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ABSTRACT

Closure Operations in Positive Characteristic and Big Cohen-Macaulay Algebras

by

Geoffrey D. Dietz

Chair: Melvin Hochster

In this thesis, we investigate some open questions involving tight closure and

big Cohen-Macaulay algebras over rings of positive prime characteristic. We show

that if R is a standard graded domain over an algebraically closed field where tight

closure equals graded-plus closure for finitely generated graded modules, then the

equivalence also holds for non-graded finitely generated modules with a quotient

coprimary to the homogeneous maximal ideal of R. We also provide a construction

of an R-algebra B such that B is a degree-preserving big Cohen-Macaulay algebra

over R and so that an element x of R is in the tight closure of an ideal I only if x is

in the expansion of I to B.

We additionally examine the class of algebras over a local ring R that map to

some big Cohen-Macaulay R-algebra; we call such rings “seeds” over R. Our results

include that tensor products of seeds are seeds and that the seed property is pre-

viii



served under base change between complete local domains of positive characteristic.

These results are used to answer some open questions involving big Cohen-Macaulay

algebras over complete local domains of positive characteristic. We also provide a

family of equational problems that classify the obstruction for all solid algebras to

be seeds over complete local domains in positive characteristic, and we characterize

solid algebras in terms of phantom extensions.

Finally, we discuss a program to axiomatically define a closure operation that will

be a good analogue of tight closure.
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CHAPTER 1

Introduction

Since the 1970s, when C. Peskine and L. Szpiro published proofs of the local

homological conjectures in prime characteristic p > 0 (see [PS1] and [PS2]), positive

characteristic methods have been a popular, and, more importantly, successful tool

for solving problems in commutative algebra and algebraic geometry, prompting

several modern commutative algebraists to aver, “Life in characteristic p is better!”

The primary ingredient in a characteristic p method is the use of the Frobenius

endomorphism F : R → R that takes r �→ rp in rings containing a field of positive

characteristic. The existence and exploitation of this map has had profound impact

in the world of commutative algebra.

In particular, tight closure theory, since its introduction by M. Hochster and C.

Huneke in the late 1980s, has been an important method of working in positive

characteristic. The tight closure of an ideal is defined to be

I∗ := {x ∈ R | ∃c ∈ R◦ such that cxp
e ∈ I [pe] ∀e� 0}

where p is the characteristic of the ring, R◦ is the complement in R of the minimal

primes of R, and I [pe] is the ideal generated by all peth powers of the elements of I.

One might view tight tight closure theory as a unifying theory for many characteristic

p methods, as the success of tight closure has been due to its ability to tie together

1
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ideas that were previously not known to be connected, generalize theorems, and

simplify proofs. Some of the many examples include proofs that the integral closure

of the nth power of an ideal I in a regular ring is contained in I (the Briançon-

Skoda Theorem) and that direct summands of regular rings are Cohen-Macaulay (a

generalization of the Hochster-Roberts Theorem).

Methods discovered by Hochster and Huneke during their development of tight

closure also led to their remarkable result that the absolute integral closure R+ of an

excellent local domain R of positive characteristic is a big Cohen-Macaulay algebra

over R; see [HH2]. A big Cohen-Macaulay algebra B is an R-algebra for which every

system of parameters of R is a regular sequence on B. While Hochster had pre-

viously shown the existence of big Cohen-Macaulay modules in equal characteristic

(see [Ho2]), this new result was the first proof that big Cohen-Macaulay algebras

existed. Their existence is important as it gives new proofs for many of the homolog-

ical conjectures, such as the direct summand conjecture, monomial conjecture, and

vanishing conjecture for maps of Tor in positive characteristic. As with tight closure,

the use of the existence of big Cohen-Macaulay algebras is remarkable because it can

help prove theorems that make no explicit reference to big Cohen-Macaulay algebras.

In this thesis, we will study some open questions involving tight closure, including

whether I∗ = IR+ ∩R, for certain rings. We will also present new properties about

big Cohen-Macaulay algebras in positive characteristic and the rings that map to

such algebras. Closely related to the topics of tight closure and big Cohen-Macaulay

algebras is the class of solid algebras defined by Hochster in [Ho3]. We will also

investigate some of the connections between these areas and try to shed more light

on their relationship.

In Chapter 2, we will review the necessary background material used to motivate
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and provide the fundamental tools used for proving the results of the succeeding

chapters.

Tight closure of finite length modules in graded rings

At the forefront of unresolved problems involving tight closure stands the local-

ization question. Deciding whether tight closure computations commute with local-

ization or not remains a very elusive goal. Closely related to the localization issue

is the question of whether the tight closure of an ideal I in a positive characteristic

domain R is simply the contracted-expansion of I to R+, the integral closure of R in

an algebraic closure of its fraction field, i.e., does I∗ = IR+∩R? (The ideal IR+∩R

is called the plus closure of I.) Since the plus closure operation can easily be shown

to commute with localization, one could settle the localization question, while also

giving a simple alternative definition of tight closure, by proving the above equality.

In the early 1990s, K.E. Smith made a tremendous contribution to this problem

by proving that I∗ = IR+∩R for ideals generated by partial systems of parameters in

excellent local domains of positive characteristic; see [Sm1]. Smith also showed that

tight closure and plus closure are equal for ideals generated by part of a homogeneous

system of parameters in an N-graded domain R finitely generated over R0 when R0

is a field of positive characteristic; see [Sm2].

Very recently, H. Brenner made a major breakthrough on this problem when he

showed that tight closure and plus closure are equivalent for homogeneous ideals in

certain 2-dimensional graded rings; see [Br2] and [Br3]. Specifically, the equivalence

holds for graded ideals when the ring is either an N-graded 2-dimensional domain of

finite type over the algebraic closure of a finite field or the homogeneous coordinate

ring of an elliptic curve over an algebraically closed field. In both cases, Brenner’s

works relies heavily on a correspondence between tight closure and projective bundles
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(see [Br1]), which allows one to use machinery from algebraic geometry to develop

numerical criteria that determine when an element is in the tight closure or plus

closure of an ideal. Although it is not made explicit in his work, it appears that the

same methods show the equivalence for finitely generated graded modules over the

same class of rings. See Section 3.2 for details.

Inspired by Brenner’s recent progress, we have studied how one can obtain an

equivalence of tight closure and plus closure for more general ideals and modules

given that one has the equivalence for homogeneous ideals and modules. While we

have not yet been able to obtain an extension to all modules, in Chapter 3 we prove:

Theorem 3.1.6. Let (R,m) be a standard graded K-algebra of characteristic p > 0.

Suppose that R is a domain, and K is algebraically closed. If N∗
M = N+

M = N+gr
M

for all finitely generated graded R-modules N ⊆ M such that M/N is m-coprimary,

then the same is true for all finitely generated modules N ⊆ M such that M/N is

m-coprimary.

As a result, we can apply our theorem to the cases where Brenner’s work is valid to

increase the class of ideals and modules where tight closure equals plus closure.

Unlike the work of Brenner, our methods are entirely algebraic and rely on in-

jective modules over a graded subring, R+GR, of R+. This led us to the study of

injective hulls over R+GR and R∞ in an attempt to extend our result beyond the m-

coprimary case. We manage to compute a submodule of the injective hull EA∞(K),

where A is either a polynomial ring or a formal power series ring, that enables us to

show that the injective hulls ER+GR(K) and ER+(K) behave far differently from the

Noetherian case, as these modules contain elements that are not killed by any power

of the maximal ideal of R; see Proposition 3.3.13. As a result we cannot use these

injective hulls to extend Theorem 3.1.6 to general modules.
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Graded-complete rings and modules

In Chapter 4, we investigate another problem involving tight closure in graded

rings. In [Ho3, Theorem 11.1], Hochster provides a construction of big Cohen-

Macaulay algebras which implicitly shows that one can construct a big Cohen-

Macaulay algebra B over a complete local domain R of positive characteristic such

that I∗ = IB ∩R, for all ideals, with a similar result for finitely generated modules.

We have used a similar process to show that one can construct a big Cohen-Macaulay

algebra B over a standard graded domain R that also “captures” tight closure; see

Theorem 4.5.9 and Corollary 4.6.1.

Since the construction of B required us to go beyond the realm of graded rings

and since we still wanted B to possess a notion of “degree,” we found it necessary

to produce a class of rings and modules that we have termed graded-complete. See

Sections 4.1 and 4.2 for definitions. In a sense, these are rings and modules that

possess a well-defined notion of degree, like graded objects, but also possess properties

of complete rings, such as infinite formal sums. In the case that a ring R is N-

graded and finitely generated over R0 = K, a field, the graded-completion operation

coincides with completion at the homogeneous maximal ideal.

Solid algebras

Developed by Hochster in [Ho3], solid modules and algebras have many connec-

tions to tight closure in positive characteristic and to big Cohen-Macaulay algebras.

Hochster defined an R-module (not necessarily finitely generated) over a domain R

to be solid if HomR(M,R) �= 0. If M = S is also an R-algebra, then S is called

a solid algebra. What may appear at first to be a minor non-degeneracy condition

on an R-algebra is actually a condition that allows one to give an alternate char-
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acterization of tight closure in positive characteristic. Briefly, Hochster shows in

[Ho3, Theorem 8.6] that over a complete local domain R of positive characteristic,

u ∈ I∗ if and only if u ∈ IS ∩ R, for some solid R-algebra S. He uses this notion

of contracted-expansion from some solid algebra as the basis for a closure operation

dubbed solid closure.

Another significant aspect of solid algebras is given in [Ho3, Corollary 10.6], which

shows that an algebra over a complete local domain R (in any characteristic) that

maps to a big Cohen-Macaulay algebra is solid. The question of whether the converse

is true is open in positive and mixed characteristic. Hochster shows that it is true in

general when dimR ≤ 2 and that it is false in equal characteristic 0.

In Chapter 5 we examine this question and manage to produce a family of finite

type algebras A
(n,k,d)
p over a finite field of characteristic p, parameterized by four

nonnegative integers, for which the converse will be true in positive characteristic if

the local cohomology modules Hd
m(A

(n,k,d)
p ) all vanish; see Proposition 5.1.16. This

reduction of the problem puts the issue on an entirely computational footing and

potentially allows one to develop new answers using computer algebra software, such

as Macaulay 2 (see [M2] for more information). Using this approach, we show that

the relevant local cohomology modules vanish when n ≤ 2, k = 0, or d ≤ 1, which

provides new evidence that all solid algebras may map to big Cohen-Macaulay alge-

bras in positive characteristic. See Proposition 5.1.23. Attempts to use Macaulay 2

for calculations in the algebra A
(3,1,2)
2 , the next open case, have been stymied by the

fact that the computations involved have been too complicated for the software to

handle.

In another attempt to make new progress on whether solid algebras map to big

Cohen-Macaulay algebras, we present new characterizations of solid algebras over
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complete local domains of positive characteristic using the notion of phantom exten-

sions developed by Hochster and Huneke in [HH5]. A map α : N → M of R-modules

is a phantom extension if there exists c ∈ R◦ such that for all e � 0, there exists a

map γe : Fe(M) → Fe(N) such that γe ◦ Fe(α) = c(idFe(N)). Using this definition,

we show in Theorem 5.2.13 that an R-algebra is solid if and only if it is a phantom

extension of R if and only if it is a direct limit of module-finite phantom extensions

of R. Despite this explicit connection between solid algebras and phantom exten-

sions, we have not yet been able to use this characterization to make new progress on

whether solid algebras map to big Cohen-Macaulay algebras, even though [HH5, Sec-

tion 5] shows that phantom extensions can be used to construct big Cohen-Macaulay

modules.

Algebras that map to big Cohen-Macaulay algebras

In what may be the centerpiece of this thesis, we delve into the properties pos-

sessed by algebras, which we have termed seeds, that map to big Cohen-Macaulay

algebras. In Chapter 6 we scrutinize seeds and produce some new properties involv-

ing big Cohen-Macaulay algebras. We will show that over a complete local domain

of positive characteristic any two big Cohen-Macaulay algebras map to a common

big Cohen-Macaulay algebra. We will also strengthen the “weakly functorial” exis-

tence result of Hochster and Huneke ([HH7, Theorem 3.9]) by showing that the seed

property is stable under base change between complete local domains of positive

characteristic.

One of our most useful results is given in Theorem 6.4.8, where we show that if R

is a local Noetherian ring of positive characteristic, S is a seed over R, and T is an

integral extension of S, then T is also a seed over R. We can even view this theorem

as a generalization of the existence of big Cohen-Macaulay algebras over complete
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local domains of positive characteristic since this existence follows as a corollary; see

Corollary 6.4.10. The other results discussed below from Chapter 6 are also proved

using Theorem 6.4.8.

We also define a class of minimal seeds, which, analogously to the minimal solid

algebras of Hochster, are seeds that have no proper homomorphic image that is

also a seed. While it has only been shown that Noetherian solid algebras map onto

minimal solid algebras in [Ho3], we have shown in Proposition 6.3.4 that every seed

maps onto a minimal seed. Furthermore, like minimal solid algebras, we have shown

that minimal seeds are domains in positive characteristic; see Proposition 6.5.2. As

a result, every seed in positive characteristic over a local ring (R,m) maps to a big

Cohen-Macaulay algebra that is an absolutely integrally closed, m-adically separated,

quasilocal domain; see Proposition 6.5.8.

Perhaps the most interesting results of Chapter 6 are Theorems 6.6.4 and 6.6.10.

Both results concern seeds over a complete local domain R of positive characteristic.

Theorem 6.6.4 shows that the tensor product of two seeds is still a seed, just as the

tensor product of two solid modules is still solid. As an immediate consequence, if

B and B′ are big Cohen-Macaulay algebras over R, then B and B′ both map to a

common big Cohen-Macaulay algebra C, which shows that, in a sense, the class of

big Cohen-Macaulay algebras over R forms a directed system.

Theorem 6.6.10 shows that if R→ S is a map of positive characteristic complete

local domains, and T is a seed over R, then T ⊗R S is a seed over S, so that

the seed property is stable under this manner of base change. This theorem also

gives an improvement on the “weakly functorial” result of Hochster and Huneke in

[HH7, Theorem 3.9], where they show that given complete local domains of equal

characteristic R→ S, there exists a big Cohen-Macaulay R-algebra B and big Cohen-
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Macaulay S-algebra C such that B → C extends the map R → S. Our theorem

shows that if we have R → S in positive characteristic, and B is any big Cohen-

Macaulay R-algebra, then there exists a big Cohen-Macaulay S-algebra C that fills

in a commutative square:

B �� C

R ��

��

S

��

Axioms for a good closure operation

Chapter 7 begins an investigation of what axioms a closure operation must possess

to imply a “weakly functorial” existence of big Cohen-Macaulay algebras. This is

made precise at the beginning of Chapter 7.

