the usual tensor product @r over K). Assume that K'[[R]] is reduced
for all ¢ = p© (respectively, that the fraction field of R is separable over K; this
is equivalent to the assertion that K'4 @ R is reduced for all q). Let ¢ € R°
be such that K'[[R]]. is geometrically regular over K4 for all q (respectively,
R. is geometrically reqular over K ). Let d € S° be such that Sq is reqular. Then
(R® S)ewa s reqular.

Proof. a) is a well known consequence of the Jacobian criterion (cf. [N], §46).

b) Let K*(R) denote U, K'/?[[R]], which by Lemma (6.6) is an excellent ring with
completion K *°[[R]]. Since K*(R) — K*[[R]] is smooth, one is reduced iff the other
is. The defining ideal of the regular locus in K*°(R) cannot be contained in any minimal
prime of K>°(R). Let ¢ be an element of KX*°(R)° in this ideal. Since K°°(R) is purely
inseparable over R, we may replace ¢ by a power which is actually in R°. Thus, ¢ € R°
and K*®(R), is regular. We claim that K'/9[[R]]. is geometrically regular over K'/4
for all g. For if L is a finite purely inseparable extension of K/ then L C K4 for
some ¢' > q and L @5 (K'/4[[R]]) (subscripted @ is the usual tensor product) = L[[R]].
Since L[[R]] — K'Y [[R]] — K>(R) is faithfully flat, so is the result of localizing at .
Since K*>°(R), is regular, so is L[[R]]..

¢) The ring R is module-finite over a formal power series ring B = K|[[y]]. Then

F' @p (ROxD') = R@p (F' @p (B&kD')) and similarly
F@p (ROxkD) =2 R@p (Fop (BOkD)).

Thus, we may assume without loss of generality that R = B = K|[[y]], and we need
only show that ¥’ @p: (D'[[y]]) is flat over F @p (D][y]]). By (7.38b) we can choose
¢ € D — {0} such that D[[y]]. is regular and ¢ € D' — {0} such that D'[[y]].s is regular.
Then d = ¢¢’ has a power in D, and so we have d € D such that D[[y]]s and D'[[y]]a
are both regular. Since D[[y]la — D'[[y]]a is a purely inseparable extension of regular
rings, the map is flat, and this is preserved by further localization.

d) Since the composite map S — R® S — (R® S)cxq is flat, sois Sg — (R® S)cqd-
Since Sy is regular, it suffices to prove that the fibers of the map S — (R ® S). are
regular. We are then free to replace S by its quotient D = S/ P by a typical prime ideal
P, and we must show that the generic fiber of the map D — (R ® D). is regular: if
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D has fraction field F this means that we must show that ¥ @p (R ® D). is regular
(where all tensor products marked with a subscript are ordinary tensor products). If
D’ is a domain module-finite over D with fraction field ' then 3’ @p: ((R® D').) =
F' @5 (F@p ((R® D).)) is faithfully flat over F @p ((R ® D).). Thus, there is no
loss of generality in assuming that D is the integral closure of the regular ring A =
L{[z1, ..., 2,]] (respectively, L[z, ...,x,]) in a finite separable field extension of a finite
purely inseparable extension of the fraction field of A. We give the rest of the proof
only for the complete local case: the modifications needed for the case of algebras of
finite type over a field are completely straightforward.

The separable part of the extension will not affect regularity. This means that we may
assume without loss of generality that D lies between L{[z]] and L'/9[[2'/4]] = D’. Let
F’ be the fraction field of D’. Then 3" @ p» (R®D’) is faithfully flat over F@p (R®D) by
part ¢), and so it will suffice to prove that (3’ @ p/ (R©D')),. is regular. We have reduced
to the case where D = L'/4[[2'/4]], and we may simplify notation and write D = L[[z]].
Thus, what we must show is that the generic fiber of the map L[[z]] — L[[R]][[x]]. is
regular, and it will suffice to show that L[[R]][[z]]. itself is regular. It makes the problem
harder to enlarge L, and so we may assume that L = L* and hence that L O K°°.
We already know that K *°[[R]]. is regular, and it follows that this remains true when
we enlarge the field K™ to L, by (7.38¢c). Replacing R by L[[R]], we see that if R, is
regular then so is R[[z]]., and this follows from the fact (7.38b) that the fibers of the
map R — R][[z]] are regular. O

