DIAMOND CLOSURE

BY MELVIN HOCHSTER AND JUAN D. VELEZ

Section 1.

INTRODUCTION

Throughout, all rings are commutative, associative, with identity, ring homomorphisms

are assumed to preserve the identity, and modules are assumed to be unital.

Our objective is to generalize results of tight closure theory for ideals in Noetherian
rings of characteristic p > 0 to Noetherian rings that may not contain a field. We refer
the reader to [HH1-12], [Hu], [Ho2-3], [AHH] and [Bru] for information about tight closure
theory and related topics. The theory that is obtained from the notion of diamond closure
presented here is not everything that one would hope for. For example, at this point it
does not appear to lead to a solution of the direct summand conjecture (cf. [Hol]). Its
main failing is that not every ideal of a regular ring of mixed characteristic is closed in this

sense.

However, it does offer better control of what is contained in a colon ideal formed from a
system of parameters in a mixed characteristic local ring than what can be proved for some
alternatives, such as solid closure (cf. [Ho2]). In general, it is smaller than the intersection
of the integral closure of the ideal I with the inverse image in the ring R of the tight closure
of IR/pR in R/pR. Cf. Proposition (2.9).
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The notion of diamond closure is based on defining certain “powers” of ideals I{™ (a
fixed choice of prime p > 0 is assumed). It then turns out that u € [ ¢ which is our
notation for the diamond closure of I (we use I¢P if it is necessary to indicate p) means
that for a suitably restricted choice of ¢ € R, cu™ € I¢™ for all n > 0. The details are
given in §2. In §3 several results are proved that show that diamond closure has several
of the good properties of tight closure. E.g., if R is a complete local normal domain of
mixed characteristic p and S is a module-finite extension of R, then IS N R C I?, and if
Z1, ... ,Ty is a system of parameters for R containing p then for any choice of zp11 # p,
with I = (x1, ... ,2,)R one has I:p 2,y C I®. This last is an analogue of the so-called
“colon-capturing” property for tight closure. More general forms of this result are given
in §3. In the cases where it applies, this result greatly strengthens the known result that
places the colon ideal inside the integral closure of I. (See, for example, Theorem (1.2) of

[EHU] and the preceding discussion.)

The diamond closure of an ideal is typically much smaller than the integral closure:
it is contained in both the integral closure, and in the inverse image of the tight closure

working modulo (p).

In a very brief fourth section a connection is made, for ideals I in finitely generated
Z-algebras R, of ﬂp I®P with the tight closure in equal characteristic zero (in the sense of
[HH12]) of Q ®7z I in Q ®z R.

Section 2.

THE DEFINITION OF DIAMOND CLOSURE FOR IDEALS

Throughout, p denotes a fixed positive prime integer. We are very interested in closure
operations for local domains such that p is in the maximal ideal. However, for the moment,

we place no restriction on the Noetherian ring R.

For every such p we shall define a closure I¢ for ideals I in R which we refer to as the
diamond closure of I in R. If p is not clear from context, the term diamond p-closure may

be used.

In case R has characteristic p, so that p = 0 in R, this notion is identical with tight

closure, under very mild conditions on R. When R is a local domain with positive residual
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characteristic it is understood that, unless otherwise specified, p is to be taken to be the
characteristic of the residue field. Hence, we shall not usually indicate p in the notation,
although the notion is only defined once some positive prime integer has been fixed. If we
do need to specify which prime integer is being used we shall write I®? for the diamond

closure.

We shall always use q, ¢, ¢”, ¢;, etc. to indicate powers of p with a nonnegative integer

as the exponent: thus, 1 is included.

Throughout the rest of this paper, unless otherwise specified, all given rings are assumed

to be Noetherian.