Based upon Theorems 6.6.4 and 6.6.10 of Chapter 6, we can use the class of all big

Cohen-Macaulay algebras over complete local domains R of positive characteristic to

define a closure operation, which we denote by N �
M and call �-closure. For an ideal

I of R, an element u is in I� if and only if u ∈ IB, for some big Cohen-Macaulay R-

algebra B, with a similar definition for modules. While [Ho3, Theorem 11.1] implies

that this closure operation is equivalent to tight closure over complete local domains

of positive characteristic, our results allow us to prove directly that �-closure has

many of the nice properties of tight closure.

We present a list of axioms for a closure operation in Section 7.1, which we believe

at least form the nucleus for a set of axioms that will be strong enough to prove the

weakly functorial existence of big Cohen-Macaulay algebras. We also demonstrate

in Section 7.4 that the weakly functorial existence of big Cohen-Macaulay algebras

induces a closure operation that satisfies all of our axioms, supporting the idea that

these are “good” axioms, although more may be needed.



CHAPTER 2

Background Information

Before we state and prove our results, we will survey some of the theory that

forms the foundation and provides motivation for our work.

All rings throughout are commutative with identity and are Noetherian unless

noted otherwise. All modules are unital.

2.1 The Frobenius Endomorphism

Of central importance to the work of this thesis are rings of positive prime char-

acteristic p. In order to simplify notation, we will let e denote a nonnegative integer

and let q denote pe, a power of p. Thus, the phrase “for all q” will mean “for all

powers q = pe of p.”

Each characteristic p ring R comes equipped with an endomorphism F = FR

mapping R → R, called the Frobenius endomorphism, which maps r �→ rp. We can

compose this map with itself to obtain the iterations F e = F e
R : R→ R, which map

r �→ rq.

Closely associated to these maps are the Peskine-Szpiro (or Frobenius) functors

Fe = Fe
R. If we let S denote the ring R viewed as an R-module via the eth-iterated

Frobenius endomorphism, then Fe is the covariant functor S ⊗R − which takes R-

modules to S-modules and so takes R-modules to R-modules since S = R as a ring.

10
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Specifically, if Rm → Rn is a map of free R-modules given by the matrix (rij), then

we may apply Fe to this map to obtain a map between the same R-modules given

by the matrix (rqij). For cyclic modules R/I, Fe(R/I) = R/I [q], where

I [q] := (aq | a ∈ I)R

is the qth Frobenius power of the ideal I. If the ideal I is finitely generated, then

I [q] is also the ideal generated by the qth powers of a finite generating set for I. In a

similar manner, for modules N ⊆ M , we will denote the image of Fe(N) in Fe(M)

by N
[q]
M , and we will denote the image of u ∈ N inside of N

[q]
M by uq.

When the ring R is reduced, we can define R1/q to be the ring obtained by ad-

joining to R all qth roots of elements in R. In this setting, the inclusion R ↪→ R1/q is

isomorphic to the inclusion F e : R ↪→ R, identifying R1/q with R via the isomorphism

r1/q �→ r. Therefore the Peskine-Szpiro functor Fe is isomorphic to R1/q⊗R−, and the

Frobenius power I [q] can be identified with the extension IR1/q. We will also make use

of the perfect closure ofR, which we denote by R∞. The ring R∞ is constructed by ad-

joining all qth roots to R, for all q. We can also view R∞ as the direct limit of the rings

R1/q under the natural inclusion maps R ↪→ R1/p ↪→ R1/p2 ↪→ · · · ↪→ R1/q ↪→ · · · . In

general, R∞ is not a Noetherian ring.

Using the Peskine-Szpiro functors, one can define a closure operation for ideals

and modules called the Frobenius closure.

Definition 2.1.1. For a Noetherian ring R of positive characteristic p and finitely

generated R-modules N ⊆M , the Frobenius closure of N in M is the submodule

NF
M := {u ∈M | uq ∈ N [q]

M , for some q}.

In the case that R is reduced, we may also characterize the Frobenius closure as

in the following lemma.
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Lemma 2.1.2. If R is a reduced Noetherian ring of characteristic p > 0, then for

finitely generated R-modules N ⊆M , the following are equivalent:

(i) u ∈ NF
M .

(ii) 1⊗ u ∈ Im(R1/q ⊗N → R1/q ⊗M), for some q.

(iii) 1⊗ u ∈ Im(R∞ ⊗N → R∞ ⊗M).

In the case of ideals, IF =
⋃
q IR

1/q ∩R = IR∞ ∩ R.

It is clear from the definition that NF
M is a submodule of M . We will see in

the upcoming section that the Frobenius closure is smaller in general than the tight

closure, but we will see some cases in Chapter 3 where the two notions are equivalent.

2.2 Tight Closure

Perhaps the most prominent tool in the class of characteristic p methods is tight

closure. The operation of tight closure was developed by M. Hochster and C. Huneke

in the late 1980s and early 1990s as a method for proving (often reproving with dra-

matically shorter proofs) and generalizing theorems for commutative rings containing

a positive characteristic field. Although the definition of tight closure relies on the

Frobenius endomorphism, they have also developed a notion of characteristic 0 tight

closure using methods of reduction to characteristic p that allows one to carry many

results proved in positive characteristic using tight closure over to the case of rings

containing a copy of the rational numbers. We shall not deal with the characteristic

0 theory but refer the interested reader to [HH8] for a detailed treatment.

We will now provide a brief overview of the theory of tight closure and highlight

many of the results that will be useful in our later studies. Throughout the rest of

this section, we will assume that R is a positive characteristic, Noetherian ring. We

will denote the complement in R of the set of minimal primes by R◦.
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Definition 2.2.1. For a Noetherian ring R of characteristic p > 0 and finitely

generated modules N ⊆M , the tight closure N∗
M of N in M is

N∗
M := {u ∈M | cuq ∈ N [q]

M for all q � 1, for some c ∈ R◦}.

If N∗
M = N , then N is tightly closed in M .

In the case that M = R and N = I, u ∈ I∗ if and only if there exists c ∈ R◦ such

that cuq ∈ I [q], for all q � 1.

Remark 2.2.2. Proposition 8.5 of [HH1] shows that if R is reduced, then we can

replace “q � 1” above with “q ≥ 1.”

It is important to notice that a different c may be chosen for each u ∈ I∗, but that

the same c is used for all values of q. We shall discuss a little bit later the notion

and existence of test elements, which are elements c that can be used in every tight

closure computation.

We now record a number of useful facts about tight closure, all of which can be

found in [HH1].

Proposition 2.2.3. Let R be a Noetherian ring of characteristic p, let N ⊆M and

W be finitely generated modules, and let I be an ideal.

(a) N∗
M is a submodule of M containing N .

(b) If M ⊆W , then N∗
W ⊆M∗

W .

(c) If f : M →W , then f(N∗
M) ⊆ f(N)∗W .

(d) (IN)∗M = (I∗N∗)∗M .

(e) (N∗
M)∗M = N∗

M .

(f) u ∈ N∗
M if and only if u+N ∈ 0∗M/N .

(g) NF
M ⊆ N∗

M , and for ideals IF ⊆ I∗ ⊆ I, where I is integral closure of I.
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(h) u ∈ N∗
M if and only if u + pM ∈ Im(N/pN → M/pM)∗M/pM , calculated over

R/pR, for all minimal primes p of R.

(i) If R is regular, then N∗
M = N .

(j) If R, N , and M are graded such that the inclusion preserves degree, then N∗
M

is also graded.

(k) (0)∗ = Rad(0). In particular, if R is reduced, (0)∗ = (0).

Any ring R in which every ideal (and thus finitely generated module) is tightly

closed is called weakly F -regular. If every localization of R is weakly F -regular, then

R is called F -regular. Therefore, (i) above states that regular rings are F -regular.

The “weakly” terminology is due to the fact that we do not know whether tight

closure commutes with localization or not. This localization question is the most

outstanding open problem in the theory of tight closure, and a lack of an answer

often leads to cumbersome notation or hypotheses. For some impressive progress on

the localization question; see [AHH].

One of the triumphs of tight closure has been its ability to generalize previ-

ously known theorems while also simplifying their proofs. A primary example is the

Briançon-Skoda Theorem, which is reproved using tight closure in [HH1, Theorem

5.4]. The original theorem was proved for regular rings in equal characteristic 0 using

very lengthy and involved analytic techniques.

Theorem 2.2.4 (generalized Briançon-Skoda Theorem, [HH1]). Let R be a Noethe-

rian ring of positive characteristic p, and let I be an ideal of positive height generated

by n elements. Then In+m ⊆ (Im+1)∗, for any m ≥ 0.

A very powerful tool in the application of tight closure is the notion of a test

element. As mentioned earlier, these are elements that can be used in all tight
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closure computations. Many proofs obtained using tight closure methods rely on the

existence of test elements. Fortunately, we will soon see that test elements exist in

very general classes of rings.

Definition 2.2.5. For a Noetherian ring of positive characteristic p, an element

c ∈ R◦ is called a test element if, for all ideals I and all u ∈ I∗, we have cuq ∈ I [q] for

all q ≥ 1. If, further, c is a test element in every localization of R, then c is locally

stable, and if it is also a test element in the completion of every localization, then c

is completely stable.

As stated above, test elements exist in very general settings. Specifically, Hochster

and Huneke proved the following statement.

Theorem 2.2.6 (Theorem 6.1, [HH6]). If R is a reduced, excellent local ring of

positive characteristic, then R has a completely stable test element.

The assumption that R be excellent is extremely mild as excellent rings are ubiq-

uitous in commutative algebra and algebraic geometry. The situation in the graded

case is also very good.

Theorem 2.2.7 (Theorem 4.2d, [HH5]). If R is an N-graded, reduced Noetherian

ring of positive characteristic, and R0 is a field, then R possesses a homogeneous

completely stable test element.

Using the existence of test elements, we can produce some easy characterizations

of tight closure using R1/q and R∞.

Lemma 2.2.8. Let N ⊆ M be finitely generated R-modules, where R is reduced of

positive characteristic p. Then the following are equivalent:

(i) u ∈ N∗
M .
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(ii) c⊗ u ∈ N [q]
M , for all q � 0 and some c ∈ R◦.

(iii) c1/q ⊗ u ∈ Im(R1/q ⊗N → R1/q ⊗M), for all q � 0 and some c ∈ R◦.

(iv) c1/q ⊗ u ∈ Im(R∞ ⊗N → R∞ ⊗M), for some test element c.

(v) c1/q ⊗ u ∈ Im(R∞ ⊗N → R∞ ⊗M), for all test elements c.

As another consequence of the existence of test elements, Hochster and Huneke

established the following base change result, which they call persistence.

Theorem 2.2.9 (Theorem 6.24, [HH6]). Let R→ S be a homomorphism of excellent

Noetherian rings of positive characteristic. If N ⊆ M are finitely generated R-

modules, and w ∈ N∗
M , then 1⊗ w ∈ Im(S ⊗R N → S ⊗RM)∗S⊗RM

.

It will be worthwhile to note that somewhat of a converse result can be obtained

when the map R→ S is a module-finite extension.

Theorem 2.2.10 (Corollary 5.23, [HH5]). Let S be a module-finite extension of a

positive characteristic Noetherian ring R. If 1⊗ u ∈ Im(S ⊗R N → S ⊗R M)∗S⊗RM
,

calculated over S, then u ∈ N∗
M . In particular, (IS)∗S ∩R ⊆ I∗R for all ideals I of R.

Two other important notions in the theory of tight closure are colon-capturing

and phantom acyclicity. One can think of phantom acyclicity as a tight closure

analogue of ordinary acyclicity of a complex of modules. Instead of requiring that

the cycles be contained in the boundaries, we require that the cycles be contained in

the tight closure of the boundaries. If this condition occurs in a complex, Hochster

and Huneke say that the complex has phantom homology at that spot. For a thorough

introduction to phantom homology and phantom acyclicity. see [HH1, Section 9] and

[HH4].

The phantom acyclicity criterion given below can be thought of as a tight closure

analogue of the Buchsbaum-Eisenbud acyclicity criterion, which gives sufficient rank
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and depth conditions for a complex to be acyclic. In the phantom case, rank and

height conditions are given to ensure that a complex has phantom homology.

Theorem 2.2.11 (Phantom Acyclicity Criterion, [HH1]). Let R be a positive char-

acteristic, reduced Noetherian ring that is also locally equidimensional and a homo-

morphic image of a Cohen-Macaulay ring. Let G• be a finite free complex over R:

0→ Gn → Gn−1 → · · · → G1 → G0 → 0.

Let αi be the matrix map Gi → Gi−1, and let ri be the determinantal rank of αi, for

1 ≤ i ≤ n. Let bi be the free rank of Gi, for 0 ≤ i ≤ n. Denote the ideal generated by

the size r minors of a matrix map α by Ir(α). If bi = ri+ ri−1 and ht Iri(αi) ≥ i, for

all 1 ≤ i ≤ n, then Zi ⊆ (Bi)
∗
Gi

, where Bi is the image of αi+1 and Zi is the kernel

of αi. In other words, if the previous rank and height conditions are satisfied, then

the cycles are contained in the tight closure of the boundaries.

Hochster and Huneke prove the following result, which is often referred to as

“colon-capturing.”

Theorem 2.2.12 (Theorem 7.15, [HH1]). Let R be a local positive characteristic

Noetherian ring that is module-finite and torsion-free over a regular ring A or is

locally equidimensional and a homomorphic image of a Cohen-Macaulay ring. If

x1, . . . , xn is a system of parameters for R, then

(x1, . . . , xk)R :R xk+1 ⊆ (x1, . . . , xk)
∗
R,

for all 0 ≤ k ≤ n− 1.

In a sense, colon-capturing shows that the tight closure of parameter ideals mea-

sures the obstruction for such a ring R to be Cohen-Macaulay. In the following

sections, we will see that tight closure, parameter ideals, and the Cohen-Macaulay

property have many interconnections.
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2.3 Big Cohen-Macaulay Algebras

A big Cohen-Macaulay module M over a local Noetherian ring (R,m) is an R-

module such that every system of parameters for R is a regular sequence on M .