Before establishing our main results Theorem 7.42 and Theorem 7.45 on products,
we need:

(7.41) Lemma. Let (R,m,K’), (S,n,L) be complete local rings containing a field K
such that [K' : K] is finite. Let I, J be finitely generated ideals of R and S respectively
and let @ denote Q@ (respectively, @5 ). Let M be a finitely generated R-module and
M' a finitely generated S-module (respectively, arbitrary R- and S-modules). Then:

a) Annyon [ @ J = (Anny I) @ M+ M @ (Annyp J).

b) AnIlM@M/(I S+ R® J) = (AIlIlM I) & (AIlIlM/ J)

Proof. a) Let a: R — R® and 3 : S — S’ be maps such that the entries of the matrices
are sets of generators for I, .J, respectively. The entries of a matrix for o ® 3 generate

I ® J and
Annyorm [ @ J =Ker(M @ M) @pos (a @ 3)) = (M @ra)@ (M @5 3).

Ker(M @g o) = Anny I and so M @r o induces an injection (M/Anny I) — M?;
similarly, M’ ® s induces an injection (M’'/ Annyp J) — M'". Since @ is exact, we have
an induced injection of (M/Anny I) @ (M'/ Annyp J) =2 (M @ M) /(M @ Annyp J +
Annpy I @ M) into (M @ M')*" such that the corresponding map M @ M’ — (M @ M')*
is isomorphic to (M @ M') @rgs (o @ ). The result now follows.

b) Anny I = Ker(M @ o) (with « as in the proof of a); applying @M’ yields that
(Annpy 1)@ M' = Annygar I ® S. Similarly, M @ Annyp I’ = Annpyrear R ®@ J. Thus,
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the Annyeom (I @ S+ R®@J) = (Anny I) @ M) N (M @ (Annyp J)) = Annpy I @
Annyp J. O

(7.42) Theorem. Let (R,m,K), (S,n,L) be complete local rings with coefficient fields
K, L (respectively, finitely generated algebras over fields K, L) where K, L have char-
acteristic p and K C L. Suppose that K'/1[[Ryeq]] is reduced for all q (respectively, that
the total quotient ring of Ryeq s separable over K ). Then:

a) There are weak test elements ¢ € R° and d € S° such that ¢ @ d (in the complete
case we use this notation for cd) is a weak test element in RO S (respectively,
R®@x S). If R, S are reduced then the word “weak”™ can be omitted.

b) Let N C M be finitely generated R-modules, and let N' C M’ be finitely generated
S-modules. Suppose that N is tightly closed in M and N' is tightly closed i M'.
Suppose either that

i) K is perfect or

ii) M/N and M'/N" are finite length modules with socles of length one (in the case
of finitely generated algebras, if the socle in M/N is = R/m = K' and the socle in
M'/N"= S/n =L, also assume that K' @ L' is a field).

Then NGiM' + M@ N' (respectively, N @ M' + M @ N') is tightly closed in
M@k M' (respectively, in M @ M').

Proof. Except for a few parenthetical comments, we shall give the proof only for the
complete local case and complete tensor products: the argument for algebras of finite
type and ordinary tensor product is entirely similar.

a) It suffices to do the case where R, S are reduced. Since S is reduced and the
singular locus is closed we can choose d € S° such that S; is regular. By (7.40b) we
can choose ¢ € R® such that K'/9[[R]]. is geometrically regular over K'/? for all . By
(7.40d) we have that (RQxS)cga is regular. Since @ is exact ¢ @ 1 and 1 ® d are
nonzerodivisors in RO xS, and hence so is ¢ @ d. By Theorem 6.2, ¢ @ d has a power
which is a (completely stable) test element for RQ x S.

