BIG COHEN-MACAULAY ALGEBRAS
IN DIMENSION THREE
VIA HEITMANN’S THEOREM

BY MELVIN HOCHSTER

1. INTRODUCTION

Recently, in a tremendous breakthrough, R. Heitmann [Heit3] has shown that the direct
summand conjecture holds for regular rings of dimension at most three. This was previously
known in all dimensions for rings containing a field: what is new is that the result is valid
even in mixed characteristic. Here, we shall use the key result in Heitmann’s paper to
prove the existence of balanced big Cohen-Macaulay algebras in dimension three in a
weakly functorial form. For the background of the direct summand conjecture and related
homological conjectures and splitting questions we refer the reader to [Hol-7], [PS1,2],
[Ro1-6], [Dul,2], [Rang], [DHM], and [EvG].

Recall that B is called a balanced big Cohen-Macaulay algebra for the local ring (R, m)
if mB # B and every system of parameters for R is a regular sequence on B. Cf. [Sh],
[HH5], and [HH9]. Using one of Heitmann’s theorems together with ideas from [HH9] and
[Ho9], we prove the stronger result that every local ring of dimension at most three has a
balanced big Cohen-Macaulay algebra. In fact, we prove these exist in a weakly functorial
form. In the equal characteristic case, this result follows from the main results of [HH5]
and [HH9].

Our main result, in the simplest case, may be stated as follows.
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Theorem 1.1. Let R be a local ring of equal characteristic or a local ring of dimension
at most 3. Then R has a balanced big Cohen-Macaulay algebra. Let ¢ : R — S be a
local homomorphism of complete local domains. If R and S have equal characteristic, or
if R and S have characteristic 0 and residual characteristic p > 0 and both R and S have

dimenston at most 3, then there is a commutative diagram

B —— C

[

R—% .3

where B and C' are balanced big Cohen-Macaulay algebras for R and S respectively.

Since the result is already known in equal characteristic, we henceforth focus on the

mixed characteristic case.

2. HEITMANN’S THEOREM

We restate for purposes of reference one of the main results of [Heit3] (where the result
is proved for a more general class of 3-dimensional rings R). We note that there is also an

exposition of Heitmann’s theorem in [Ro7].

Theorem 2.1 (Heitmann). Let R be a complete local domain of mized characteristic
p > 0, i.e., the residue field of R has prime characteristic p while the fraction field of
R has characteristic (. Suppose that the dimension of R is 3. Let p, xz, y be a system
of parameters for R and N a positive integer such that p™, z, y kill the Koszul homology
modules Hy(p™, ™, y™; R) for every positive integer m. Also assume that there is an
element @ € R such that O?~1 = p. Suppose that pNu € (z, y)R. Then for every positive

rational number €, there is a module-finite extension domain T of R with p*u € (x, y)T.

Discussion 2.2. Let R be a ring, and let I be a finitely generated ideal of R, with
generators uq, ..., up. We shall usually take the point of view that identifies the local
cohomology H}(T), where T is an R-algebra, with a direct limit, over ¢, of the Koszul
cohomology H®(ul, ... ,ul; R). (For the very basic facts about local cohomology used
here, including its standard identification with a direct limit of Koszul cohomology, we refer

the reader to [GH]. In particular, see Theorem 2.3 on p. 20. There is also an exposition of
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relevant material in [HR], §5, pp. 132-5.) It is worth noting for those not familiar with local
cohomology that if J is another finitely generated ideal with the same radical as I, then
H$5(R) and H}(R) may be identified canonically. In particular, in dealing with a complete
local domain (R, m), if I is any ideal generated by a system of parameters and j is any
integer, we may identify H: } (R) with HJ (R), and, likewise, we may identify H ;(R"‘) and
HJ (RT) (RT is discussed immediately following item (b) of the sequel). We next want to
make a detailed examination of what happens for ideals with three generators.

Let u, v, w be three elements of R,and let I = (u,v,w)R. Suppose that u, v is a
regular sequence in R. We want to make some observations about the Koszul (co)homology
modules Hy(u, v, w; R) = H?(u, v, w; R). This module has the form M/N where M =
{(r1, ra, r3) € R®|r1u+rev+r3w =0} and N is the R-span of (0, —w, v), (w, 0, —u) and
(—v, u, 0). Projection on the third coordinate maps M onto ((u, V)R g w) while mapping
N onto (u, v), and so yields a map m : Hy(u, v, w; R) — ((u, v) :g w)/(u,v)R. We have
this surjection regardless of whether u, v is a regular sequence or not, and, likewise, we

have surjections
m : Hy(ub, o, w'; R) — ((ut, o) iR wt)/(ut, v"R
for every t > 0.