If M = B is an R-algebra, then B is called a big Cohen-Macaulay algebra. The

terminology “big” refers to the fact that M is not necessarily a finitely generated

R-module. Also note that what we refer to as big Cohen-Macaulay algebras are

called balanced by some authors, who call an algebra B big Cohen-Macaulay if a

single system of parameters for R is a regular sequence on B. Recall that part of

the definition of a regular sequence x1, . . . , xd requires that (x1, . . . , xd)M �= M .

Since we will require this condition for every system of parameters of R, we can

equivalently require that mM �= M . It will also be useful to say that a partial

system of parameters of (R,m) is a possibly improper regular sequence on M if all

relations on the parameters are trivial, but mM �= M does not necessarily hold.

Similarly, we can have possibly improper big Cohen-Macaulay algebras.

The question “When do big Cohen-Macaulay algebras exist?” has important ap-

plications to the class of problems in commutative algebra that is often referred to

as the “local homological conjectures.” This class of problems includes the direct

summand conjecture and the monomial conjecture, and contains a number of inter-

connected statements. The truth of many of them is implied by a weakly functorial

existence of big Cohen-Macaulay algebras over complete local domains. Hochster

and Huneke use this terminology to mean that for any local rings R and S with a

“reasonably good” local map R→ S, there exist big Cohen-Macaulay algebras B(R)
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and B(S) over R and S, respectively, such that

(2.3.1) B(R) �� B(S)

R ��

��

S

��

is a commutative diagram. We will make the notion of “reasonably good” precise

for Theorem 2.3.5.

Over regular rings, the search for big Cohen-Macaulay modules and algebras is

rather easy given the following observation, a short proof of which may be found in

[HH2, p.77].

Proposition 2.3.2. Let R be a regular Noetherian ring, and let M be an R-module.

Then M is a big Cohen-Macaulay module over R if and only if M is faithfully flat

over R.

The first significant existence proof of big Cohen-Macaulay algebras came from

the celebrated theorem of Hochster and Huneke:

Theorem 2.3.3 (Theorem 5.15, [HH2]). Let R be an excellent local domain, and let

R+ denote the integral closure of R in an algebraic closure of its fraction field. Then

R+ is a big Cohen-Macaulay R-algebra.

The ring R+ above is called the absolute integral closure of R and is not Noetherian

in general. Since local maps R→ S between excellent local domains extend to maps

R+ → S+, the theorem above yields a weakly functorial existence of big Cohen-

Macaulay algebras in positive characteristic.

Hochster and Huneke also provide a graded result of the above theorem. In the

graded case, they work with graded subrings of R+. Specifically, if R is an N-graded

domain, then R+GR denotes a maximal direct limit of module-finite, Q≥0-graded
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extension domains of R. For the construction and properties of this ring; see [HH3,

Lemma 4.1]. This result also shows that there is an N-graded direct summand of

R+GR, which is denoted R+gr. Neither of these rings are Noetherian in general.

Theorem 2.3.4 (Theorem 5.15, [HH2]). If R is an N-graded domain with R0 = K

and R a finitely generated K-algebra, then R+GR and R+gr are both graded big Cohen-

Macaulay R-algebras in the sense that every homogeneous system of parameters of

R is a regular sequence on R+GR and R+gr.

Using their result forR+, Hochster and Huneke were also able to establish a weakly

functorial existence of big Cohen-Macaulay algebras over all equicharacteristic local

rings. The term permissible used in the following theorem refers to a map R → S

such that every minimal prime Q of Ŝ, with dim Ŝ/Q = dim Ŝ, lies over a prime P

of R̂ that contains a minimal prime p of R̂ satisfying dim R̂/p = dim R̂.

Theorem 2.3.5 (Theorem 3.9, [HH7]). We may assign to every equicharacteristic

local ring R a big Cohen-Macaulay R-algebra B(R) in such a way that if R→ S is

a permissible local homomorphism of equicharacteristic local rings, then we obtain a

homomorphism B(R)→ B(S) and a commutative diagram as in (2.3.1).

A key tool in the proof of this result is the construction of big Cohen-Macaulay

algebras using algebra modifications. Since we will make great use of algebra modifi-

cations in this thesis, it will be helpful to review some definitions and useful properties

now.

Given a local Noetherian ring R, an R-algebra S, and a relation sxk+1 =
∑k

i=1 xisi

in S, where x1, . . . , xk+1 is part of a system of parameters of R, the S-algebra

(2.3.6) T :=
S[U1, . . . , Uk]

s−∑k
i=1 xiUi

is called an algebra modification of S over R.
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Instead of constructing an algebra modification with respect to a single rela-

tion on a single system of parameters from R, one can also create an S-algebra

Mod(S/R) = Mod1(S/R) by adding infinitely many indeterminates and killing

the appropriate relations (as above) so that every relation in S on a partial sys-

tem of parameters from R is trivialized in Mod1(S/R). Now inductively define

Modn(S/R) = Mod(Modn−1(S/R)) and then define Mod∞(S/R) as the direct limit

of the Modn(S/R). The utility of this construction is that we have formally killed

all possible relations on systems of parameters from R and done so in a way that is

universal in the following sense.

Proposition 2.3.7 (Proposition 3.3b, [HH7]). Let S be an algebra over the local

Noetherian ring R. Then Mod∞(S/R) is a possibly improper big Cohen-Macaulay

R-algebra. It is a proper big Cohen-Macaulay algebra if and only if S maps to some

big Cohen-Macaulay R-algebra.

While Mod∞(S/R) is a rather large and cumbersome object, we can study it in

terms of finite sequences of algebra modifications. Given a Noetherian local ring

(R,m) and an R-algebra S, we defined an algebra modification T of S in (2.3.6). If

we set S(0) := S and then inductively define S(i+1) to be an algebra modification of

S(i) over R, we can obtain a finite sequence of algebra modifications

S = S(0) → S(1) → · · · → S(h),

for any h ∈ N. We call such a sequence bad if mS(h) = S(h). The utility of these

sequences can be found in the following proposition, which we will use frequently in

the later chapters.

Proposition 2.3.8 (Proposition 3.7, [HH7]). Let R be a local Noetherian ring, and

let S be an R-algebra. Mod∞(S/R) is a proper big Cohen-Macaulay R-algebra if and
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only if no finite sequence of algebra modifications is bad.

2.4 Plus Closure

Beyond being a big Cohen-Macaulay algebra in positive characteristic, the ring

R+ also has connections to tight closure theory. In fact, it has long been speculated

that the tight closure of an ideal is just the contracted-expansion from R+. This

notion led to the definition of plus closure.

Definition 2.4.1. Given an excellent, local domain R of positive characteristic, and

finitely generated modules N ⊆M , we define the plus closure of N in M to be

N+
M := {u ∈M | 1⊗ u ∈ Im(R+ ⊗R N → R+ ⊗R M)}.

In the case the M = R and N = I, then I+ = IR+ ∩ R.

As with R+, there is a closure operation associated to R+gr and R+GR, which we

define below. Since R+gr is a direct summand of R+GR as a R+gr-module, the two

rings yield equivalent closure operations.

Definition 2.4.2. Let R be an N-graded Noetherian domain. Let S = R+GR or

S = R+gr, and let N ⊆ M be finitely generated R-modules with u ∈ M . Then

u ∈ N+gr
M , the graded-plus closure of N in M , if 1⊗ u ∈ Im(S ⊗ N → S ⊗M). For

the ideal case, I+gr = IR+gr ∩ R = IR+GR ∩R.

It is straightforward to show that NF
M ⊆ N+

M ⊆ N∗
M , for all finitely generated

modules, and that NF
M ⊆ N+gr

M ⊆ N+
M ⊆ N∗

M in the graded case.

Since U−1(R+) ∼= (U−1R)+, for any multiplicative set U in R, the computation of

plus closure commutes with localization. As mentioned earlier, it is hoped that tight

closure in positive characteristic is just plus closure. Not only would this equality

simplify the computation of tight closure, it would also settle the long standing
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localization question by proving that tight closure commutes with localization. One

of the most important results in this direction comes from K.E. Smith.

Theorem 2.4.3 (Theorem 5.1, [Sm1]). Let R be an excellent local Noetherian domain

of characteristic p > 0. Then (x1, . . . , xk)
∗ = (x1, . . . , xk)

+, where x1, . . . , xk is part

of a system of parameters in R.

In [Ab2, Theorem 3.1], I. Aberbach extends Smith’s result to include all finitely

generated modules N ⊆M over an excellent local domain R of positive characteristic

such that M/N has finite phantom projective dimension, which is a tight closure

analogue of the usual notion of finite projective dimension. See [Ab] for more detail.

Smith also produced a proof in the graded case.

Theorem 2.4.4 (Theorem 1, [Sm2]). Let I = (x1, . . . , xk) be an ideal generated by

part of a homogeneous system of parameters for a Noetherian N-graded domain R

with R0 a field of positive characteristic. Then I∗ = IR+gr ∩ R = IR+GR ∩R.

Recently, H. Brenner has developed new results in dimension 2 that show that

tight closure and graded-plus closure are equivalent for homogeneous ideals in certain

graded rings. A primary ingredient in his work has been an interesting correspon-

dence between tight closure membership and the properties of certain projective

bundles; see [Br1]. Using this bundle notion of tight closure, Brenner has success-

fully applied geometric theorems and techniques (such as Atiyah’s classification of

vector bundles on an elliptic curve and Harder-Narasimhan filtrations of Frobenius

pull-backs of locally free sheaves) to arrive at the following results.

Theorem 2.4.5 (Theorem 4.3, [Br2]). Let K be an algebraically closed field of posi-

tive characteristic, and let R be the homogeneous coordinate ring of an elliptic curve

(i.e., R is a standard graded normal K-algebra of dimension 2 with dimK [H2
m(R)]0 =
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1, where m is the homogeneous maximal ideal of R). Let I be an m-primary graded

ideal in R. Then I+gr = I+ = I∗.

Remark 2.4.6. For example, the result above applies when R = K[x, y, z]/(F ) is

normal, where F is homogeneous of degree 3.

Theorem 2.4.7 (Theorem 4.2, [Br3]). Let K be the algebraic closure of a finite

field. Let R denote an N-graded 2-dimensional domain of finite type over K. Then

for every homogeneous ideal I, we have I+gr = I+ = I∗.

Given an elliptic curve X over a positive characteristic p field, there exists a

Frobenius map F : X → X which is the identity on the set X and the pth power map

on the structure sheafOX . The map F induces a map F ∗ : H1(X,OX)→ H1(X,OX)

on cohomology. One says thatX has Hasse invariant 0 if F ∗ = 0. We refer the reader

to [Ha, pp. 332–335] for further details.

In the case of Hasse invariant 0, Brenner showed that tight closure is the same as

Frobenius closure.

Theorem 2.4.8 (Remark 4.4, [Br2]). If R is the homogeneous coordinate ring of

an elliptic curve of positive characteristic p with Hasse invariant 0 defined over an

algebraically closed field, then I∗ = IF for all m-primary graded ideals of R, where

m is the homogeneous maximal ideal of R.

2.5 Solid Algebras and Solid Closure

Hochster introduced the notion of solid modules and algebras in [Ho3] as the basis

for defining a characteristic free closure operation, which he called solid closure. The

hope was that solid closure might be a good enough operation to imply the existence

of big Cohen-Macaulay algebras in mixed characteristic settings or to help answer
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some of the homological conjectures in mixed characteristic. While it turns out that

solid closure is equivalent to tight closure in positive characteristic, at least over

complete local domains, solid closure is too large in equal characteristic 0, as shown

by an example of P. Roberts (see [Ro]). The situation in mixed characteristic is still

a mystery.

Definition 2.5.1. If R is a Noetherian domain, then an R-module M is solid if

HomR(M,R) �= 0. If M = S is an R-algebra, then S is solid over R if it is solid as

an R-module.

We will present just a few of the properties of solid modules and algebras as these

properties will be helpful in the following chapters. All of these properties can be

found in [Ho3, Section 2].

Proposition 2.5.2. Let R be a Noetherian domain.

(a) If M and N are solid R-modules, then M ⊗R N is solid.

(b) If S is a solid R-algebra, then there exists an R-linear map α : S → R such

that α(1) �= 0 in R.

(c) Let S be a module-finite domain extension of R, and let M be an S-module.

Then M is solid over S if and only if M is solid over R.

(d) (local cohomology criterion) If (R,m) is a complete local domain of Krull

dimension n, then an R-module M is solid if and only if Hn
m(M) �= 0.

(e) (persistence of solidity) Let R→ S be any map of Noetherian domains. If

M is a solid R-module, then S ⊗RM is a solid S-module.

If R is a Noetherian ring, then a complete local domain of R is an R-algebra T

obtained by completing the localization of R at a maximal ideal and then killing a

minimal prime. Using this notion, Hochster defined the following closure operation.
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Definition 2.5.3. Let R be a Noetherian ring, and let N ⊆M be finitely generated

R-modules. If R is a complete local domain, then the solid closure of N in M is

N�
M := {u ∈M | 1⊗ u ∈ Im(S ⊗R N → S ⊗RM), for some solid R-algebra S}.

For a general Noetherian ring R, an element u ∈M is in N�
M if for every complete

local domain T of R, the image 1 ⊗ u of u in T ⊗R M is in the solid closure of

Im(T ⊗R N → T ⊗RM) in T ⊗R M over T .

As mentioned above, solid closure is equivalent to tight closure in positive char-

acteristic, at least when the ring contains a completely stable test element.

Theorem 2.5.4 (Theorem 8.6, [Ho3]). Let R be a Noetherian ring of positive char-

acteristic, and let N ⊆M be finitely generated R-modules.

(a) N∗
M ⊆ N�

M .

(b) If R has a completely stable test element, e.g., R is a complete local domain,

then N∗
M = N�

M .

The connection between solid closure and tight closure also leads to more connec-

tions between tight closure and big Cohen-Macaulay algebras and is also a factor in

the work of Brenner mentioned in the last section, where the correspondence between

tight closure and projective bundles uses solid closure as an intermediary. As for big

Cohen-Macaulay algebras, we point out the following two facts and will discuss these

connections further in following chapters, including whether the next statement has

a converse in positive characteristic.

Theorem 2.5.5 (Corollary 10.6, [Ho3]). Let R be a complete local domain. An

R-algebra that has an R-algebra map to a big Cohen-Macaulay algebra over R is

solid.
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Theorem 2.5.6 (Theorem 11.1, [Ho3]). Let R be a complete local domain of positive

characteristic, and let N ⊆ M be finitely generated R-modules. If u ∈ M , then

u ∈ N∗
M = N�

M if and only if there exists a big Cohen-Macaulay R-algebra B such

that 1⊗ u ∈ Im(B ⊗R N → B ⊗RM).