(2.1) Definition. If u = uy, ... ,uy is a sequence of elements of R and n = ¢r where ¢ is
a power of p and p does not divide r, we denote by (g)m) the ideal of R generated by all
elements of the form ¢; (uj* - - - uy?)? where ¢ = q1¢» is a factorization of ¢ into powers of p
and the a; are nonnegative integers whose sum is ¢y7. If (u),, denotes the ideal generated

by the ¢o th powers of the u; then we may also describe this ideal as

> a((we,)™"

q192=q

Another description is this: (u) ) i generated by those elements ¢;U such that ¢|n,

U is a monomial in the u; of degree n, and the exponent a; on every u; is such that ¢z|a;.

(2.2) Theorem-Definition. Let u = uq, ... ,ug be a sequence of elements of a ring R
and let n be a positive integer. Then (g)m) depends only on the ideal I generated by
Ui, ..., uq and not on the choice of generators. We denote this ideal I¢™),

Moreover:

(a) It C I™.

(b) If I C J then I{™ C J(™,

Before giving the proof we note the following fact about the behavior of binomial coef-

ficients:

(2.3) Fact. If ¢ = q'q" are powers of p, a is a positive integer, b is a positive integer not

divisible by p, and aq > bq' then (Z(;I,) is divisible by q".
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Proof. We have (gg,) = g—(;’,k with k = (qu,ill), an integer, and g—jk = q”b“k. Since p does

not divide b, the result follows. [

Proof of (2.2). We first observe that given two different sequences of generators for the
same ideal it suffices to compare the result from each with the result obtained from the
concatenation of the two sequences or something even larger, since it is clear that enlarging
the sequence can only make the result bigger. From this it easily follows that it suffices
to show that the result obtained from a given sequence does not change when we enlarge
it either with a multiple of one of its terms (this is trivial, since the various (u)4, do not
change), or else enlarge it by including the sum of two of its terms. Thus, we only need to

show that it does not change when we enlarge a sequence with the sum of two of its terms.

To see this, since the order of the u; clearly does not matter, we may assume that the
additional term is u; + us. Let v denote the enlarged sequence. A typical generator of
(y><n> will have the form

g1 (Ul + u2)a0(hu111142u32fh hq2
where h is a monomial in ug, --- , u, of degree D and ag + a1 + as + D = q17. When we
expand (u1 + u2)*% by the binomial theorem and multiply out a typical term is

aoq2
("o

where b, ¢ are nonnegative integers such that b4 ¢ = aggqe. If b and ¢ are both divisible by
g2 it is obvious that this term is in (g><"). If not, we may assume that the highest power
of p dividing both b and c is g3 < g2, and since b + ¢ is divisible by g2 we have that ¢s
is the highest power dividing b and also the highest power dividing c. But in this case

(*%) is divisible by g2/qs, by (2.3). It follows that the given term is in go(u)®" where

qo — Q1(Q2/qg) = Q/Q3-

Finally, the inclusion I{™ C I"™ is immediate from the definition, while the last statement
(b) follows from the fact that we may include a given finite set of generators of I in a finite

set of generators for J. [

Let I; denote the ideal generated by all ¢ th powers of elements of I (these are different
from the ideals (u); defined previously in Definition (2.1) by taking ¢ th powers of specific

generators).

Proposition (2.4). Let R be a Noetherian ring. If n is a positive integer let n = qr where

e

qg =p°, e € N and p does not divide r.
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(a) If R has prime characteristic p > 0, then I{9 = Jl9 and, more generally, I(™ =
(Il On the other hand, if p is invertible in R then I{" = I™.

(b) In any ring R,

7n — Z 1 (I,) 2"

q192=q

(¢) In particular, for all n, I, C I{™.

(d) Letuq, ...,u; € I. Let ay, ... ,ax be be nonnegative integers whose sum is n. If p° is
the highest power of p dividing the multinomial coefficient ( " ), then each of the

A1,y ... ,0F

monomials p*ul* --- uf* € I'™ and, hence, each of the terms (," ak)ui“ S ugk

ai,
occurring in the multinomial expansion of (uy + -+ +ug)™ is in I . It follows that

for any ring homomorphism R — S, (IS),, C I{™S.