b) First off, we can replace M, M’ by M/N and M'/N’. The assertion becomes
that if 0 is tightly closed in M and 0 is tightly closed in M’ then 0 is tightly closed
in M@ M'. In case i), where the modules are not assumed to have finite length, we
can nonetheless reduce to that case, since, in each module, 0 will be an intersection
of tightly closed submodules whose quotients are finite length. Since both R, S have
weak test elements, by [HH4] (8.13b) we may assume without loss of generality that
each of M, M’ is killed by a power of a maximal ideal. (This reduction will also work
in the affine case: the residue fields K', L' at the appropriate maximal ideals of R and
S respectively will be finite algebraic extensions of K and L. Note that the notions of
length and dimension over I or L will be different.) We need to show that if either i)
K is perfect or ii) the socles in M, M’ are one-dimensional (and K’ @ L’ is a field),
then 0 is tightly closed in M @ M’ : note that since M, M’ have finite length, we may
write M @ M’ instead of M@ M.
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Let T = R g S. It is easy to see that F%(M@KM’) = FE(M)@F;((K)FE(M’). Here,
we might have written “K” instead of “Fj-(IK)”: we have used the latter notation to
make it clear how K is acting on Fp(M) and F&(M').

If the socles in M, M’ have length one and are generated by u, u’ respectively, then
the socle in M@ i M’ is generated by u @ u’, since Ru@ - Su’ = Annyr m@x Annyp n 22
AnnM®M,(m®S + R®n) by (7.41b). In the complete local case, this socle has length
one over R©S. (In the case of affine algebras, the socle still has length one because of
the assumption that K’ @ L' is a field.) Thus, if 0 is not tightly closed in M M,
then v @ v’ is in the tight closure of 0. But then (¢ @ d)(u @ u’)? = (cu?) @ (du’q) =0
in FS(M&rM') = FE(M)@F;((K)FE(M’) for all ¢ > 0, and this implies that cu? = 0
for infinitely many ¢ or else that du’? = 0 for infinitely many ¢. By [HH4] Lemma 8.16,
if a ring has a weak test element, ¢’ is not in any minimal prime, and ¢27 = 0 (or is
in 0*) for infinitely many values of ¢, then z is in the tight closure of 0. Thus, either
u € 0%, or u’ € 0%/, a contradiction.

Now suppose that K is perfect. Let ¢ € R° and d € S° be as in part a), so that ¢ is a
weak test element in R, d is a weak test element in S, and ¢ ® d is a weak test element in
T =R®S. Let V. denote the set of all elements v in M such that cv? = 0 (where ¢ = p°)
and let W, be the set of all elements w in M’ such that dw? = 0. Then the set Y, of all
elements y € M @ M’ such that (¢c®d)y? = 0 may be identified with V, @ M' + M @ W,.
Since K is perfect we may identify Fi(M) @pe(xy FE(M') with Fp(M) @x F&(M').
The kernel of multiplication by ¢ @ d is X, = (Annpﬁ(M) )@ M +M® (AHHFg(M/) d)
by (7.41a). Thus, Y, is the inverse image of X, under the map M @x N — F,(M) @
F&(M'), where the two copies of K over which we are tensoring may be though of as
the same (if I were not perfect, we would have to write Fj (K) for the second). Now,
quite generally, given maps of K-vector spaces a : M — H, 3 : M' — H', the inverse
image under o @ [ of a subspace of the form Ho @ H' + H @ H, € H @k H' is
a '(Ho)@x M'+ M @ 37 '(H{) : this follows from the injectivity of the tensor product
over K of the injective maps M/a~'(Hy) — H/Ho and M'/B~'(H})) — H'/H|. The
statement that Y, may be identified with V, @ x M’ + M @ W, now follows.