CHAPTER 3

Tight Closure of Finite Length Modules in Graded Rings

In this chapter, we will investigate some conditions in which tight closure and

plus closure (or even Frobenius closure) are the same. Although our main result will

not depend upon dimension, the primary applications are based on results known in

dimension 2, The cubical cone

R = K[x, y, z]/(x3 + y3 + z3)

will be a primary example, where our results about Frobenius closure will apply when

the characteristic of K is congruent to 2 (mod 3).

In the next section we look at how the equivalence of tight closure and plus closure

(or Frobenius closure) in the homogeneousm-coprimary case implies the same closure

equivalence in the non-homogeneous m-coprimary case. The second section shows

some consequences of the first section, where we will apply Theorem 3.1.6 to the

recent work of H. Brenner in [Br2] and [Br3] (see Theorems 2.4.5, 2.4.7, and 2.4.8).

We also demonstrate a connection between tight closure and the m-adic closure of

modules extended to R+ (or R∞).

The third section details some work concerning the injective hull of the residue

field in R∞, R+, and R+GR. Our results show that unlike the Noetherian case, these

injective hulls contain elements that are not killed by any power of the maximal ideal

28
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of R. This fact is relevant because it presents an obstruction to one possible method

of extending the result of Theorem 3.1.6 to all ideals.

3.1 New Cases Where Tight Closure is Plus Closure

Before proving the main result of this section, Theorem 3.1.6, we need to establish

two lemmas and some notation. If S is any Q-graded (not necessarily Noetherian)

ring, then for any n ∈ Q let S≥n =
⊕

i≥n Si. Similarly define S>n. We will say

that an N-graded ring R is a standard graded R0-algebra if R is finitely generated

over R0 by elements of degree 1. For the rest of the section, let m =
⊕

i>0Ri, the

homogeneous maximal ideal of R.

Lemma 3.1.1. Let R be a reduced standard graded K-algebra of positive character-

istic p, and let S = R∞. Then there exists c ∈ N such that S≥n+c ⊆ mnS for any

n ≥ 1. As a consequence, [S/mnS]j = 0 for all j � 0.

Proof. Let m be generated by x1, . . . , xµ, each of degree 1. Put c = µ− 1 (if µ = 0,

i.e., R = K, put c = 0). Since S>0 = ∪qm1/q, if f ∈ S is homogeneous of degree at

least n+ c, then f is a sum of terms cxα1
1 · · ·xαµ

µ such that c ∈ S0 and
∑
αi ≥ n+ c.

If we write αi = [αi] + ri, where 0 ≤ ri < 1 for all i, then

∑
[αi] =

∑
αi −

∑
ri ≥ n+ c−

∑
ri > n+ c− µ.

Therefore,
∑

[αi] ≥ n + c − µ + 1 = n, and so f ∈ mnS. The second claim now

follows using j ≥ n + c.

For the other lemma we will need a graded-plus closure version of the Briançon-

Skoda Theorem. The original tight closure generalization (Theorem 2.2.4) can be

found in [HH1]. Hochster and Huneke also strengthened this result to a version for

plus closure.
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Theorem 3.1.2 (Theorem 7.1, [HH7]). Let I be an ideal of a Noetherian domain R

of characteristic p > 0 generated by at most d elements, let k ∈ N, and let u ∈ Id+k.
Then u ∈ Ik+1R+ ∩ R.

We will adapt their proof to obtain a graded-plus closure version of the Briançon-

Skoda Theorem. In order to simplify the proof we will also use Smith’s result for

tight closure of homogeneous parameter ideals (see Theorem 2.4.4).

Theorem 3.1.3. Let R be a positively graded Noetherian domain of positive charac-

teristic. Let I be a homogeneous ideal generated by at most d homogeneous elements,

let k ∈ N, and let u ∈ Id+k with u homogeneous. Then u ∈ Ik+1S ∩ R, where

S = R+GR or S = R+gr.

Proof. As R+gr is a direct summand of R+GR, it is sufficient to assume that S =

R+GR. Let A → R be a degree-preserving map of positively graded Noetherian

domains such that J is a homogeneous ideal of A with at most d generators, and

I = JR. Let v ∈ Jd+k be a homogeneous element of A such that v �→ u in R.

Suppose that v ∈ Jk+1A+GR. Since the map A → R extends to A+ → R+, we

can restrict this map to obtain A+GR → R+GR (The homogeneous monic equation

satisfied by an element a of A+GR maps to a homogeneous monic equation over R

satisfied by the image of a.) Therefore, u ∈ Ik+1R+GR.

Now, let K = Z/pZ. Since u is integral over Id+k and homogeneous, it satisfies

a homogeneous monic polynomial zn + r1z
n−1 + · · · + rn = 0, where deg z = deg u,

deg rj = j deg u, rj ∈ (Id+k)j, and (without loss of generality) rn �= 0.

Each rj can be written as a homogeneous R-linear combination of monomials

aν11 · · ·aνd
d in the generators a1, . . . , ad of I, where ν1 + · · ·+ νd = (d+ k)j. Thus, the
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coefficient on the monomial aν11 · · ·aνd
d is zero or has

degree = deg rj − (ν1 deg a1 + · · ·+ νd deg ad)

since R is positively graded. Without loss of generality, we may order the generators

of I so that deg a1 ≤ · · · ≤ deg ad. Then rn �= 0 implies that deg a
(d+k)n
1 ≤ deg rn. If

not, then deg rn < ν1 deg a1+· · ·+νd deg ad, for all νi such that ν1+· · ·+νd = (d+k)n,

and so the coefficient on every monomial in the expansion of rn must be zero, a

contradiction.

Let x1, . . . , xd be indeterminates over K with deg xi = deg ai. For every monomial

µ = xν11 · · ·xνd
d , where ν1+· · ·+νd = (d+k)j, for 1 ≤ j ≤ n, let yµ be an indeterminate

with deg yµ = deg rj − (ν1 deg x1 + · · ·+ νd deg xd). Let

F (x,y, z) = zn +
n∑
j=1

∑
µ∈Cj

yµµ

 zn−j ,

where x = x1, . . . , xd, y = {yµ | deg yµ ≥ 0}, and

Cj = {µ = xν11 · · ·xνd
d | ν1 + · · ·+ νd = (d+ k)j}.

Then F is homogeneous of degree n deg z = n deg u as

deg(yµµ)zn−j = deg rj + (n− j) deg z = j deg u+ n deg z − j deg z = n deg z.

Therefore, K[x,y, z] is a positively graded Noetherian ring, and K[x,y] → R,

given by xi �→ ai and yµ mapping to the coefficient of aν11 · · ·aνd
d , is a degree-preserving

map. Moreover, the composite map K[x,y, z] → R[z] → R, where z �→ u, sends

F (x,y, z) �→ zn+r1z
n−1 + · · ·+rn �→ 0. (Since R is positively graded, the coefficient

on aν11 · · ·aνd
d is 0 if deg rj < ν1 deg a1 + · · ·+ νd deg ad so that we did not need a yµµ

term in F when deg yµ < 0.)
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Let A = K[x,y, z]/F (x,y, z), and J = (x)A. This is a positively graded Noethe-

rian ring of positive characteristic, J is a homogeneous ideal generated by at most d

homogeneous elements, and z is homogeneous such that z ∈ Jd+k. It is clear from

the construction of A that A→ R is a degree-preserving map. To see that A is also

a domain, we will show that F is irreducible. Indeed, let N = (d + k)n, and let µ

be the monomial xN1 that occurs when j = n in the summation for F . As we noted

earlier, rn �= 0 implies that

deg yµ = deg rn −N deg x1 = deg rn −N deg a1 ≥ 0,

and so F is linear in yµ with coefficient xN1 on yµ and a relatively prime constant

term containing zn.

We may, therefore, assume that R is A, and I is J . Since R is a positively graded,

finitely generated K-algebra, we may regrade if necessary so that R is N-graded

without changing R+GR. Since R/(x) ∼= K[y, z]/zn, the sequence x1, . . . , xd forms

part of a homogeneous system of parameters. We can now apply Smith’s Theorem

2.4.4 to the ring R and ideal I to see that I∗ = IR+gr∩R = IR+GR∩R. By Theorem

3.1.2, we are done.

Lemma 3.1.4. Let R be a standard graded K-algebra domain of characteristic p > 0,

and let S = R+GR or S = R+gr. Then there exists c ∈ N such that S≥n+c ⊆ mnS,

for any n ≥ 1. Moreover, [S/mnS]j = 0 for all j � 0.

Proof. Let m be generated by µ elements. Let c = µ − 1 (if µ = 0, let c = 0), and

let f ∈ S be homogeneous of degree D ≥ n+ c. Then f satisfies a monic polynomial

equation f t + r1f
t−1 + · · · + rt = 0 such that ri is homogeneous of degree iD in R

or ri = 0 if iD �∈ N. Therefore, ri ∈ mi(n+c) = (mn+c)i for all i as m is generated

in degree 1. Since f ∈ S, there exists a positively graded module-finite extension
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domain T of R such that f ∈ T . Thus, f ∈ (mT )n+c = (mT )µ+n−1. By Theorem

3.1.3, f ∈ mnT+GR, but T+GR = R+GR, and so f ∈ mnR+GR. Since R+gr is a

direct summand of R+GR, we also have f ∈ mnR+gr. The second claim follows using

j ≥ n+ c.

Our main result will depend upon showing that HomK(S/mnS,K) is Z-graded as

an R-module when S is R+GR, R+gr, or R∞.

Proposition 3.1.5. Let R be a standard graded K-algebra of characteristic p > 0.

Suppose R is reduced (respectively, a domain). Let S = R∞ (resp., S = R+GR or

S = R+gr). Then for any n ≥ 1, HomK(S/mnS,K) is a Z-graded R-module.

Proof. S has a natural N[1/p]-grading (resp., Q≥0-grading or N-grading) induced by

the grading on R. Thus, S/mnS is also graded as mnS is a homogeneous ideal. Let

Wj be the K-span of all homogeneous elements of degree δ such that j − 1 < δ ≤ j.

This gives S/mnS an N-grading as an R-module, where Wj = 0 for all j < 0 and

j � 0 by Lemma 3.1.1 (resp., Lemma 3.1.4).

In HomK(S/mnS,K), let V−j be the K-span of all functionals φ such that φ(Wi)

is not 0 if and only if i = j. If r ∈ R is homogeneous of degree d, and φ ∈ V−j,

then rφ(Wi) = φ(rWi) ⊆ φ(Wi+d) which is nonzero if and only if i = −d + j. Thus,

RdV−j ⊆ V−j+d. It is clear that the intersection of any V−j with the sum of the others

is trivial and that
∑

j V−j ⊆ HomK(S/mnS,K). Now, if ψ ∈ HomK(S/mnS,K),

and s has homogeneous components si, then let ψ−j(s) = ψ(sj) so that ψ−j ∈ V−j.

Then ψ =
∑

j ψ−j, where the sum is finite because Wi is nonzero for only finitely

many integers. Therefore the V−j give a Z-grading on HomK(S/mnS,K) as an R-

module.

We are now ready to present the main result of this chapter. The method of the
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proof will be to show that if M is an m-coprimary module containing an element

u ∈ 0∗M \ 0+GR
M , then M can be mapped to a finitely generated graded m-coprimary

R-module where the image of u is not in the plus closure of 0 in this new module.

Theorem 3.1.6. Let R be a standard graded K-algebra of characteristic p > 0. Sup-

pose that R is reduced (respectively, a domain), and K is perfect (resp., algebraically

closed). If N∗
M = NF

M (resp., N∗
M = N+

M = N+gr
M ) for all finitely generated graded

R-modules N ⊆ M such that M/N is m-coprimary, then the same is true for all

finitely generated modules N ⊆M such that M/N is m-coprimary.

Proof. Let S = R∞ (resp., S = R+GR). It suffices to show that 0∗M ⊆ 0FM (resp.,

0∗M ⊆ 0+gr
M ) when M is m-coprimary. Suppose that u ∈ 0∗M \0FM (resp., u ∈ 0∗M \0+gr

M ).

Since u �∈ 0FM (resp., u �∈ 0+gr
M ), by Lemma 2.1.2 (resp., Definition 2.4.2) 1 ⊗ u �= 0

via the map M → S ⊗M . This implies that there is a surjection of S(1⊗ u) onto

K sending 1⊗ u to 1 ∈ K, since the residue field of S is K.

Since HomK(S,K) is an injective S-module and we have a mapK → HomK(S,K)

that sends 1 to the functional that takes s ∈ S to s modulo mS, we see that

M → S ⊗M → HomK(S,K)

is a map such that u is not in the kernel. Since M is m-coprimary, there exists an n

such that mnM = 0. Hence, the image of M under the composite map above lies in

the annihilator of mn in HomK(S,K), which is isomorphic to HomK(S/mnS,K).

By Proposition 3.1.5, HomK(S/mnS,K) is a Z-graded R-module. Let M ′ be the

R-submodule of HomK(S/mnS,K) generated by the homogeneous components of

the generators of the image of M . Therefore, M ′ is a finitely generated graded R-

module, and since mn kills M and is a homogeneous ideal, it kills M ′ as well. Thus,

M ′ is also m-coprimary as an R-module.
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Let ũ be the image of u in M ′, which we know is nonzero. As u ∈ 0∗M , we also

have that ũ ∈ 0∗M ′. By our hypothesis, ũ ∈ 0FM ′ (resp., ũ ∈ 0+gr
M ′ ) since M ′ is graded

and m-coprimary. Therefore, 1 ⊗ ũ = 0 in S ⊗ M ′. Since HomK(S/mnS,K) is

an S-module, the inclusion map M ′ ↪→ HomK(S/mnS,K) factors through the map

M ′ → S⊗M ′, by the universal property of base change. Thus, the fact that 1⊗ũ = 0

in S⊗M ′ implies that the image of ũ is 0 in HomK(S/mnS,K), a contradiction.

3.2 Consequences

When R is the homogeneous coordinate ring of an elliptic curve of positive char-

acteristic p over an algebraically closed field (i.e., R is a standard graded normal

K-algebra of dimension 2 with dimK [H2
m(R)]0 = 1, where m is the homogeneous

maximal ideal of R), or when R is an N-graded 2-dimensional domain of finite type

over K, where K is the algebraic closure of a finite field, we would like to apply

Theorem 3.1.6 to the results of Brenner.