Proof. The second statement in (a) implies the first. The second statement is immediate
from the fact that the sum in Definition (2.1) has only one nonzero term in it, corresponding
to the choices ¢; = 1 and g2 = ¢g. The final statement follows from part (b) below and the
fact that with ¢ = ¢, g2 = 1, we have a term in the sum given in part (b) of the form

ql?" = qI™, and when p is invertible this is I™.

For part (b), note that I,, will be generated by finitely many ¢, powers of elements of
I, and these may be included in a set of generators. Thus, we may choose a finite set of
generators for I so large that I, is the ideal generated by their g powers for all g2 < gq.
We may then use these generators in Definition (2.1), and since I, = (u)q, (for these
specific generators, with notation as in (2.1)) the result follows from the formula displayed
in (2.1).

For (c), observe that if u € I and n = ¢r then u™ = 1(u?)" € 1(1,)".

It remains to prove (d). Let g2 be the greatest power of p that divides all of the integers
a;. Since we can include the u; in a set of generators for I, the result follows if we can
show that (al,ﬁ 7%) is divisible by ¢q/q’. At least one of the a; is divisible by ¢’ and no
higher power of p. For definiteness, we may assume that it is a;, by renumbering. Now
(ah " ) = (”)( nTa ), and so the result follows from the fact that ¢/q" divides ("),

e A al az,...,a al

by Fact (2.3). O

The following result enables one to give a variant notion of tight closure in the positive

prime characteristic case that agrees with the usual notion whenever one has test elements,
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i.e., in all good cases. The reason for proving this fact is that it helps motivate the notion
of diamond closure, and shows that it agrees with tight closure, under mild hypotheses, if

one is in positive prime characteristic.

Before stating the result, we recall that ¢ € R° is a test element for a Noetherian ring
R of characteristic p if for every ideal I of R and element v € R, u € I* if and only if
cud € I for all ¢ = p¢. We also recall the every reduced ring that is essentially of finite
type over an excellent local ring has a test element (in fact any ¢ € R°® such that R, is
regular has a power that is a test element: cf. [HH9], §6). It is also worth noting that
tight closure can be tested by testing modulo nilpotents, or by testing modulo each of the
minimal primes. Thus, in building a theory for a closure operation of this kind, the domain

case is the main case.

(2.5) Proposition. Let R be a Noetherian ring of positive prime characteristic p. Let
uw € R and let I be an ideal of R.

(a) If there is an element ¢ of R not in any minimal prime of R such that cu™ € I™ for

all sufficient large integers n then u € I*, the tight closure of I.

(b) Conversely, if R has a test element ¢ € R® and u € I*, then cu™ € I'™ for all n.

Proof. (a) The condition is clearly sufficient for u to be in the tight closure, taking only

values of n of the form ¢ = p°.
(b) For the converse, note that if v is in I* then u9 is in the tight closure of I'9] for all
q, and so u?" is in the tight closure of (I [Q])’" for all ¢ and all r. Since c is a test element,

cud” € I™ for all large n = qr. O

(2.6) Definition. Now we define I¢ to be the set of elements u € R such that there
exists ¢ in R not in any minimal prime of pR and not in any minimal prime of R such
that cu™ € I™ for all n > 0. The remarks of the preceding paragraph make the analogy
with tight closure clear: in positive prime characteristic, for rings that have a test element,
this will give the tight closure. It turns out that I¢ C I, and that I® is contained in the
inverse image in R of the tight closure of I(R/pR) in R/pR, as we shall see shortly. But
note that it is not even clear that I¢ is an ideal without some argument! We verify this

next:

(2.7) Proposition. Let R be a Noetherian ring, let I be an ideal of R, and let u € R. Then
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I™ s an ideal of R. Moreover, the following three conditions on v € R are equivalent:
(a) u € I°.