But in the regular sequence case we can say more:
(a) If u, v is a regular sequence, the maps
m : Hy(u®, o', w'; R) — ((ut, v*) R wt)/(ut, v"R
are isomorphisms for all t.

Quite generally, H?(R) & h_r)nt H?(ut, vt, w; R) where the maps send an element repre-
sented by (r1, 72, r3) to (vwry, uwre, uvrs) (cf. Thm. 2.3 of [GH]). When u, v is a regular
sequence, we may identify H?(u’, v, w®; R) = ((uf, v%) :gr w')/(u?, v*), and the map to
the next term in the direct limit system sends the element represented by r to uvr. When
u, v is a regular sequence, this map is injective: it suffices to see that if uvr € (ut*?, vi+?1)
then r € (uf, v?), which follows very easily from the fact that u, v is a regular sequence.
Thus:

(b) If u, v is a regular sequence in R, then H?(R) may be viewed as an increasing union

of the modules

H?(u', o', w's R) = Hy(u®, v*, w'; R) = ((u*, v") :g w')/(uf, v")R.
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In particular, each Hy(u?, v*, w®; R) injects into H#(R).

We recall (cf. [Ar]) that the integral closure Rt of a domain R in an algebraic closure
of its fraction field is called an absolute integral closure of R. It is unique up to non-unique
isomorphism. If R is a complete local domain then R7T is a directed union of module-
finite extensions of R, each of which is a complete local domain, and so is a quasi-local
domain (we reserve the term local for Noetherian quasi-local rings). Since each ring in
the directed union can be replaced by its normalization, we may view RT as a directed
union of complete normal local domains, each of which is module-finite over R. If R is
a complete local domain and S C S’ are module-finite domain extensions, any system of
parameters in S is also a system of parameters in S’, and we shall also refer to it as a
system of parameters of RT. Equivalently, if d = dim R (= dim R1), then x4, ... ,z4 is
a system of parameters for RT if and only if every element of the maximal ideal of RT is
nilpotent modulo (z1, ... ,zq)RT.

Note that when R is a complete local domain of mixed characteristic p, if ¢ = a/b is
a positive rational number, so that a,b > 0 are positive integers, then RT contains roots
of Z? = p®, which we denote, somewhat ambiguously, as p¢. They are well-defined up to
multiplication by units of Rt, however. For any fixed choice of ¢, RT is a directed union of
normal complete local domains containing all choices of p®. The statement that a certain
family of p© kills an Rt-module is independent of how we choose the specific values of the
various p°.

The following theorem is an easy consequence of Heitmann’s theorem. We note that
Heitmann’s theorem, in a rough heuristic sense, asserts that the situation for “colon-
capturing” in mixed characteristic is a sort of combination of the positive characteristic
situation (where R* is a balanced big Cohen-Macaulay algebra for complete local domains,
and somewhat more generally — see [HH5]) and a situation reminiscent of positive char-
acteristic tight closure theory, but with p itself, somewhat surprisingly, playing the role of
a test element. For more about tight closure we refer the reader to [Bru], [Hol0], [HH1-4,
6-12], [Hu], [Sm], and for discussion of other closure operations to [Heit1-3], [Ho8-9], [HoV],
[Holl] and [Bre].

Theorem 2.3. Let R be a complete local domain of dimension at most 3 and mized

characteristic p > 0. If R has dimension at most two then RT is a balanced big Cohen-
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Macaulay algebra for R, and every system of parameters in Rt is a regular sequence.
If dimR = 3, then for every system of parameters x, y, z of RT and for every rational
number € > 0, if zu € (x, y)RT, then p°u € (x, y)RT. In particular, for all € > 0, p° kills
H2 (RT), while the lower local cohomology modules are 0.

Proof. Because RT is a directed limit of normal rings containing a given system of pa-
rameters, any two elements of a system of parameters in Rt form a regular sequence.
Thus, from here on we may assume that dim R = 3.

We first note that the final statement about the local cohomology of RT is equivalent
to the assertion that for all positive rational ¢ and for every system of parameters x, y, z
in RT, p° kills ((a:, y)RT gt z), i.e., whenever uz € (z, y)RY, for u € R, then pu €
(z,y)RY*. This follows from the discussion in (2.2): for any system of parameters z, y, 2,
if I = (z,y, 2)RT, then H2 (RT) = H?(RT) is the increasing union of submodules each
of which is isomorphic to ((zf, y*)RT :x+ 2")/(2?, y*)RT. Thus, every module of the
form ((z, y)RT :g+ 2)/(z, y)RT injects into HZ (RT), and HZ(RT) is a union of such
submodules.