In [Br2] and [Br3], Brenner shows that the tight closure of a primary homogeneous

ideal is the same as its graded-plus closure. Brenner has observed in correspondence

that it is straightforward to generalize Theorems 2.4.5 and 2.4.7 to include finitely

generated m-coprimary R-modules. The argument is lengthy, like the one for ide-

als, but the changes are routine. (The main idea is to replace the syzygy bundle

constructed from homogeneous generators of an m-primary ideal with a syzygy bun-

dle constructed from homogeneous generators of an m-coprimary submodule N of a

graded module M . Once one has made the necessary alterations to the results in

[Br1, Section 3], all of the relevant proofs in [Br2] and [Br3] follow seamlessly as they

only rely on the aforementioned results and theorems whose hypotheses only require

locally free sheaves of arbitrary rank, which we obtain in the ideal and module cases.)
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With some degree of caution, we state this generalization as the following theorem.

Theorem 3.2.1 (Brenner). Let R be a positive characteristic ring. Further, let R

be the homogeneous coordinate ring of an elliptic curve over an algebraically closed

field K, or let R be any 2-dimensional standard graded K-algebra, where K is the

algebraic closure of a finite field. Let N ⊆ M be finitely generated graded R-modules

such that M/N is m-coprimary, where m is the homogeneous maximal ideal of R.

Then N∗
M = N+

M = N+gr
M .

Remark 3.2.2. For example, R is the homogeneous coordinate ring of such an elliptic

curve when R = K[x, y, z]/(F ), where R is normal and F is homogeneous of degree 3.

Therefore, the result above applies to the cubical cone R = K[x, y, z]/(x3 + y3 + z3).

This result together with Theorem 3.1.6 yields the following corollary.

Corollary 3.2.3. With R as above, N∗
M = N+

M = N+gr
M for all finitely generated

R-modules such that M/N is m-coprimary.

Further, if Proj R is an elliptic curve with Hasse invariant 0 (see Section 2.4 or

[Ha, pp. 332-335]), then Brenner’s Theorem 2.4.8 says that the tight closure of a

primary homogeneous ideal is the same as its Frobenius closure. For example, this is

the case for the cubical cone R = K[x, y, z]/(x3 +y3 + z3), when the characteristic of

K is congruent to 2 (mod 3) (as implied by [Ha, Proposition 4.21]). Again, Brenner’s

result can be generalized to include finitely generated homogeneous modules N ⊆M

with m-coprimary quotients. This fact can then be paired with Theorem 3.1.6 to

give:

Corollary 3.2.4. If R is the homogeneous coordinate ring of an elliptic curve of

positive characteristic p with Hasse invariant 0 defined over an algebraically closed



37

field, then N∗
M = NF

M for all finitely generated R-modules such that M/N is m-

coprimary.

For a Noetherian ring R with a maximal ideal m, given the equivalence of tight

closure and plus closure (respectively, graded-plus closure or Frobenius closure) in

the m-coprimary case, we can present a characterization of tight closure in the local-

ization of R at m in terms of the m-adic closure of modules inside R+ (resp., R+GR or

R∞). We start with a general lemma about tight closure that includes the hypothesis

that R contains a test element. Recall from Hochster and Huneke’s Theorem 2.2.6,

if R is a reduced excellent local ring, R will always contain a test element.

Lemma 3.2.5. Let (R,m) be a reduced local ring of positive characteristic p that

has a test element. Let M be a finitely generated R-module. Then u ∈ 0∗M if and

only if u ∈ ⋂k(m
kM)∗M .

Proof. Let c be a test element inR. Then u ∈ 0∗M if and only if c1/q⊗u = 0 in R1/q⊗M

for all q by Lemma 2.2.8. This holds if and only if c1/q ⊗ u ∈ ⋂km
k(R1/q ⊗M) for

all q since (R1/q, m1/q) is also local, R1/q ⊗M is a finitely generated R1/q-module,

and the powers of mR1/q are cofinal with the powers of m1/q. Since mk(R1/q⊗M) =

Im(R1/q ⊗mkM → R1/q ⊗M), the above occurs if and only if

c1/q ⊗ u ∈ Im(R1/q ⊗mkM → R1/q ⊗M),

for all k and all q. Finally, since c is a test element, the previous holds if and only if

u ∈ (mkM)∗M for all k.

We now show an equivalence between the m-adic closure of modules in certain

ring extensions and the Frobenius, plus, and graded-plus closures.

Lemma 3.2.6. Let R be a reduced ring, I an ideal, and S = R∞ (respectively, R

is also a domain and S = R+ or R is also a graded domain and S = R+GR or
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S = R+gr). Then u ∈ (IkM)FM (resp., u ∈ (IkM)+
M or u ∈ (IkM)+gr

M ) for all k if and

only if 1⊗ u ∈ ⋂k I
k(S ⊗M).

Proof. By definition, u ∈ (IkM)FM (resp., u ∈ (IkM)+
M or u ∈ (IkM)+gr

M ) if and only

if 1 ⊗ u ∈ Im(S ⊗ IkM → S ⊗M). This holds if and only if 1 ⊗ u ∈ Ik(S ⊗M).

Therefore, u ∈ (IkM)FM (resp., u ∈ (IkM)+
M or u ∈ (IkM)+gr

M ) for all k if and only if

1⊗ u ∈ ⋂k I
k(S ⊗M).

We now give the promised result connecting tight closure in Rm and the m-adic

closure in R+ (resp., R+GR, R+gr, or R∞).

Proposition 3.2.7. Let R be a reduced ring of characteristic p > 0. Let m be

a maximal ideal of R such that Rm has a test element (e.g., this holds if Rm is

excellent). Let S = R∞ (resp., let R also be a domain and S = R+ or let R be a

graded domain and S = R+GR or S = R+gr). Moreover, let R be such that Frobenius

closure (resp., plus closure or graded-plus closure) equals tight closure for finitely

generated modules with m-coprimary quotient. Then for any finitely generated N ⊆
M and u ∈ M , we have u/1 ∈ (Nm)∗Mm

if and only if 1⊗ u is in the m-adic closure

of S⊗M/N . For M free, we further note that (Nm)∗Mm
∩M =

⋂
k(N+mkM)S∩M .

Proof. Since x ∈ (Nm)∗Mm
if and only if x ∈ 0∗Mm/Nm

and Mm/Nm
∼= (M/N)m, it is

enough to show this for the case N = 0. By Lemma 3.2.5, u/1 ∈ 0∗Mm
if and only

if u/1 ∈ ⋂k(m
kMm)∗Mm

. Since M/mkM is clearly m-coprimary, [HH1, Proposition

8.9] shows that the contraction of (mkMm)∗Mm
to M is just (mkM)∗M for all k. Hence

u/1 ∈ 0∗Mm
if and only if u ∈ ⋂k(m

kM)∗M . By our hypothesis, this holds if and only

if u ∈ ⋂k(m
kM)FM (resp., u ∈ ⋂k(m

kM)+
M or u ∈ ⋂k(m

kM)+gr
M ). Then Lemma 3.2.6

shows this is equivalent to 1⊗ u ∈ ⋂km
k(S ⊗M).

In the case that M is free, the above shows u ∈ (Nm)∗Mm
∩ M if and only if
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1⊗ u ∈ ⋂km
k(S ⊗M/N), but mk(S ⊗M/N) ∼= mk(MS/NS) in this case. Further,

u ∈ mk(MS/NS) if and only if u ∈ (N +mkM)S.

3.3 Computing Injective Hulls

In this section we study the injective hull of the residue field of R∞, R+, and R+GR,

where R has positive characteristic and is a complete local domain or a standard

graded K-algebra domain. Recall that for any ring A and A-module M , the injective

hull of M , denoted by EA(M), is a maximal essential extension of M and may be

thought of as the smallest injective module that contains M , since it is a direct

summand of any other injective module containing M .

We start by studying the injective hull, ER∞(K∞), where R = K[[x1, . . . , xn]] or

R = K[x1, . . . , xn]. In the case of dim(R) = 1, M. McDermott computed the injective

hull in a rather concrete manner involving formal sums such that the support of

each sum is a well-ordered set. See [McD, Proposition 5.1.1]. For dim(R) ≥ 2, we

conjecture that the injective hull can similarly be written as a set of formal sums

with support that has DCC. We present the progress made so far and a condition

that must be satisfied if the conjecture is false. The results in dimension n ≥ 2,

however, show that there are elements of ER∞(K∞) that are not killed by any power

of the maximal ideal of R. This contrasts with the Noetherian case where no such

elements exist. We then show that this result also holds for complete local domains

and standard graded K-algebra domains, in positive characteristic, and that it holds

for the injective hull of the residue field over R+ or R+GR as well.

This latter result shows that we cannot extend Theorem 3.1.6 by making use of

the injective hull of the residue field of R+GR or R∞ in the analogous way. The

strategy of the proof of Theorem 3.1.6 was to show that for a module M with an
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element u outside of 0+gr
M or 0FM , we can map M to a mR-coprimary graded module

M ′ such that the image of u remains outside of the closure of 0 in M ′. If the injective

hull of the residue field in R+GR or R∞ was such that every element was killed by a

power of mR, then we could use a finitely generated R-submodule of ER∞(K∞) as

M ′. Propositions 3.3.12 and 3.3.13, however, bar us from applying this method to

the problem.

We start with the case of R = K[[x1, . . . , xn]] or R = K[x1, . . . , xn] and look at

essential extensions of K∞ over R∞.

3.3.1 The Regular Case

In order to study the injective hull ER∞(K∞), where R = K[[x1, . . . , xn]] or

R = K[x1, . . . , xn], we will construct a module of formal sums such that the support

has DCC. The supports will be subsets of −N[1/p]n, the set of n-tuples of nonpositive

rational numbers whose denominators are powers of p. We are able to show that this

module is an essential extension of K∞, but we are unable to decide whether it is

the entire injective hull or not in dimension n ≥ 2.

Throughout the rest of this section, we will use bold letters to stand for n-tuples

of elements. For instance, x := x1, . . . , xn, and a := a1, . . . , an. We will place a

partial ordering on n-tuples by comparing coordinate-wise, e.g., a > b if and only if

ai ≥ bi, for all i, and aj > bj , for some j. We will define addition and subtraction of

n-tuples as usual. If a ∈ Qn, then xa := xa11 · · ·xan
n .

Definition 3.3.1. Let R = K[[x]] or R = K[x], where K is a field of positive

characteristic p and dimR = n. Let L = K∞, the perfect closure of K. Given a

formal sum f =
∑

a cax
−a, where a ∈ N[1/p]n and ca ∈ L, we will say that the
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support of f is the subset of (−N[1/p])n given by

supp(f) := {−a | ca �= 0}.

Using the same notation, we define the following set of formal sums

N := {f =
∑
a

cax
−a | a ∈ N[1/p], ca ∈ L, and supp(f) has DCC}.

Lemma 3.3.2. Using the notation of Definition 3.3.1, N is an S-module with for-

mally defined multiplication.

Proof. Let f1, f2 be in N , and let supp(fi) = Ai. Then supp(f1 + f2) ⊆ A1 ∪ A2.

Since the union of two sets with DCC has DCC and a subset of a set with DCC also

has DCC, f1 + f2 is in N . Now, let s ∈ S. Then s ∈ R1/q, for some q = pe, so that

we can write

s =
∑
b≥0

dbx
b/q,

where b ∈ Nn and db ∈ L. Put

f :=
∑
a

cax
−a ∈ N.

Using formal multiplication, the coefficient of x−s in sf is

(3.3.3)
∑

−a+b/q=−s

cadb.

Notice that the coefficient of x−s is 0 if −s = −a + b/q > 0 as K∞ = S/mS.

When −s ≤ 0, for sf to be well-defined, the summation (3.3.3) must consist of

a finite sum of nonzero elements. In the polynomial case, this is clear since s has

only finitely many terms. Otherwise, suppose that we have enumerated the terms

contributing to the coefficient of x−s and that the set

{k ∈ N | − a(k) + b(k)/q = −s, and cadb �= 0}



42

is infinite. If there are only finitely many distinct b(k), then (3.3.3) is clearly a finite

sum. We may then assume that there are infinitely many distinct b(k) and thus

assume that all of the b(k)/q are distinct. Hence, we obtain an infinite chain of

equalities

−a(1) + b(1)/q = −a(2) + b(2)/q = −a(3) + b(3)/q = · · · .

Since the sets N/q and supp(f) have DCC, we may apply Lemma 3.3.4, and then we

will have a contradiction. Therefore, (3.3.3) is a finite sum, and sf is well-defined.

We also need to show that supp(sf) has DCC. Suppose to the contrary that

−a(1) + b(1)/q > −a(2) + b(2)/q > −a(3) + b(3)/q > · · · .

is an infinite chain in supp(sf). If there are only finitely many distinct n-tuples

b(k)/q, then we also obtain an infinite descending chain in the −a(k), for k � 0, a

contradiction since supp(f) has DCC. We may then assume that there are infinitely

many b(k)/q and all are distinct and then apply Lemma 3.3.4 again to obtain a

contradiction.

Lemma 3.3.4. Let A and B be subsets of Gn, where (G,+) is a linearly ordered

abelian group. Suppose that A has DCC and that B has DCC in each coordinate. If

{a(k)}k is a sequence of n-tuples in A and {b(k)}k is a sequence of infinitely many

distinct n-tuples in B, then we cannot obtain an infinite chain

a(1) + b(1) ≥ a(2) + b(2) ≥ a(3) + b(3) ≥ · · · .

Proof. Because each b(k) has only finitely many coordinates and each b(k) is distinct,

b
(k)
i takes on infinitely many values, for some i. Without loss of generality, we may

assume that b
(k)
1 is distinct, for all k, by taking subsequences. Similarly, if any other

coordinate b
(k)
j takes on infinitely many values, then we may also assume that each
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b
(k)
j is distinct, for all k. If any coordinate b

(k)
j takes on only finitely many values, then

it must take on a particular value infinitely many times. So, by taking subsequences

again, we may assume that b
(k)
j is constant, for all k.

Therefore, after taking subsequences, we may assume without loss of generality

that, for each i, either b
(k)
i = b

(k′)
i , or b

(k)
i < b

(k+1)
i , for all k, k′. (The latter assumption

may be made when there are infinitely many distinct values because B has DCC in

each coordinate.)

These conditions imply that we obtain a chain b(1) < b(2) < b(3) < · · · , and so if

we subtract this line of inequalities from our original chain of inequalities, we obtain

an infinite descending chain a(1) > a(2) > a(3) > · · · , which contradicts the fact that

A has DCC. Therefore, we could not have had the original infinite chain.