Let us suppose that ¢, d and ¢ @ d are all ¢'-weak test elements, where ¢’ = pe/. If o
is not tightly closed in M @x N we see that there is a nonzero element in Ne>e (Ve @5
M+ M @g W) in M @ M'. The result is now immediate because from part c) of
Proposition 7.9 we know that V, =0 and W, =0 for ¢ > 0. O

(7.43) Ezample. We can obtain an instructive example by modifying Example 6.18. Let
K be afield containing an element ¢ that is not a pth power, let L = K[6] where 6 = /e,
let R = K{[z,y,21,...,2n]]/(f) where f = xp—typ—Z?ZIZ?j where every h; is an integer
strictly bigger than p and not divisible by p (for definiteness, we may take all the h; to be
p+1). Let S = K[[u, 8u]] C L[[u]], where u is a new indeterminate. Then the prime ideal
P = (z;)R is tightly closed in S, but PQ xS is not tightly closed in ROy S: uz — uby is

in the tight closure but not in the ideal (its pth power is u?(z? — ty?) € (Z;lj) - (Zf))

(7.44) Definitions and discussion. Let R be a Noetherian K-algebra where K is a
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field of characteristic p. We say that R is geometrically weakly F-reqular (respectively,
geometrically F-reqular) over K if for every finite purely inseparable extension K’ of
K, K' @k R is weakly F-regular (respectively, F-regular) over K. Note that if R is
geometrically weakly F-regular over K then, in particular, for every K-subalgebra T of
R, if K’ is a finite purely inseparable extension of K, K’ @i T C K’ @ R is reduced.
Thus if T = L C R is a field, then L is separable over K and L[K*°] C L* may be
identified with L @5 K°.

If R is (essentially) of finite type over a field L containing K then K™ @y R =
K*® @r (L®rS) 2 (LIK*])®r Rif L is separable over K. Thus, R is geometrically
(weakly) F-regular iff K> @x R is (weakly) F-regular, since the latter is faithfully flat
over K' @k R for K' C K finite over K and is the direct limit of these in a system
with faithfully flat maps (cf. (6.14a)). Notice that it is possible that L[K*>] @1 R is
weakly F-regular even though L is not separable over K: this occurs, for example when

R=1L.

(7.45) Theorem. Let R and S be rings of characteristic p.
a) Let (R,m,K) and (S,n,L) be complete local rings with coefficient fields K and L
and suppose that R and S are weakly F-reqular. Then RQ S is weakly F-regular.
b) Let R, S be finitely generated algebras over fields K and L with K C L.

i) Suppose that R.,, S, are weakly F-reqular for mazimal ideals m, n such that
(R/m) @K (S/n) is a field. Then (R @ S)q 1s weakly F-reqular, where Q 1is
the mazimal ideal m @i S + R @x n.

i) Suppose that R is geometrically weakly F-reqular over K, and that S is geo-
metrically weakly F-reqular over K (respectively, that LK) @r S is weakly
F-reqular over ). Then R @k S is geometrically weakly F-regular over K
(respectively, weakly F-reqular over K ).

Proof. a) Because R, S are weakly F-regular, they are normal and, hence, approximately
Gorenstein (cf. [Hod] and [HH4] (8.6)). Thus, there are decreasing sequences {I;},
{Ji}1, respectively of m- (respectively, n-) primary irreducible ideals cofinal with the
powers of m (respectively, n) in R (respectively, S). Then (R/I;)@x(S/J;) has a one-
dimensional socle (cf. the proof of (7.42bii)) and so {I;Q S+ RO J; }+ is a sequence of
irreducible ideals in R S primary to the maximal ideal Q and cofinal with the powers
of Q. Thus, it suffices to check that I;0 xS + RO 5 Jy is tightly closed for every t, which
is immediate from (7.42bii).

The proof of bi) is virtually identical to the proof of a): simply use the affine case of
(7.42bii).