Now suppose that we have a given element of H2 (R1) and we want to prove that it is
killed by p¢. Because RT is the directed union of the module-finite extensions R; of R, we
may assume that the given element is in the image of the map HZ2 (R;) — HZ,(RT) for
a sufficiently large choice of R;. Moreover, we may replace R; by a larger module-finite
extension, and therefore there is no loss of generality in assuming that we have 6 € R;
such that #7~! = p, and that R; is normal. Since RT is the directed union of rings with
these properties, it will suffice to show that for such choice of Ry (normal and containing
6 as above), the image of H2 (R1) in H2 (RT) is killed by p¢ for all € > 0. To simplify
notation we drop the subscript and write R instead of Rq: R is fixed in the rest of the
argument. Since R is normal, R is Cohen-Macaulay when localized at any prime except
the maximal ideal, and so H2 (R) has finite length.! Thus, we may choose a system of
parameters pY, x, y that kills H2 (R), and it follows that these kill Hy(u, v, w; R) for
every system of parameters u, v, w € R by (2.2b). Thus, the hypotheses of Theorem
(2.1) are satisfied, and they remain satisfied when we replace p”, =, and y by positive
integer powers. Let J = (pV, x, y). We view HZ(R) = H2(R) as the directed union

1By local duality [GH], Thm. 6.3, p. 85, if R = S/@Q with S regular local, dim S = d, H2,(R) is the
Matlis dual of Ext‘é_Q(S, R): since Rp is Cohen-Macaulay for P # m, this is supported only at m.
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of the modules ((z™,y™) :g pV™)/(z™, y™)R. Suppose that w € ((z™,y™) :gr p™),
ie., pNmw € (2™, y™)R. Then we may apply Theorem (2.1) to pV™, 2™, y™, and so
pew € (™, y™)RT for all positive rational numbers €, which shows that p¢ kills the image

of the element of H2 (R) represented by w in H2 (RT). This completes the proof. [
We conclude this section with the following observation, which we shall need in §5.
Fact 2.4. If (S, n) is a complete local Noetherin domain, then ST is n-adically separated.

To, see this, suppose that v were a nonzero element in every power of n. Choose a prime
@ ideal of S not containing v such that dim S/@Q = 1. Then we may replace S by S/Q and
STt by its quotient by a prime lying over ). Therefore, we may assume without loss of
generality that S has dimension one, and we may replace it by a larger normal ring that
contains v. Then S is a DVR, and its ideals, which are principal, are contracted from S+.

Thus, v is in nV St iff it is in n'V, and the result follows. [

3. MODIFICATIONS AND BIG COHEN-MACAULAY ALGEBRAS

Definition 3.1: algebra modifications. Let T' be an algebra over a local ring (R, m).
Suppose that k is an integer, 0 < k£ < dim R, that x1, ... ,xx+1 € m is part of a sys-
tem of parameters for R, and also suppose that ¢1, ... ,fx4+1 are elements of T' satisfying
Thtr1le+1 = Zle x;t;. Let Xy, ..., Xy be indeterminates over 7. Then the T-algebra
T' =T[Xy, ..., Xg]/(F), where F = (tx11— Zle z;X;), is called an algebra modification
of T with respect to R. By a sequence of algebra modifications of T over R we mean a
sequence of R-algebras Ty = T, Ty, ..., T, such that, for 0 < j < r, Tj4; is an algebra
modification of T; with respect R. At every stage the choices of k and of z1, ..., 241
may change.

Such a sequence of algebra modifications over R is called bad if the image of 1 € T is in
mT,.. Tt is shown in §3 of [HH9] that T' can be mapped to a balanced big Cohen-Macaulay
algebra for R if and only if T" does not possess a bad sequence of modifications. (One
then constructs the balanced big Cohen-Macaulay algebra as a rather large direct limit of

various rings T, constructed from finite sequences of modifications.)
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Now suppose that we have a local map of local rings (R, m) — (S,n) and that we start
with an R-algebra T'. We may take a sequence of modifications of 7" over R: call the last
term 7T,.. We may then take a sequence of algebra modifications of S ® T} over S: call the

last term U,. Evidently, in this situation, we have a commutative diagram:

T, —— U

I

R —— S

We shall refer to the sequence T' = Ty, T4, ... , T, Uy = SQ®r T,,Uq, ... ,Us as a double
sequence of algebra modifications over R — S. We shall say that this sequence is bad if
the image of 1 € T in Uy is in nUs. Again, by the results of §3 of [HHY], there exists a

commutative diagram:
B —— C

[

R—— S
such that R — B factors R - T — B, B is a balanced big Cohen-Macaulay algebra for

R, and C is a balanced big Cohen-Macaulay algebra for S if and only if there is no bad
double sequence of algebra modifications of T" over R — S.