(b) There is an element ¢ not in any minimal prime of pR or R such that for all ¢ and

for all positive integers r not divisible by p,

cul" € Z q1(Lg,)".

qd192=q

(c) There is an element ¢ not in any minimal prime of pR or R such that for all ¢ and

for all positive integers r (whether divisible by p nor not),

cul” € Z g1 (L))"

q192=q

Proof. We first show the equivalence of conditions (a), (b) and (c), and then we prove
that I is an ideal. The condition in (b) is simply a restatement of the definition of the
diamond closure of I, while it is clear that (¢) implies (b). Thus, it suffices to see that (c)
implies (b). Suppose that r = ¢’s where s is not divisible by p. Then we may think of ¢r
as (¢qq')s and so
cul" € Z q1(1g,) 7%,
Q192=qq’

If ¢; divides ¢ we can write go = qoq’ where ¢1go = ¢ and observe that (I, )%* C
(I,)9 %% = (I,)®". Tf ¢ divides q; the term is contained in gI%* = q[99'5 = q[9". Thus,
(a), (b), and (c) are equivalent.

It remains to show that I® is an ideal. It is clearly closed under taking multiples. It
suffices to show that if z € I® and y € I® then 2 +y € I®. Choose ¢ not in any minimal
prime of pR or R such that cz™ € I{™ for n > 0 and d not in any minimal prime of pR or
R such that dy™ € I for n > 0. Then a typical term in cd(z + 3)"™ has the form

(qT‘)' aqo,,bqo
cd——————7T
(aqo)!(bgo)! y

where agy + bgo = n = gr (so that a+b = (¢/qo)r), and either gy = q or go < ¢ and p does

not divide a or b. In the first case we have that the element is a multiple of

(cx®)(dy®?) € ( Z Q1(Iq2)q1a)( Z 93(1q4)q3b)-

q192=q q3494=q
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In the second case the binomial coefficient is divisible by ¢/qo, and we wind up with a

multiple of

(0/a0)(cx®)(dy*) € L( " aile)™) (Y as(ly)®?).

qo q192=90 4394=qo

This is the same formula as in the first case, since ¢/qo = 1 in that case. A typical term
after we multiply out is J = (q/qo)q1q3(14,)1*(1,,)%°. Let ¢ be the greater of ¢1, g3
and ¢" the lesser of g2, ¢s. Then ¢'q” = qo and J is contained in (q/qo)q’ (I7)? where
d = (g2q10+q4q3b) /4" = (qoa+qob)/q" = qr/q"”, and so J is contained in (qq’/qo)(Iqu)q’"/q”.

Since ¢'q" = qo, the first coefficient may be rewritten as ¢/¢"” and the result follows. O

(2.8) Theorem. Let R be a Noetherian ring, and I, J ideals of R.

(a) If R has characteristic p, then I¢ C I*, with equality if R has a test element.
(b) If p is invertible in R, then I® =T.

(c) I C I®. Moreover, if I C.J then I® C J©.

@ (19)° = 1°,

(e) If R — S is a homomorphism of Noetherian rings such that every minimal prime of

S or of pS lies over a prime in R that is either minimal or a minimal prime of pR,
and I C R is an ideal of R, then I® maps into (15)°.

Proof. (a) This is essentially Proposition (2.5).

(b) This follows from the fact that I‘™ = I™. Note that since pR has no minimal
primes, the restriction on the multiplier ¢ is simply that it not be in any minimal prime of
R.

(c) The first statement is trivial. The second is immediate from the fact that I{* C .J¢
for all n, which is clear from the original definition if we include generators of I among the

generators of J.