To prove bii), first note that the discussion in (7.44) permits us to reduce to the case
where K is perfect (replacing K, L, R, S by K>, L[K*], K> @x R and L[K*~] @,
S = K™ @ S, respectively: K @ (R®k 5) = (K> @x R) Qre (L[K>®] @1, S).)
(In the parenthetical case we do not have this last isomorphism, but it is true that
(K® @r R) @i (LIK®] @1 5) =2 LIK>®] @1, (R @ S) is faithfully flat over R @x S,

which permits the reduction.) Thus, we henceforth assume that K is perfect.
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Let @ be an arbitrary maximal ideal of R @ S, and suppose it lies over the (neces-
sarily maximal) ideal m C R. It will suffice to show that (R®x S)¢ is weakly F-regular.
Let © be a finite algebraic extension field of R/m which is normal over K : since K is
perfect, €1 is a finite Galois extension of K. Since K — € is smooth, so are R — Q®x R,
and S — QxS = (Q@x L)@ S, and it follows from (7.25d) that Q@ x R and Q@ x S
are weakly F-regular. Choose a maximal ideal Q' of Q@ (R@x ) lying over Q. It will
suffice to show that Q@ x (R®@x S))¢gs, which is faithfully flat over (R®@x S)q, is weakly
F-regular. Q' lies over a maximal ideal m’ of Q @k R which in turn lies over m in R.
Thus, m’ corresponds to a maximal ideal of Q @ i (R/m). Since © is a normal extension
of K containing R/m, each such maximal ideal corresponds to a K-embedding of R/m
into ©, and has  as its residue field. Thus, (2 @x R)/m' = Q.

Now Q @ L is a finite product, II;L;, of fields L; O Q, and Q @ (R @r 5) =
(Q@xr L) @1, (R @Kk S) has a corresponding decomposition as II;L; @7, (R @k 5). We
may choose j so that () corresponds to a point Q)" of Spec(L; @1, (R @k S)).

We may then replace K by €, L by the field L; O Q chosen just above, R by Q@x R
and S by L; @1, S. Note that L; @xg (R®@x 5) = (2 @k R)) ®q (L; @1, S), and so
(QoOx (Rok 9))g = (L; 0x (RAKk 5))en = (20K R) @a (L; @1 5))qr-

Changing back to our original notation, we see that we may assume without loss of
generality that R/m = K. But then the maximal ideals of R @5 S lying over m simply
correspond to the maximal ideals n of S, and we have Q = m @ S+ R ® n. We are
now in the situation of bi), and the proof is complete. [

(7.46) Corollary. If R is a finitely generated algebra over a field K of characteristic
p and R 1s geometrically weakly F-reqular over K then Q @i R 1s geometrically weakly
F-regular over Q for every field 2 O K.

Proof. Tt suffices to prove that 2 @i R is weakly F-regular. Since R is geometrically
weakly F-regular, and Q>°[K*°] = Q> is weakly F-regular, this is immediate from the
parenthetical version of (7.45bii), taking S =L =Q>. O

(7.47) Remark. In (7.43bii), one does need the geometric weak F-regularity of R to
conclude that R @5 S is weakly F-regular: S might be L[K'] with K" C K*°. On the
other hand, once this is assumed, it should not be necessary to assume that L[K>®|®@x S
is weakly F-regular to insure that R @ S is weakly F-regular: the weak F-regularity
of S itself should suffice. (One cannot take, for example, R = K’ C K>, since this is
not geometrically weakly F-regular over K.) While we have not been able to prove a
stronger result, one expects weak F-regularity to behave quite similarly to regularity in
the way that it is or is not preserved in products and under base extensions. This is
one reason for thinking that a stronger result should hold. If R is geometrically regular
over K and S is weakly F-regular then one does, in fact, have the stronger result, since

S — R®k S has a weakly F-regular base and regular fibers and we may apply Theorem
(7.25d).
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8. Weakly F-regular affine K-algebras are F-regular over “big” fields K.

The proof of the result below in the case where the field is uncountable was shown
to us by M. P. Murthy, who also suggested that the version given here should be true.

(8.1) Theorem. Let K be a field of characteristic p of infinite transcendence degree
over its prime field and let R be a finitely generated K-algebra. Suppose that R 1s weakly
F-reqular. Then R s F-regular.

Proof. Since R is weakly F-regular it is a normal ring, and, hence, a finite product of
domains. It suffices to consider each factor separately. Thus, we may suppose without
loss of generality that R is a domain.