The idea of the proof of the “if” part as follows: one constructs B as a direct limit of
finite sequences of modifications of T" over R, and then one constructs C' as a direct limit
of finite sequences of modifications of S ®p B over S. The resulting algebra can be seen
to be a direct limit of algebras U coming from double sequences of algebra modifications
of T.

In particular, there is a commutative diagram

B ——C

[

R —— S

where B is a balanced big Cohen-Macaulay algebra over R and C'is a balanced big Cohen-
Macaulay algebra over S if and only if there is no bad double sequence of algebra modifi-

cations over R — S.
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4. PARTIAL MODIFICATIONS

We want to refine the obstruction to constructing commutative diagrams:

B —— C

[

R—— S

in which B and C are balanced big Cohen-Macaulay algebras over R and S respectively
so as to make it even more “finite” in nature, utilizing an idea that is implicit in the proof
of Theorem 11.1 of [Ho9], pp. 153-7. Let N denote the set of nonnegative integers. If M is
any R-module and X1, ..., X} are indeterminates over R, we let M[X| = M[X;y, ..., X]
denote M @g R[ X1, ..., Xi]. We write M[X]<x for the submodule spanned by the ele-
ments uXy" --- Xp* such that u € M and the a; € N with } . a; < N. In particular, we

may use this notation when M = R.

4.1 Partial algebra modifications. We begin with an R-module M. We define a partial
algebra modification of M to be a map M — M’ where M’ is an R-module obtained as
follows: for some integer £ > 0 and x1, ... ,zr41 that are part of a system of parameters
for R and relation zgiiugpy1 = Zkf:l r;u;, where the u; € M, choose indeterminates

J
X1, ..., X, and an integer N > 1, let F' = (uk+1 — Zle xiXi), and let

M' = M[Xy, ..., Xi]<n/FR[X1, ..., Xi]<n-1,

which makes sense because F' has degree 1 in the X;. We shall refer to the integer N as
the degree bound of the partial algebra modification. Note that if T is an R-algebra and
one takes the direct limit over N of the T’ for fixed k, x1, ..., Tk+1, X1, ..., Xk, and
F| one obtains an algebra modification of 7. We can define a sequence of partial algebra
modifications of an R-module T" as in §3, and, when T is an R-algebra, we call the sequence
bad precisely if the image of 1 € T" in M,. is in mM,..

Given a local map of local rings R — S we can now define a double sequence of partial

algebra modifications of an R-module M with respect to R — S as follows: we first form
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a sequence of partial algebra modifications of M over R, say M = My, My, ... ,M,, and
then a sequence of partial algebra modifications Ng = S ® g M,., Ny, ..., N of Ny over
S. When M is an R-algebra T, the sequence is defined to be bad precisely if the image of
1 €T in N, is in nNg.

It is quite easy to see that if T" is any R-algebra then any S-algebra obtained from 7" by
a double sequence of algebra modifications over R — S is a direct limit of modules that
arise from a double sequence of partial algebra modifications over R — S. In consequence,

we have:

Theorem 4.2. Let (R, m) — (S,n) be a local homomorphism of local rings, and let T be

an R-algebra. Then there exists a commutative diagram:
B — C

[

R —— S
such that R — B factors R —T — B, B is a big Cohen-Macaulay algebra for R, and C' is

a balanced big Cohen-Macaulay algebra for S if and only if there is no bad double sequence

of partial algebra modifications of T over R — S.

5. WEAKLY FUNCTORIAL BIG COHEN-MACAULAY ALGEBRAS

Before proving one of our main results, we note the following lemma.