Now that we have established that N is actually an R∞-module, we can also show

that N is an essential extension of K∞.

Proposition 3.3.5. Using the notation of Definition 3.3.1, N is an essential exten-

sion of L = K∞. Therefore, N ⊆ ER∞(K∞).

Proof. The second claim follows immediately from the first. For the first, let f =∑
a cax

−a ∈ N . Since supp(f) has DCC, we can choose a minimal element −a(0).

Then xa(0) ∈ S, and

xa(0)

f =
∑
a

cax
a(0)−a = ca(0) ∈ L \ {0}

as a
(0)
i > ai, for some i, for all a �= a(0) in supp(f).

As mentioned earlier, McDermott showed that N is the entire injective hull of

K∞ over R∞ in dimension 1. McDermott’s proof covers that case R = K[x], but the

case R = K[[x]] follows routinely.
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Proposition 3.3.6 (Proposition 5.1.1, [McD]). With the notation of Definition

3.3.1, the injective hull ES(L) is isomorphic to N when dimR = n = 1.

Proposition 3.3.5 has the following corollary which demonstrates that in the non-

Noetherian case the injective hull of a residue field behaves very differently from the

Noetherian case in dimension n ≥ 2, where all elements of the injective hull are killed

by a power of the maximal ideal.

Proposition 3.3.7. With the notation of Definition 3.3.1, if n ≥ 2, then ER∞(K∞)

contains an element not killed by any power of mR = (x)R.

Proof. Let f =
∑

e x
−1/pe

1 x−e2 . For e < e′, −1/pe < −1/pe
′

and −e > −e′ so that

all elements in supp(f) are incomparable. Hence, all chains in supp(f) have only

one link, and f ∈ N , which injects into ER∞(K∞) by the last proposition. Now, let

t > 0. Then xt2f =
∑

e x
−1/pe

1 xn−e2 , and if e0 ≥ t, then t−e0 ≤ 0. Therefore, xt2f �= 0,

and mt
Rf �= 0, for any t > 0.

We now prove some additional facts about the module N that may be useful in

showing it is the full injective hull of L = K∞. We first show that N embeds in the

injective S = R∞-module HomL(S, L) because it is an essential extension of L. This

fact implies that in order to prove that N is isomorphic to ES(L), it is enough to

show that N has no essential extension in HomL(S, L).

Lemma 3.3.8. With the notation of Definition 3.3.1, there exists an injective map

θ : N ↪→ HomL(S, L) that takes 1 ∈ L inside N to the map S → L taking 1 �→ 1 and

mS �→ 0, where mS =
⋃
q(x

1/q)S.

Proof. Let λ : N → L be the L-linear map given by λ(
∑

a cax
−a) = c0, and let

θ′′ : N × S → L be given by θ′′(f, s) = λ(sf). It is easy to check that θ′′ is an
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L-bilinear map and so induces the map θ′ : N ⊗L S → L given by θ′(f ⊗ s) = λ(sf).

By the adjointness of tensor and Hom, we have

HomL(N ⊗L S, L) ∼= HomL(N,HomL(S, L)).

Therefore, θ′ corresponds to a unique L-linear map θ : N → HomL(S, L).

We claim that θ is actually S-linear. Indeed, using the adjointness, θ(f)(s) =

λ(sf). Let r ∈ S. Using the inherited S-module structure on HomL(S, L), we have

rθ(f)(s) = θ(f)(sr) = λ((sr)f) = λ(s(rf)) = θ(rf)(s).

Therefore, rθ(f) = θ(rf) and θ is S-linear.

Now, θ(1)(1) = λ(1) = 1 �= 0, and θ(1)(mS) = λ(mS) = 0. This shows θ(1) �= 0 so

that θ|L : L ↪→ HomL(S, L) according to the second assertion above. Additionally,

since N is an essential extension of L, we have θ : N ↪→ HomL(S, L).

We next show that if N has an essential extension within the set of formal sums,

then there must be such a sum that has no minimal elements in its support. First

we need a lemma about sets with DCC.

Lemma 3.3.9. Let A be a partially ordered set such that for all B � A, where B

has DCC, the difference A \B has a minimal element. Then A has DCC.

Proof. Let C := {a ∈ A | there exists an infinite chain a > a1 > a2 > · · · in A}.
Suppose that A does not have DCC. Then C is not empty. Moreover, C does not

have a minimal element because all of its members begin an infinite chain. If we set

B = A\C, then by our hypothesis, B cannot have DCC. Thus, there exists an infinite

chain b0 > b1 > b2 > · · · in B � A, and so b0 ∈ C ∩B = ∅, a contradiction.

Lemma 3.3.10. Using the notation of Definition 3.3.1, let f =
∑

a cax
−a, where
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supp(f) ⊆ (−N[1/p])n. If the support of sf + g has a minimal element, for all s ∈ S

and all g ∈ N , then f ∈ N .

Proof. Let B � supp(f) such that B has DCC. Then g =
∑

−a∈B −cax−a is in N .

Therefore, by hypothesis, supp(f + g) has a minimal element, but supp(f + g) =

supp(f) \B. By the previous lemma, supp(f) has DCC, and so f ∈ N .

3.3.2 The General Case

We will now show how we can extend the result of Proposition 3.3.7 to include

complete local domains and standard graded K-algebra domains in positive charac-

teristic. Moreover, we will also extend the result to one concerning the injective hull

of the residue field over R+ or R+GR. These results will then show that in a large

class of rings, there are elements not killed by any power of the maximal ideal of R

in the injective hull of the residue field over R∞, R+, or R+GR.

We will first need a lemma about purity. An injection of R-modules N → M is

called pure if W ⊗N →W ⊗M is an injection for all R-modules W . When M/N is

finitely presented, the map is pure if and only if the map splits; see [HR, Corollary

5.2]. When S is an R-algebra and R → S is pure as a map of R-modules, one calls

S pure over R.

Lemma 3.3.11. Let R = lim−→α
Rα, and let S = lim−→α

Sα such that each Sα is pure

over Rα. Then S is pure over R.

Proof. Since each map Rα → Sα is injective by hypothesis, it is clear that R→ S is

also injective.

Let W be an R-module and thus an Rα-module, for each α, by restriction of

scalars. Suppose thatW →W⊗RS is not an injective map. Then there exists w ∈W

such that w⊗1 = 0 in W⊗RS. It is easy to check that W⊗RS = lim−→α
W⊗RαSα, and
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so w ⊗ 1 = 0 in some W ⊗Rα Sα. Hence, as a map of Rα-modules, W → W ⊗Rα Sα

is not injective, a contradiction.

Therefore, if A is a regular ring of positive characteristic and R is a reduced

module-finite extension of A, then A is a direct summand of R as an A-module (see

[Ho1, Theorem 1]). Thus, A1/q is a direct summand of R1/q, for all q = pe, and so

the last lemma implies that R∞ is pure over A∞.

Proposition 3.3.12. Let (R,m,K) be a complete local domain (resp., a standard

graded K-algebra domain) of positive characteristic and Krull dimension n ≥ 2.

Then there exists an element of E := ER∞(K∞) that is not killed by any power of

m.

Proof. By the Cohen structure theorem, R is a module-finite extension of a formal

power series ring A = K[[x1, . . . , xn]] (resp., by Noether normalization, R is a module-

finite extension of the graded polynomial ring A = K[x1, . . . , xn]). Since A is regular,

R is pure over A, and so the last lemma implies that R∞ is pure over A∞. If we let

E0 := EA∞(K∞), then

K∞ ↪→ E0 ↪→ M := R∞ ⊗A∞ E0.

Since K∞ is an R∞-module, we can find an R∞-submodule M ′ of M maximal with

respect to not intersecting K∞. Hence, M/M ′ is an essential extension of K∞ as

an R∞-module. We can then extend M/M ′ to a maximal essential extension E of

K∞ over R∞. Since the inclusion K∞ → E factors through E0 and since E0 is

an essential extension of K∞ over A∞, E0 injects into E as a map of A∞-modules.

Since E0 contains an element not killed by any power of the maximal ideal (resp.,

the homogeneous maximal ideal) mA of A by Proposition 3.3.7, so does E. Since
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mA is primary to m, the same element of E not killed by a power of mA is also not

killed by a power of m.

We can also take advantage of the faithful flatness of A+ or A+GR over a regular

ring A (see Proposition 2.3.2) to prove the existence of elements not killed by a power

of the maximal ideal in the injective hull of the residue field over R+ or R+GR.

Proposition 3.3.13. Let (R,m) be a complete local domain (resp., a standard graded

K-algebra domain) of positive characteristic and Krull dimension n ≥ 2. Then there

exists an element of E := ER+(K) (resp., E := ER+GR(K)) that is not killed by any

power of m, where K is the algebraic closure of K.

Proof. By the Cohen structure theorem, R is a module-finite extension of a formal

power series ring A = K[[x1, . . . , xn]] (resp., by Noether normalization, R is a module-

finite extension of the graded polynomial ring A = K[x1, . . . , xn]). Thus, A+ ∼= R+

(resp., A+GR ∼= R+GR), and so we may assume that R = K[[x1, . . . , xn]] (resp.,

R = K[x1, . . . , xn]). Let B := R+ (resp., B := R+GR).

Since R1/q is regular, for all q, and since B is a big Cohen-Macaulay R1/q-algebra,

B is faithfully flat over R1/q by Proposition 2.3.2. Therefore, B is flat over R∞ (using

a simple direct limit argument).

The inclusion of K∞ ⊆ ER∞(K∞), together with the flatness of B over R∞ gives

the following diagram:

K∞

��

� � �� ER∞(K∞)

��
B ⊗R∞ K∞ � � �� B ⊗R∞ ER∞(K∞)

As we have a surjection of B ⊗R∞ K∞ onto K, the residue field of B, we have a

map from B ⊗R∞ K∞ to E, the injective hull of K over B. Because E is injective,
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this map lifts to a map from B ⊗R∞ ER∞(K∞). Hence, we obtain a commutative

diagram of R∞-module maps:

K∞ � � ��
� �

��

ER∞(K∞)

�������������

E

where the diagonal map is also injective since ER∞(K∞) is an essential extension

of K∞. Therefore, the element in ER∞(K∞) not killed by any power of m (as in

Proposition 3.3.7) injects into E as an element not killed by any power of m.



CHAPTER 4

Graded-Complete Big Cohen-Macaulay Algebras

Our goal in this chapter is to create a balanced big Cohen-Macaulay algebra B

for an N-graded ring R with homogeneous maximal ideal m such that if M is a free

R-module and N ⊆ M , then NB ∩M = (Nm)∗Mm
∩M . In other words, extension

and contraction with respect to B will characterize tight closure in Rm. We will start

by defining the concept of a graded-complete ring which is an analogue, for graded

rings, of complete local rings. This will be used to define a class of lim-graded-

complete rings which are direct limits of graded-complete rings. We then construct

lim-graded-complete R-algebras that are also big Cohen-Macaulay algebras for R.

Finally we show that these algebras have the property claimed above. The methods

used will closely follow those used in [HH7, Sections (3.1)-(3.7)] and in the proof of

[Ho3, Theorem 11.1].

The motivation behind the study of graded-complete rings and modules comes

from our attempts to extend Theorem 3.1.6 to modules that are not necessarily m-

coprimary. We had hoped that the construction of a particular graded-complete

module would allow us to extend our result. So far these attempts have been unsuc-

cessful.

50
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4.1 Graded-Complete and Lim-Graded-Complete Rings

In this section we will define a completion operation for graded rings that is

analogous to the completion operation for maximal ideals of Noetherian rings. In

fact, in the case that R0 is a field and R is Noetherian, these operations coincide. We

then use this operation to define a class of graded-complete rings that have certain

properties of graded rings, but also share some properties with complete rings. We

will also discuss direct limits of graded-complete rings which we will call lim-graded-

complete and how graded-completions and direct limits can preserve the property

of being a big Cohen-Macaulay algebra. Finally, we will introduce graded-complete

modules.

In the following sections we will mostly work with N-graded rings and occasionally

with N1
s

or Z1
s
-graded rings, where Z1

s
:= {k

s
|k ∈ Z}, N1

s
:= {n

s
|n ∈ N}, when s is

some positive integer.

Definition 4.1.1. If R =
⊕

i∈Z
1
s
Ri is a Z1

s
-graded (not necessarily Noetherian)

ring, then we call R̂ := (
⊕

i<0Ri)⊕ (
∏

i≥0Ri) the graded-completion of R. A ring S

is called Z1
s
-graded-complete if S = R̂ for a Z1

s
-graded ring R.

We can identify R̂ with the subgroup of
∏

i∈Z
1
s
Ri of elements with ith coordinate

ri = 0 for all i � 0. We will write
∑

i ri for an element of R̂ in order to emphasize

the analogy with the graded case. Here it is understood that ri ∈ Ri, and ri = 0 for

all i� 0. It is clear that R̂ is an abelian group with addition performed component-

wise, but we can also define a multiplication operation for R̂.

Lemma 4.1.2. If R is a Z1
s
-graded ring, then R̂ is a commutative ring with iden-

tity, where multiplication is defined by (
∑

i ri)(
∑

j sj) = (
∑

h th) such that th =∑
{i+j=h} risj.
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The proof is clear, noting that because ri = 0 and sj = 0 for i, j � 0, the sum

defining th is finite and so well-defined.

To justify the notation R̂, we note the following:

Lemma 4.1.3. If R is a Noetherian N-graded K-algebra such that R0 = K, then∏
i∈N

Ri
∼= lim←−iR/mi

∼= (Rm)̂ , where m =
⊕

i≥1Ri and mi =
⊕

j≥iRj. Therefore,

in such cases, R̂, as defined above, is a complete local ring.

Proof. Since R0 = K, m is the unique homogeneous maximal ideal of R. Then the

second isomorphism follows because Rm/miRm
∼= R/mi. For the first isomorphism,

note that lim←−iR/mi = lim←−iR0⊕R1⊕R2⊕· · ·⊕Ri−1
∼= ∏iRi. The final claim follows

since (Rm)̂ is a complete local ring.

The following result will allow us to define a notion of degree for certain elements

of R̂ and gives a functoriality result for the graded-completion operation.

Lemma 4.1.4. Let R and S be Z1
s
-graded rings.

(a) The map ψ1 : R → R̂ given by ψ1(r) =
∑

i ri, where ri is the degree i piece of

r, is an injective R-algebra homomorphism.