We first treat the case where the field K is uncountable, utilizing an argument of
M. P. Murthy. We want to show that for every multiplicative system W of R, the
ring W' R is weakly F-regular. Since every ideal of this ring is expanded from R, if
the condition fails there is an ideal I of R such that IW 'R is not tightly closed in
W='R. Choose an element u of the tight closure not in the ideal. After multiplying
by an element of W, we may assume that u € R. It follows that there is an element
¢ € R° such that for all nonnegative integers e there is an element f. € W such that
cfeut € I, We see at once that if we replace W by the multiplicative system generated
by all the f., we obtain a new counterexample in which W is countable. Thus, there
is no loss of generality in assuming that W is countable. Moreover, we may choose a
maximal ideal m of the ring S = W™!R such that the image of u in S, is not in I.S,,,
although it evidently is still in the tight closure of I5,,. It follows that 5, is not weakly
F-regular. But the contraction P of m to R must be a maximal ideal of R. (This is
well known: the point is that if the domain R/P is not a field, it cannot become a field
when one localizes at a countable multiplicative system if K is uncountable. To see
this, write it as a module-finite extension of a polynomial ring, replace each element
of the multiplicative system by a nonzero multiple in the polynomial ring, and use the
fact that a polynomial ring in one or more variables over an uncountable field contains
uncountably many irreducible elements that are not associates.) But S, = Rp, and if
P is maximal, Rp is weakly F-regular by Theorem (3.4h).

We next treat the case where K is only assumed to have infinite transcendence degree
over its prime field. Let A be an uncountable index set and let {zy : A € A} be a family
of algebraically independent indeterminates over R indexed by A. We write K (z) for
the purely transcendental extension of K obtained by adjoining all the z). Choose a
nonzero element ¢ € R such that R, is regular. Let T = K(2) @x R, so that T, may
be identified with K(z) @ x R.. Then T, is regular (when the set A is finite we have
a localization of a polynomial ring in finitely many variables over R., and the general
case then follows easily by a direct limit argument). By replacing ¢ by a suitable power
we may assume that ¢ is a test element for T. To complete the proof, it will suffice
to show that T is weakly F-regular, for then it follows from the first part of the proof
(since K (z) is uncountable) that T is F-regular, and since T is faithfully flat over R, R
will be F-regular as well.
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Next, we may choose a subfield L of K finitely generated over the prime field of K
containing all the coefficients of the polynomials occurring in a finite presentation for
R over K. We may therefore write R = K @1 Rp, where Ry is a finitely generated L-
algebra. It follows that Ry may be identified with a subring of R and is also a domain.
Moreover, by enlarging L, if necessary, we may suppose that ¢ € Ry. Suppose that T
is not weakly F-regular. Then we can choose finitely many elements fy,..., f, and an
element u of T such that u is in the tight closure of the ideal I generated by the f; but
not in 1. We shall obtain a contradiction. After enlarging L. if necessary, we may choose
finitely many of the zy, say z1,... , z, such that v and fi,..., f, arein L(z1,... ,25)®1,
Ry = R;. Since c is a test element for T, we have that cu? € (f{,...,f)T for all
nonnegative integers e. Since T is faithfully flat over Ry and all of the elements ¢, u, f;
are in Ry, it follows that cu? € (f{,..., f1)Ry for all ¢, and so u is in the tight closure
of It = (f1,..., fa)Ry in Ry, but not in Iy, since it is not even in [;T. It follows that
Ry is not weakly F-regular. However, we may choose yi1,...,y, in K algebraically
independent over L, and the L-isomorphism of L(zy,...,zn) = L(y1,...yn) = L(y)
that sends z; to y; for every ¢ induces an isomorphism of Ry with Ry = L(y) @1, Ro.
It follows that Rs is not weakly F-regular. But since L C L(y) € K, we have that
R = K @y Ra, by the associativity of @, and since R is faithfully flat over Ry and
weakly F-regular, it follows that Ry is weakly F-regular, a contradiction. O
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