Lemma 5.1. Let R be a local ring and suppose that M is an R-module, that T is an
R-algebra, that c is an element of T that is not a zerodivisor, while « : M — T, is an
R-linear map. Let M — M’ be a partial algebra modification of M with respect to part of
a system of parameters x1, ... ,xk+1 for R, with degree bound D. Suppose that for every
relation tg1Tpyr1 = Z?Zl tjx; with coefficients in T, we have that ctyy1 € (z1, ... ,x5)T.
Finally, suppose that a(M) C ¢=NT.

Then there is an R-linear map B : M’ — T, with image contained in ¢~ (NP+D+N)

such that the diagram
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commutes.

Proof. We have a relation oy itjp1 = Sor

=1 Tilli with the u; € M such that

M'=M[Xy, ..., Xgl<n/FR[X1, ..., XKk]<n-1,

with F' = ug41q —Z?Zl z;X;. Applying a, we have that, with v; = a(u;), there is a relation
Thy1Vkar1 = Zle 7;v;, where the v; € ¢™NT, and then zg41(cNvpy1) = 2?21 zi(cNvy),
z;(w;/cNT1), where the
wj are in T. Extend R — T, to a map 6: R[Xy, ..., X;] — T by letting X; map to
w; /Nt 1 < j < k. We obtain 3 by first defining a map v: M[X1, ..., Xx] — T. that
takes uX{" --- X%, where u € M, to

and so ¢(cNvgy1) € (21, ... ,2)T. Tt follows that v, = 2?21

or(w) (wy /M) (wg /T

In fact, v is the composition of o @ 0: M[Xy, ... ,X;] — T. ®r T. with the map
T. ®r T, — T, that sends t ® t' to tt’. Then ~ is R[Xy, ..., Xg]-linear, and so it
kills FR[X1, ..., Xg]: in particular, it kills FR[X, ..., Xg]<p—1. We obtain 3 by re-
stricting v. On M[Xjy, ..., Xg|<p, we have that for each term the sum of the a; is
at most D, and since a(u) involves, at worst, ¢V, the values of 3 involve, at worst,

¢INFD)DHN — (ND+D+N iy the denominator, as required. [

Theorem 5.2. Let R — S be a local homomorphism of complete local domains of mized

characteristic and dimension at most 3. Then there is a commutative diagram:

B —— C

[

R —— S

where B is a balanced big Cohen-Macaulay algebra over R and C is a balanced big Cohen-

Macaulay algebra over S.

Proof. If not there is a bad double sequence of partial algebra modifications
R—M —-— M, —-S®QrM, - Ny — - — N

with the image of 1 € R in N, actually in n/Ns. Let D > 0 be an integer at least as large

as any of the degree bounds for the partial algebra modifications in this sequence. Let
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Dy = 0 and define a sequence D, recursively by Djy1 = (D; +1)D + D, so that D; = D,
Dy = D? + 2D, and so forth. Clearly, D; is a positive integer for j > 1.

We note that, as explained in [HH9], Proposition (1.2), there is an R-algebra homomor-
phism Rt — S*. A choice of such a homomorphism will induce a map R;‘ — SI'}‘ , where
the subscript , indicates adjunction of 1/p.

Fix any rational number ¢ > 0 and a value of p¢ in RT. If h is an integer (it may be
negative) by p"¢ we mean (p€)" (when h is negative the value is taken in R;).

We claim that there is a commutative diagram:

RY — Rf — ... — Rf — St — Sf = ... — Sf
T T T T T T
R — My — -+ — M, — S®@rM, — N — — Ny
in which

(1) the leftmost vertical arrow oy is the inclusion R C R},

(2) the vertical arrows «; from the M;, where R = M, are R-linear,

(3) the vertical arrows (; from the N;, where Ny = S ®g M,., are S-linear,

(4) the image of each M; in R;‘ is inside the cyclic module p~Pi*R*, 0 < i < r, and
(5) the image of each Nj is inside the cyclic module p~Pr+icS+ 0 < j < s.

We have already specified . Suppose that the a;, 7 < ¢ < r have already been
constructed so that the squares to the left of the arrow a; commute. The existence of a;41
is then immediate from Theorem (2.3) and Lemma (5.1).

The composite map M, — R;J‘ — Sz_)’_ induces a map S ® M, — Sz_)’_ simply because
S]j‘ is an S-algebra, and the power of p needed to clear denominators in the image is the
same as for the map M, — R;" . Thus, we have [y, as required. The remaining 3; are
constructed recursively, exactly as in the argument for the existence of the «;: we are
applying Theorem (2.3) to ST instead of to RT, and Lemma (5.1) over S instead of over
R.