(b) Given a degree-preserving map φ : R→ S, φ extends to a map φ̂ : R̂→ Ŝ and

gives a commutative diagram such that Ri in R maps into Si in Ŝ for all i.

R̂
bφ �� Ŝ

R
φ ��

ψ1

��

S

ψ2

��

(c) If φ, as in (b), is injective (resp., surjective), then so is φ̂.

Proof. The existence and injectivity in (a) of the map ψ is clear. For (b), define

φ̂(
∑

i ri) =
∑

i φ(ri), where deg ri = i. Since all maps clearly commute for homoge-

neous elements of R, the diagram commutes in general. Since φ is a degree-preserving
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map, ψ1 maps Ri in R to Ri in R̂, and similarly for ψ2 and S, we see that the com-

position R → Ŝ does map Ri into Si for all i. Finally, since φ̂(
∑

i ri) is determined

by the images φ̂(ri) = φ(ri) in Si, the claims in (c) follow.

We now define the notion of degree for R̂ and the notion of a map that preserves

degree.

Definition 4.1.5. Given
∑

i ri ∈ R̂, we call ri the degree i homogeneous piece (or

component) of
∑

i ri. We will call an element
∑

i ri homogeneous of degree i if ri �= 0

and rj = 0 for all j �= i. A homomorphism φ : R → Ŝ or φ : R̂ → Ŝ is called

degree-preserving if Ri maps into Si for all i and φ(
∑

i ri) =
∑

i φ(ri).

From the definition, it is clear that in R̂ we have RiRj ⊆ Ri+j , as this is the

case in R, and that all elements of R̂ are (possibly infinite) sums of homogeneous

elements with only finitely many nonzero components in negative degrees. We also

note that the natural map φ : R → R̂ is degree-preserving, and if R → S is a

degree-preserving map of graded rings, then the induced maps R → Ŝ and R̂ → Ŝ

are degree-preserving.

It is because of the notion of degree defined above and the result of Lemma 4.1.3

that we call the rings R̂ graded-complete. Notice that Lemma 4.1.4 shows that

the graded-completion operation is a functor, and using our definition of degree-

preserving maps, we see that the category of graded rings with degree-preserving

maps is actually equivalent to the category of graded-complete rings with degree-

preserving maps. Since any N1
s
-graded ring is naturally Z1

s
-graded as well, and, if s′

divides s, then a Z 1
s′ -graded ring is naturally Z1

s
-graded, we can say the same thing

about N1
s

and Z1
s
-graded-complete rings.

It will be useful in the following sections to work also with direct limits of graded-
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complete rings so that we can define degree and, thus, degree-preserving maps for

such direct limits. Let {R̂α}α be a directed system of Z1
s
-graded-complete rings such

that all maps R̂α → R̂β are degree-preserving. Let S = lim−→α
R̂α in the category of

rings. Given an element s ∈ S, choose a representative
∑

i r
(α)
i in R̂α. We will call the

image of r
(α)
i in S the degree i homogeneous piece of s. Because all maps in the direct

limit system are degree-preserving, it is clear that the degree i homogeneous piece

of s is independent of the choice of representative of s. If we let Si be the abelian

group generated by all homogeneous elements of S of degree i, for all i ∈ Z1
s
, then

we also have SiSj ⊆ Si+j since this is true in each R̂α. Further, since each element

of each R̂α can be written as a (possibly infinite) sum of homogeneous elements, the

same is true for S. Therefore, each element of S can be written as a possibly infinite

sum
∑

i si such that each si is the image of r
(α)
i , for the same α, where

∑
i r

(α)
i is an

element of R̂α.

Definition 4.1.6. A ring S = lim−→α
R̂α, where each R̂α is Z1

s
-graded-complete, will

be called Z1
s
-lim-graded-complete.

Note that all graded-complete rings R̂ are also lim-graded-complete as R̂ is the

direct limit of the directed system containing only R̂. We can now generalize our

definition of a degree-preserving map to include any map to and from a graded ring

or a lim-graded-complete ring.

Definition 4.1.7. Let R and S each be either graded or lim-graded-complete. A

degree-preserving map is any homomorphism φ : R→ S such that Ri maps to Si for

all i, and φ(
∑

i ri) =
∑

i φ(ri).

Remark 4.1.8. Direct limit and graded-completion do not commute although there

is a natural map. Indeed, let K(0) ⊂ K(1) ⊂ K(2) ⊂ · · · be a strictly increasing tower
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of fields. We then have the strict inclusion maps

(∗) K(0)[x] ↪→ K(1)[x] ↪→ K(2)[x] ↪→ · · ·

of polynomial rings. Taking graded-completions we obtain the sequence of formal

power series rings K(0)[[x]] ↪→ K(1)[[x]] ↪→ · · · , and taking a direct limit produces

the ring R =
⋃
i(K

(i)[[x]]). If L =
⋃
iK

(i), then taking the direct limit of (∗) yields

the polynomial ring L[x] and taking the graded-completion gives the formal power

series ring L[[x]]. Now, let a0 be any element of K(0), and for i > 0, let ai be an

element of K(i) \K(i−1). Then
∑

i aix
i is an element of L[[x]] as each ai ∈ L, but it

is not an element of R since no K(i) contains every coefficient ai.

Lemma 4.1.9. Let {Rα}α be directed system of Z1
s
-graded rings such that all maps

are degree-preserving. Then there exists a degree-preserving R-algebra map

Ψ : lim−→
α

R̂α → (lim−→
α

Rα)̂ .

Proof. Let s ∈ lim−→α
R̂α be represented by r =

∑
i ri such that r ∈ R̂α and deg ri = i.

For each i, we have ri ∈ [Rα]i, and so the image ri is in [lim−→α
Rα]i for all i. Define

Ψ(s) =
∑

i ri. The commutativity of the diagram in Lemma 4.1.4(b) implies that

this map is independent of the choice of representative for s.

It will also be useful to note that if R is Noetherian (respectively, a domain), then

the graded-completion operation preserves this property.

Lemma 4.1.10. If R is a Noetherian Z1
s
-graded ring, then R̂ is Noetherian.

Proof. Without loss of generality, we can assume that R is Z-graded. Since R is

Noetherian, R is finitely generated over R0 by [BH, Theorem 1.5.5], and so there

exists a degree-preserving surjection R0[T1, . . . , Tn] � R, where the Ti are indeter-
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minates over R0. By Lemma 4.1.4(c),

R0[[T1, . . . , Tn]] ∼= (R0[T1, . . . , Tn])̂ � R̂

so that R̂ is also Noetherian.

Lemma 4.1.11. If R is a Z1
s
-graded domain, then R̂ is a graded-complete domain.

Proof. If
∑

i ri and
∑

j sj are non-zero elements in R̂, let i0 be the smallest non-

negative integer i such that ri �= 0 and similarly define j0 with respect to
∑

j sj .

Then the degree i0 + j0 entry of (
∑

i ri)(
∑

j sj) is ri0sj0 �= 0 as R is a domain.

Therefore, (
∑

i ri)(
∑

j sj) �= 0 in R̂, which is then also a domain.

We now take a brief look at lim-graded-complete rings and big Cohen-Macaulay

algebras over a graded ring R.

Definition 4.1.12. A (possibly improper) Z1
s
-graded big Cohen-Macaulay R-algebra

is a Z1
s
-graded or lim-graded-complete degree-preserving R-algebra B such that every

homogeneous system of parameters in R is a (possibly improper) regular sequence

on B.

If S is any graded or lim-graded-complete R-algebra and x1, . . . , xk is part of a

homogeneous system of parameters in R, then a relation
∑k

j=1 xjuj = 0 in S is called

trivial if uk ∈ (x1, . . . , xk−1)S.

Remark 4.1.13. Our definition implies that our graded big Cohen-Macaulay algebras

are balanced, i.e., every homogeneous system of parameters in R is a regular sequence.

Recall that some authors will call an R-algebra B a big Cohen-Macaulay algebra if

a single (homogeneous) system of parameters is a regular sequence on B.

If every relation
∑k

j=1 xjuj = 0 in S for all homogeneous systems of parameters

x1, . . . , xk in R is trivial, then S is a possibly improper graded big Cohen-Macaulay

R-algebra.
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We note two useful facts concerning graded big Cohen-Macaulay algebras and the

graded-completion operation:

Lemma 4.1.14. If R and S are Z1
s
-graded and S is a (possibly improper) graded

big Cohen-Macaulay R-algebra, then Ŝ is also.

Proof. Since Ŝ has a notion of degree, we can assume we have a homogeneous relation

on a homogeneous system of parameters from R, which is a relation in S since it is

composed of homogeneous pieces. Since the relation trivializes in S, it is trivial in Ŝ

as well.

If there exists a homogeneous system of parameters x1, . . . , xn in R such that

Ŝ/(x1, . . . , xn)Ŝ = 0, then there is a homogeneous relation 1 =
∑

j xjsj in Ŝ which

also holds in S since S injects into Ŝ by Lemma 4.1.4(a). Thus, if S is a proper big

Cohen-Macaulay algebra, then Ŝ is also proper.

Lemma 4.1.15. If R is Z1
s
-graded and Sα is a degree-preserving directed system of

Z1
s
-graded R-algebras such that lim−→α

Sα is a (possibly improper) graded big Cohen-

Macaulay R-algebra, then T = lim−→α
Ŝα is as well.

Proof. Given a relation
∑k

j=1 xjuj = 0 on a homogeneous system of parameters

x1, . . . , xk in R, we can assume that the relation is homogeneous since T is lim-

graded-complete. Now, because T is a direct limit, there exists some Ŝα such that all

uj are in Ŝα and so that the relation
∑k

j=1 xjuj = 0 also holds. As in Lemma 4.1.4(a),

the natural map Sα → Ŝα is injective and so the uj are in Sα and
∑k

j=1 xjuj = 0

holds as well. Since lim−→α
Sα is a (possibly improper) graded big Cohen-Macaulay

R-algebra, this relation is trivial in some Sβ and therefore in Ŝβ which means it is

trivial in T .

If there exists a homogeneous system of parameters x1, . . . , xn in R such that
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T/(x1, . . . , xn)T = 0, then there is a homogeneous relation 1 =
∑

j xjuj in T which

also holds in some Ŝα. Thus, it holds in Sα since Sα ↪→ Ŝα and so holds in lim−→α
Sα.

Thus, if lim−→α
Sα is proper, then T is also proper.

4.2 Graded-Complete Modules

Although we will not make use of the following in the later sections, for a sense

of completeness, we also define graded-complete R-modules.

Definition 4.2.1. If M is a Z1
s
-graded module over the Z1

s
-graded ring R, then we

will call M̂ := (
⊕

i<0Mi)
⊕

(
∏

i≥0Mi) the graded-completion of M .

We present the following list of properties without proof as the proofs are either

straightforward or are direct analogues of properties for the graded-completion of a

ring.

Lemma 4.2.2. Let M , N , and Q be graded modules over a Z1
s
-graded ring R.

(a) M̂ is an R̂-module with an action induced by the R-module structure of M .

(b) There exists a natural map R̂⊗M → M̂ .

(c) If M → N is a degree-preserving map of modules, then we have an induced

commutative diagram

M̂
�� N̂

R̂⊗M ��

��

R̂⊗N

��

(d) If we have degree-preserving maps M
g→ N

f→ Q, then (f ◦ g)̂ = f̂ ◦ ĝ.

(e) The graded-completion operation preserves injections and surjections.

(f) If

(#) 0→M → N → Q→ 0
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is a degree-preserving sequence of maps, and we denote by (#)̂ the sequence

induced by applying the graded-completion operation, then (#) is exact if and

only if (#)̂ is exact.

From these facts, we can conclude the following proposition and corollary relating

the functors R̂⊗− and (−)̂ .

Proposition 4.2.3. Let M be a Z1
s
-graded module over a Z1

s
-graded ring R. Then

M̂ ∼= R̂⊗M .

Proof. The claim is clearly true for M = R and thus follows for the case where M is

a free module as well. For a general graded module M , let H → G → M → 0 be a

degree-preserving free presentation of M . We then have a commutative diagram:

R̂⊗H ��

��

R̂⊗G ��

��

R̂⊗M ��

��

0

Ĥ �� Ĝ ��
M̂

�� 0

where the top row is exact by the right exactness of tensor, and the bottom row

is exact by (f) of the last lemma. Since H and G are free modules, the first two

vertical arrows are isomorphisms. By the Five Lemma ([Mac, Lemma 3.3]), the map

R̂⊗M → M̂ is also an isomorphism.

Corollary 4.2.4. If M• is an exact sequence of Z1
s
-graded R-modules, then R̂⊗M•

is also exact.

4.3 Building a Graded-Complete Algebra That Captures Tight Closure

Let R be an N-graded Noetherian domain of characteristic p > 0 with R0 = K

and m =
⊕

i≥1Ri. We want to construct an R+gr-algebra B which is N-graded-

complete, a graded big Cohen-Macaulay R-algebra, and where contracted-expansion
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is tight closure. We start by constructing an N-graded R+gr-algebra for which all

homogeneous pieces of elements in R that are in a tight closure (Nm)∗Mm
are forced

into satisfying certain relations which are the homogeneous pieces of relations that

force the element into the image of B ⊗ N in B ⊗M . Then we will enlarge this

to an N-graded big Cohen-Macaulay R-algebra by trivializing all relations on all

homogeneous systems of parameters in R. Finally, we apply the graded completion

operation described above so that we can sum up all of the homogeneous pieces of

the tight closure forcing relations.

For the remainder of the section, let S be an N-graded (not necessarily Noetherian)

R-algebra. In later sections, we will concentrate on the case that S = R+gr.

Let TCrel(R) be the set of all µ = (M,N, u, α, ν, ρ) such that M = Rν is a finitely

generated free R-module, N ⊆ M is the submodule generated by the column space

of the ν × ρ matrix α, and u ∈ (Nm)∗Mm
∩M , where u is given by a ν × 1 column

matrix.