(d) Tt suffices to show that when we enlarge I by including a single additional generator
u € I¢, we have that (I +uR)¢ = I, for then we may insert the generators of I one at a
time with changing the closure. Thus, it suffices to show that if u € I® and v € (I + Ru)®

then v € I®. Choose ¢ not in any minimal prime of R or pR such that cu™ € I™ for
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all n, and ¢’ not in any minimal prime of R or pR such that ¢'v™ € (I + Ru)™ for all
n. We shall show that (cc')v™ € I™ for all n. Let n = gr, as usual, where p does not
divide r. Choose a set of generators uy, ... ,uq for I so large that I, is generated by the
elements ugl for all ¢’ dividing gq. Note that ¢/v™ is a sum of terms ¢ Uu® where ¢; divides
q and U is a monomial in uy, ... ,uq such that each exponent on any w; is divisible by
g2 = q/q1, where a is divisible by ¢, and such that the degree of Uu® in the u; and u is n.
Let a = g2b. When we multiply by ¢ we may replace cu® by a sum of terms g3U’ where g3
divides g2, U’ has total degree g2b = a in the u; and the exponent on every wu; is divisible
by q2/qs (cf. (2.7¢)). But then, when we multiply out, all term in the sum for ec/v™ have
the form (q1¢3)(UU’) where UU’ is a monomial of total degree n in the u; and the degree
of any u; in UU" is at least g2/q3 = n/(q1q3), as required.

Part (e) is obvious. [

(2.9) Theorem. Let S be a Noetherian ring and let I be an ideal of S.

(a) Let R = S/pS, and let f: S — R be the quotient surjection. Let Iy = IR. Then
I® C f=Y(Iy), where I} is the tight closure of I in R. Moreover, I® C I as well.

(b) If I is not contained in any minimal prime of (0) and I is not contained in any

minimal prime of p, then pI C I€.

Proof. (a) The final statement is a consequence of the fact that if u € I¢ then there exists
¢ € R° such that cu™ C I for n > 0, and I{™ C I™. The statement that v € I maps
into I in R/pR follows from the fact that we have cu? € I{9 for all ¢ > 0. Since ¢ is not
in any minimal prime of p, its image in R/pR is not in any minimal prime of the ring, and
it is immediate from the definition that I¢?(R/pR) = I'%.

(b) Let J = I. Then there exists a positive integer k& such that J"I* = I"** for all n.
Choose c; € I not in any minimal prime of R or pR. Let ¢ = c§. Then c¢J" C ["tF C [®
for all n € N. Thus, if v € J, c(pv)qr = p™v™ € ¢I"™ = q(I;)™ C I{™ for all n. Tt remains
to see that pI C I°.

(2.10) Examples. (a) Let R be a ring such that R/pR is regular. Then I = I for
every ideal containing p, by (2.9a), since in R/pR every ideal is tightly closed. The same
is likewise true if R/pR is weakly F-regular.

(b) Let V' be a DVR with maximal ideal pV', where p is a positive prime integer, and let
R = V[[z,y]]. Then (z2,*)® C (2%, zy,y?) N (2%,y%,p) = (22,92 pry). On the other
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hand, by part (b), pzy € (22,y?)¢. This, (22,y%)¢ = (22, y2, pry). Thus, ideals in regular

rings are not closed in general.

(c) Let V' a complete DVR whose maximal ideal is generated by a prime integer p # 3,
and let R = V([[z, y, z]]/(f) where f = z3 + y3 + 23 — p. Note that R is regular! Tt is
still not trivial to understand how diamond closure behaves in this ring. If we kill pR then
the tight closure of (zf,y') in the quotient is generated by (xy)!=122, t > 1. It follows
that (zt,y?)? in R is contained in (p, zt, yt, (zy)!~122)R. But z, y is also part of a regular
system of parameters, so that (zf,y%)® C (2, y*)R = (z,)*R. Note that if t = 1, (z,y)R
is prime and so it its own diamond closure. In particular, the diamond closure need not
map onto the tight closure of (z,y)R/pR in R/pR.