Let £ = D,,s. Tracing the image of 1 € R around this commutative diagram in two
different ways, we find that for every rational ¢ > 0, we have that, in ST, 1 € np=FST,
i.e., that pP¢ € nSt for arbitrarily small ¢ > 0. Taking ¢ = 1/N, N > 0, we find that
pP € nVST for all N > 0, which contradicts Fact (2.4). O

We next note the following refinement of Theorem 5.2: the maps to B and C' in Theorem

5.2 can be chosen so as to factor through Rt and ST. Note that when R is a complete
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local domain, we may define a balanced big Cohen-Macaulay algebra over Rt to be an
RT-algebra B such that every system of parameters of RT is a regular sequence on B,
and such that, if M is the maximal ideal of Rt, we have that MB # B. Evidently,
an R¥t-algebra B is a balanced big Cohen-Macaulay algebra for R if and only if it is a

balanced big Cohen-Macaulay algebra for every module-finite extension of R within RT.

Corollary 5.3. Let R — S be a local homomorphism of complete local domains of mixed

characteristic and dimension at most 3. Choose a local map Rt — St so that the diagram

Rt —— S+

T T

R —— S
commutes. Then there is a commutative diagram:

B —— C

T T

Rt —— §*F
where B is a balanced big Cohen-Macaulay algebra over RT and C is a balanced big Cohen-
Macaulay algebra over S7.

Proof. The issue is whether there is a bad double sequence of algebra modifications over
R*T — S*. Because the map Rt — St is a direct limit of maps R’ — S’, where R’ is a
module-finite extension of R within Rt and S’ is a module-finite extension of S within S+
containing the image of R, if there is such a bad double sequence of algebra modifications,
there will exist such a bad double sequence over R" — S’ for suitably large choices of R’
and S’. But this contradicts Theorem 5.2 (with R’ and S’ playing the roles of R and
S). O

Corollary 5.4. Suppose that R — S is a local map of local rings of dimension 3, and
that there is a minimal prime ) 0f§ lying over P in R such that dim (S/Q) = dim S, and
dimR/P = dim R. Suppose also that S/Q is mized characteristic (which implies that R/ P
is mized characteristic as well). Then there is a commutative diagram

B —— C

[

R —— S
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in which B and C' are balanced big Cohen-Macaulay algebras over R and S respectively.

Proof. Put together the diagram

B — (C

T T

R/P —— 5/Q
guaranteed by the preceding theorem with the diagram
R/P —— 5/Q

T T

R —— S

The result now follows because the dimension conditions guarantee that every system

of parameters for R (respectively, S) is a system of parameters in I/%/P (respectively,

S/Q). O

6. VANISHING OF MAPS OF TOR

The result obtained in the preceding section yields a special case of the vanishing conjec-
ture for maps of Tor discussed at length in §4 of [HH9| and also in [Rang]. For simplicity,

we have stated the result when 7 is local.

6.1 Theorem. Let A - R — S be maps of Noetherian rings such that A — S is local
homomorphism of mized characteristic reqular local rings, R is a module-finite and A-
torsion-free extension of A, and A, S have dimension at most 3. Let M be any A-module.
Then the map Torf (M, R) — Tor{(M, S) vanishes for all i > 1 and for every A-module
M.

Proof. We may complete S and likewise replace A by its completion and M, R by their
tensor products with A over A. Thus, we may assume that A, S are complete. Second, let
Ry be the quotient of R by a minimal prime disjoint from A—{0} contained in Ker (R — S).
Because of the factorization Tor (M, R) — Tor?(M, R;) — Tor(M, S) it suffices to see
that that the second map is 0, and so we may replace R by R, and assume that R is

a module-finite and, hence, local extension domain of A and that R — S is a local map
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of complete local domains of mixed characteristic and dimension at most 3. By Theorem

(5.2), there is a commutative diagram:

B ——C

[

R —— S

where B, C' are balanced big Cohen-Macaulay algebras over R, S respectively. Since
R is module-finite over A, B is a balanced big Cohen-Macaulay algebra over A, and,
since A is regular, therefore A-flat (cf. [Ho3], Lemma 5.5 or [HH5], §6.7, p. 77), while,
similarly, C is faithfully flat over S. Thus, Tor (M, R) — Tor (M, B) — Tor (M, C) is
0, since the module in the middle is 0 (B is A-flat), and so the composite Tor? (M, R) —
TorA (M, S) — Tor(M, C) is 0. But the map on the right is injective because C is
faithfully flat over S, and so Tor{ (M, R) — Tor(M, S) is 0. O
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