If t = 2 or 3 then p = 2% mod (zt,y?), and we can conclude that the diamond clo-

3 at yt (xy)'7122) as well as in (x,y)t. Since =, y, z is a regular

sure is contained in (z
sequence in R, it is easy to see that this intersection is (zt,y?, 23(z, y)t, (zvy)~12%). We
emphasize that ¢ = 2 or 3 here. Now, mod (zt,y?), 2> = p, and so 23(x,y)t is in I,
Since z, y, and z all multiply (zy)!~'22 into (2?,yt, 23(x,y)!), we see that ¥ must be
either J = (2%, 4%, 23(z,y)?) or J + (zy)~!122R. The issue can now be resolved by testing
whether (zy)!~12% € (2?,y*)®: since pR is prime in R, this is the same as asking whether
N, (@, y*)™ g ((xy)*~122))™ contains an element not in pR. We leave this as an exercise
for the reader. The point here is that even in rather simple cases in regular rings, it is not

so clear what I is.

Section 3.

Some good properties of diamond closure

In this section we show that diamond closure does have several of the good properties

that one would hope for in an analogue of tight closure.

Let R be a Noetherian domain such that p is not a unit in R. We shall say the the
Noetherian domain R is p-normal if the localization of R at each minimal prime of pR is
normal. This condition is automatic if p = 0, for then the localization is a field. If p £ 0
the condition implies that each localization of R at a minimal prime of P is a DVR. If

R is p-normal then the localization of R at the union of the minimal primes of pR is a
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semilocal PID (or a field). We shall need to assume that R is p-normal for some purposes.

This condition is not too restrictive. Of course, it holds whenever R is normal.

In particular, we have the following: for those familiar with the notion of “plus closure”
(cf. [Sm]), this result asserts that diamond closure captures plus closure — this is analogous

to results for tight closure.

(3.1) Theorem (capturing plus closure). Let R be a Noetherian domain that is p-
normal in the sense described just above. Let I be an ideal of R, and let S be an integral
extension ring of R. Then ISNR C I°.

Proof. Let I = (uq, ... ,up)R, and suppose that v € IS N R, so that v = Z?Zl S;U;
with the s; € S. Then we may replace S by R[s1, ..., sy]| and therefore assume that S is
module-finite over R. We may also choose a minimal prime P of S disjoint from R — {0}
and so replace S by S/P. Thus, it suffices to consider the case where S is a domain that

is a module-finite extension of R.

Let W be the complement of the union of the minimal primes of pR in R. The p-
normality of R implies that the localization Ry is either a PID or a field, and so Sw is
free over Ry with 1 as part of a free basis, and, hence, Ry — Sw splits over Ry,. By
restricting the splitting to S and multiplying by an element ¢ of W to clear denominators,
we obtain an R-linear map ¢: S — R such that ¢(1) =ce€ W.

Now with r € (u1, ... ,us)S for every integer n we have that ™ € IS, by Proposition
(2.4d). Applying ¢ to both sides shows that cr™ € I¢™ for all n, as required. [

We can also prove the following result which is an analogue of the “colon-capturing”

property of tight closure.

(3.2) Theorem (colon-capturing). Let R be an A-torsion-free module-finite extension
ring of a p-normal domain A, and let z1, ... ,xq be a permutable reqular sequence in A.
Assume that one of the elements, say x;, is either a power of p or a root of p. Let x # x;,
be an element of the sequence. Let I be any ideal of R generated by monomials in the x;
other than x. Then Then I:gx C I®. In particular, if k+1 # ig, and I = (z1, ... ,z%)R,
then I:p w41 C I°.

Proof. Since A — R is module-finite and R is a torsion-free A-module, when we localize
R at W = A — pA it becomes a free module over Ay, which is a PID. It follows that we
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can choose an element ¢ € A — pA and a free A-submodule G of R such that cR C G.

By rewriting the monomials with some exponents possibly increased we may assume
that z;, is p, rather than a power of p. This, we may assume without loss of generality

that p is a power of x;,, possibly the first power.

Now suppose that vz = Zle piri, where the yp; are the monomials in the x; (other
than z) that generate I. Raising both sides to the nth power, we obtain that v™z™ is a
certain R-linear combination of monomials in the z; with certain multinomial coefficients
appearing. This is still true if we replace each multinomial coefficient that appears by the
highest power of p that divides it, and it is also true that we can write each such power of
p that occurs as a power of x;, instead. Call the ideal of A generated by these modified
monomials Jy. Then v"z™ € JyoR where Jy is generated by monomials of A in the z; other
than z. Thus, z"(cv™) € JoG, where cv™ € G. Since G is A-free, we have that the x; form
a permutable regular sequence on G. But then JoG:qx = JoG (cf. [EH]), and we have
that co™ € JoG C JoR. But the generators of .Jy are in I¢™ by Proposition (2.4d). Thus,

cv™ € I{™ for all n, as required. [

We have the following corollary:

(3.3) Theorem (colon-capturing). Let R be a complete local ring of pure dimension d
(i.e., there are no embedded primes, and all minimal primes have dimension d) of mized
characteristic p and let x1, ... ,xq be part of a system of parameters for R. Assume that
a oot or power of p occurs among the x;, say as x;,. Let x # x;, be an element of the
system of parameters. Let I be any ideal of R generated by monomials in the x; other
than x. Then Then I:px C I®. In particular, if k +1 # iy, and I = (xq, ... ,z%)R, then
I:pxii1 C I°.

Proof. Let V be coefficient ring for R, i.e., a complete DVR subring of R with p as the
generator of the maximal ideal such that the inclusion V' — R is local and induces an
isomorphism of residue class fields (cf. [C] or [G1, Oy, 10.3] and [G2, §19]). Let y denote
the parameters with x;, omited and let A = V[[y]][x;,] (where the adjunction of the z;, is
only need in case it is a root of p). Then R is module-finite over A, which is regular, and
the condition that it have pure dimension implies that it is torsion-free as an A-module.

The z; form a permutable regular sequence in A, and the result is now immediate from
Theorem (3.2). O

(3.4) Theorem (Briangon-Skoda theorem). Let I be an ideal of a Noetherian ring R
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with d generators and suppose that I is not contained in any minimal prime of either R
or pR. Then for every integer m > 0, Id+m C ([™+1)<,

Proof. Let I = (uy, ... ,uq)R. Let J = I4t™. Then, exactly as in the proof of (2.9b), we
can choose ¢ € J not in any minimal prime of R or pR such that ¢J™ C (I%T™)" and, as
is shown in the proof of Theorem (5.4) in [HH4], I™+™ C (u, ..., u?)™+L C (Im+1){n)

m+1

since each of the obvious generators of (uf, ..., u) is the n th power of a monomial

of degree m + 1 in the u;. [

(3.5) Remark. While the Briancon-Skoda theorem is known for regular rings even in
mixed characteristic (cf. [LT], [LS]), the result above may provide sharper information
than is otherwise available in rings of mixed characteristic that are not regular. The same

is true of Corollary (4.2) in the next section.

Section 4.

A connection with tight closure in equal characteristic 0

It is natural, in a finitely generated Z-algebra R, to consider the intersection of the
ideals I®P as p varies through all positive primes of Z. We shall use 19> to denote this
intersection We shall use * in this section to indicate tight closure in the sense of [HH12] for

affine Q-algebras. (This operation is also referred to as equational tight closure in [HH12]).

(4.1) Proposition. Let R be a finitely generated Z-algebra, I an ideal of R, and let _ g
denote the result of tensoring over Z with the rational numbers Q. If u € 19 then the
image of u in Ry is in (Ip)*.

Proof. This is obvious from (2.9a) and the definition of * in [HH12], since we have that
the image of u is in (I(R/pR))* for all primes p. [

The following result is an immediate consequence of Theorem (3.4) and the definition
of 19>,
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(4.2) Corollary (Briangon-Skoda theorem). Let I be a d generated ideal of a finitely
generated Z-algebra R that is not contained in any minimal prime of R nor of pR for any

positive prime integer p € Z. Then for every positive integer m, I¢+m C (I™+1)¢% ]
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