For all µ ∈ TCrel(R), 1 ≤ j ≤ ρ, and h ∈ N, let bµjh be an indeterminate over S

of degree h. Let ui, for 1 ≤ i ≤ ν, be the entries of u, and let aij be the entries of α

for 1 ≤ i ≤ ν, 1 ≤ j ≤ ρ. Since these are elements of R, we may write each as a sum

of graded pieces:

ui =
∞∑
d=0

uid and aij =
∞∑
k=0

aijk,

where all but finitely many of the uid and aijk are zero. Now, let

ξµid := uid −
ρ∑
j=1

∑
k+h=d

aijkbµjh

be a homogeneous element in S[bµjh : µ, j, h]. Let I be the homogeneous ideal

generated by all ξµid in S[bµjh : µ, j, h] , for µ ∈ TCrel(R), 1 ≤ i ≤ ν, and d ∈ N.
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Then

TC(S/R) := S[bµjh : µ, j, h]/I

is an N-graded S-algebra. Since R is usually understood, we will often write TC(S)

for TC(S/R). We can now form the graded-completion T̂C(S) := (TC(S))̂ .

The equation
∑∞

d=0 ξµid = 0 is then forced to hold in T̂C(S), which yields

ui =

ρ∑
j=1

aij(
∞∑
h=0

bµjh) ∀i.

Therefore, for 1 ≤ j ≤ ρ, the
∑∞

h=0 bµjh give a solution to the matrix equation

αX = u in T̂C(S).

Remark 4.3.1. If T is any lim-graded-complete T̂C(S)-algebra such that T̂C(S)→ T

is degree-preserving, then we can also solve αX = u in T using the images of the

bµjh. By our construction, the inclusion (Nm)∗Mm
∩M ⊆ NT ∩M is then forced for

any such T .

4.4 Building a Graded Big Cohen-Macaulay Algebra

We now introduce the constructions needed to build a possibly improper graded

big Cohen-Macaulay algebra for R from a given N-graded R-algebra S. We will

force all relations on parameters to become trivial after a countable number of mod-

ifications of S. In the next section, we will show that for S = T̂C(R+gr/R) this

construction yields a proper graded big Cohen-Macaulay algebra for R. The process

will closely follow the methods used in [HH7, Section 3]. We will use similar nota-

tion to that of Hochster and Huneke, but we will underline items to distinguish our

graded constructions from their local constructions.

For this section, R is any N-graded Noetherian ring of Krull dimension D. For

any N-graded R-algebra S, we define Rel(S) to be the set of all λ = (k,x, s) such
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that 0 ≤ k ≤ D, x = (x1, . . . , xk+1) is part of a homogeneous system of parameters

for R, and s = (s1, . . . , sk+1) is a sequence of homogeneous elements in S such that

k∑
i=1

xisi = xk+1sk+1

is a homogeneous relation in S. For λ ∈ Rel(S) and 1 ≤ j ≤ k, let zλj be an

indeterminate over S with deg zλj := deg sk+1 − deg xj in Z. For all λ, let

θλ :=
k∑
j=1

xjzλj − sk+1

be a homogeneous element in S[zλj : λ, j]. Let J (S) be the homogeneous ideal of

S[zλj : λ, j] generated by all θλ and by all zλj such that deg zλj ≤ 0. Now set

Mod(S) := S[zλj : λ, j]/J (S),

an N-graded S-algebra.

Let Mod1(S) := Mod(S). Given Modn(S), define Modn+1(S) := Mod(Modn(S)).

Then each Modn(S) is an N-graded S-algebra. Since there is a natural degree-

preserving S-algebra homomorphism Modn(S)→ Modn+1(S) for all n, we can define

Mod∞(S) := lim−→n
Modn(S), which is also an N-graded S-algebra that preserves the

degrees of S.

Proposition 4.4.1. Mod∞(S) is a possibly improper graded big Cohen-Macaulay

algebra for R.

Proof. Given a homogeneous relation in Mod∞(S) on a homogeneous system of pa-

rameters from R, this must also be a relation in some Modn(S). By our construction,

this relation becomes trivial in Modn+1(S) and so in Mod∞(S).

Furthermore, we can form the graded-completions Môdn(S) := (Modn(S))̂ for all

n ∈ N and (Mod∞(S))̂ . The degree-preserving map Modn(S)→ Modn+1(S) induces
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a degree-preserving map Môdn(S)→ Môdn+1(S) for all n that gives a commutative

diagram

· · · �� Môdn(S)
bφn �� Môdn+1(S) �� · · ·

· · · �� Modn(S)
φn ��

��

Modn+1(S)

��

�� · · ·
as in Lemma 4.1.4(b). Hence, we may now define the lim-graded-complete ring

Môd∞(S) := lim−→
n

Môdn(S).

From Lemma 4.1.9 we obtain a degree-preserving S-algebra map

Ψ : Môd∞(S)→ (Mod∞(S))̂ .

The utility of these two lim-graded-complete R-algebras is that they are both

possibly improper graded big Cohen-Macaulay R-algebras. Indeed, Môd∞(S) is a

direct limit of the Môdn(S), where the direct limit of the Modn(S) is Mod∞(S),

and (Mod∞(S))̂ is a graded-completion of Mod∞(S). So, by Proposition 4.4.1 and

Lemmas 4.1.15 and 4.1.14, respectively, we obtain the desired result:

Proposition 4.4.2. The lim-graded-complete S-algebras Môd∞(S) and (Mod∞(S))̂

are possibly improper graded big Cohen-Macaulay R-algebras.

Remark 4.4.3. If R is N-graded and R0 = K, then they will be proper as long as the

expansion of m =
⊕

i≥1Ri is not the unit ideal. Since we have a notion of degree in

the algebras above, this can only happen if 1 = 0. In order to show that this does

not happen in either case, it is sufficient to show it for (Mod∞(S))̂ since it is a

degree-preserving Môd∞(S)-algebra. By Lemma 4.1.4(a), 1 = 0 in (Mod∞(S))̂ if

and only if 1 = 0 in Mod∞(S).

In the next section we will show that if S = RTC, then 1 �= 0 in Mod∞(S) by

showing it is true after trivializing a finite number of relations. To show this is
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sufficient, we need to discuss the notion of graded algebra modifications which are a

graded analogue of the algebra modifications defined by Hochster and Huneke.

If S is any N-graded R-algebra and (k,x, s) ∈ Rel(S), then we can form the

N-graded S-algebra

S(1) := S[z1, · · · , zk]/J,

where the zt are indeterminates of deg zt := deg sk+1 − deg xt and J is the homoge-

neous ideal generated by all
∑k

t=1 xtzt − sk+1 and by all zt such that deg zt ≤ 0. As

in the local case, we call S(1) an N-graded algebra modification of S over R. We can

then also look at a finite sequence of graded algebra modifications:

S = S(0) → S(1) → S(2) → · · · → S(h),

where for all 1 ≤ i ≤ h, S(i+1) is a N-graded algebra modification of S(i) over R.

We will make use of the following graded analogue of Proposition 2.3.8 and [HH7,

Proposition 3.7]:

Proposition 4.4.4. Let S be an N-graded R-algebra.

(a) If S = S(0) → S(1) → · · · → S(h) is a finite sequence of N-graded algebra

modifications of S over R, then there exists a degree-preserving S-algebra map

S(h) → Modh(S),

and thus a degree-preserving S-algebra map S(h) → Mod∞(S).

(b) Given any N-graded S-algebra S ′ and a degree-preserving map S ′ → Mod∞(S)

of S-algebras, there exists a finite sequence of N-graded algebra modifications

S = S(0) → S(1) → · · · → S(h) of S over R and a degree-preserving S-algebra

map S ′ → S(h).

(c) 1 �= 0 in Mod∞(S) if and only if for every finite sequence of N-graded algebra

modifications S = S(0) → S(1) → · · · → S(h) of S over R, 1 �= 0 in S(h).
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Therefore, in order to establish that Mod∞(S) and (Mod∞(S))̂ are proper graded

big Cohen-Macaulay R-algebras, it will suffice to show that 1 �= 0 in S(h) for all finite

sequences of N-graded algebra modifications S = S(0) → S(1) → S(2) → · · · → S(h).

4.5 The Existence Proof

Let R be an N-graded Noetherian domain of characteristic p > 0 such that

R0 = K. Our hypotheses on R then guarantee the existence of a completely stable

homogeneous test element c of degree δ > 0 by Theorem 2.2.7 from Hochster and

Huneke.

Put S(−1) := R+gr and

S(0) := TC(R+gr) = R+gr[bµjh : µ, j, h]/(ξµid : µ, i, d)

as defined in the third section. Choose some ordering on the bµjh and write them as

z
(−1)
t for t ∈ N. Given S(i) for 0 ≤ i ≤ h− 1, let

S(i+1) := S(i)[z
(i)
1 , . . . , z

(i)
ki

]/Ji

such that Ji is the ideal generated by all s(i) −∑ki

t=1 x
(i)
t z

(i)
t and by all z

(i)
t such that

deg z
(i)
t ≤ 0, where x

(i)
1 , · · · , x(i)

ki
, x

(i)
ki+1 is a homogeneous system of parameters in R,

x
(i)
ki+1s

(i) =

ki∑
t=1

x
(i)
t s

(i)
t

is a homogeneous relation in S(i), and the z
(i)
t are indeterminates with deg z

(i)
t :=

deg s(i) − deg x
(i)
t . Then

TC(R+gr) = S(0) → S(1) → S(2) → · · · → S(h)

is a finite sequence of graded algebra modifications.
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We need to introduce a few new rings at this point. First, by a simple generaliza-

tion of [HH3, Lemma 4.1, Proposition 4.2], which define R+gr, we can define

Tq := (R1/q)+gr

as the N1
q
-graded subring of (R1/q)+ ∼= R+. We can further use Theorem 2.3.4 to

see that Tq is a graded big Cohen-Macaulay algebra for R1/q and then also for R

since every homogeneous system of parameters in R is a homogeneous system of

parameters in R1/q. Then

Uq := Tq[c
−1/q]

is a Z1
q
-graded R+gr-algebra. So, T̂q is an N1

q
-graded-complete ring, and Ûq is a

Z1
q
-graded-complete ring. Additionally, the degree-preserving inclusion Tq ↪→ Uq,

where deg c−1/q := −(1/q) deg c, implies that T̂q ↪→ Ûq as Z1
q
-graded-complete rings

by Lemma 4.1.4(c). By Lemma 4.1.14, we have the following helpful fact:

Proposition 4.5.1. For all q, T̂q is a degree-preserving graded big Cohen-Macaulay

R-algebra.

For sufficiently large q we will construct inductively degree-preserving maps of

R+gr-algebras from each S(i) to Ûq. The existence of the map S(h) → Ûq will show

that 1 �= 0 in S(h) as this is true in Uq and so in Ûq.

In order to construct the maps we will need to keep track of certain numerical

bounds associated with the images of selected elements of each S(i). It is important

that these bounds be independent of q. For all 0 ≤ j ≤ h − 1, we will use reverse

induction to define Γj (a finite subset of S(j) of homogeneous elements) and positive

integers b(j) and B(j).

First, let

Γh−1 := {s(h−1), s
(h−1)
1 , · · · , s(h−1)

kh−1
}.
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Now, given Γj, each element can be written as a homogeneous polynomial in the

z
(j−1)
t with homogeneous coefficients in S(j−1). Let b(j) be the largest degree of any

such polynomial. Let Γj−1 be the set of all coefficients of these polynomials together

with s(j−1), s
(j−1)
1 , · · · , s(j−1)

kj−1
. Now define B(−1) := 1, B(0) := b(0), and given B(j)

for 0 ≤ j ≤ h− 2, let

B(j + 1) := B(j)(b(j + 1) + 1).

Notice that, as claimed, all B(j) are independent of q.

Start with q ≥ q(0) := 1. To define a degree-preserving R+gr-algebra map

ψ(0)
q : S(0) → Ûq,

we need to find a homogeneous image for each bµjh such that each

(4.5.2) ξµid = uid −
ρ∑
j=1

∑
k+h=d

aijkbµjh,

maps to zero. Given (M,N, u, α, ν, ρ) ∈ TCrel(R), u ∈ (Nm)∗Mm
∩M implies that

c1/qu = αX

has a solution in (Rm)1/q ⊆ R̂1/q (see Lemma 4.1.3), say Xj = r
1/q
j , where rj ∈ R̂,

for 1 ≤ j ≤ ρ. Write each rj =
∑∞

h=0 rjh such that deg rjh = h in R̂. Then

r
1/q
j =

∑
h r

1/q
jh , where deg r

1/q
jh = h/q in R̂1/q. If the entries of u are ui and the

entries of α are aij , then

(4.5.3) c1/qui =

ρ∑
j=1

aijr
1/q
j .

As R1/q ⊆ (R1/q)+gr = Tq and R̂1/q ∼= (R1/q )̂ , by Lemma 4.1.4(c), R̂1/q ↪→ T̂q so that

(4.5.3) holds in T̂q too.

Taking homogeneous pieces, we have

(#id) c1/quid =

ρ∑
j=1

∑
k+h/q=∆d

aijkr
1/q
jh
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for all 1 ≤ i ≤ ν and for all d ∈ N, where deg uid = d, deg aijk = k, and ∆d := d+δ/q.

Since T̂q ↪→ Ûq while preserving degree, (#id) holds in Ûq as well. Hence, in Ûq we

have

(4.5.4) uid =

ρ∑
j=1

∑
k+h/q=∆d

aijk(c
−1/qr

1/q
jh )

for all 1 ≤ i ≤ ν and d ∈ N. Define

ψ(0)
q (bµjh) := c−1/qr

1/q
jh .

Then all ξµid will map to zero, and ψ
(0)
q will be well-defined. Moreover, since (4.5.2)

and (4.5.4) are homogeneous,

deg c−1/qr
1/q
jh = deg uid − deg aijk = deg bµjh

so that ψ
(0)
q is degree-preserving. Finally, each bµjh maps to c−1/qT̂q = c−B(−1)/qT̂q,

and Γ0 maps to c−b(0)/qT̂q = c−B(0)/qT̂q as the elements of Γ0 can all be written as

polynomials of degree ≤ b(0) in the bµjh.

Suppose that for some 0 ≤ i ≤ h− 1 and all q ≥ q(i) we have a degree-preserving

R+gr-algebra map ψ
(i)
q : S(i) → Ûq, where the z

(i−1)
t all map to c−B(i−1)/qT̂q, and

Γi maps to c−B(i)/qT̂q. We will extend ψ
(i)
q for q � 0 to a degree-preserving map

from S(i+1). If i ≤ h − 2, we will also map each z
(i)
t to c−B(i)/qT̂q, and map Γi+1 to

c−B(i+1)/qT̂q.

In order to simplify notation, we drop many of the (i) labels on parameters. Then

S(i+1) = S(i)[z1, . . . , zk]/J,

where J is the ideal generated by s−∑k
t=1 xtzt and all zt such that deg zt ≤ 0. Since

s and the st (in the relation xk+1s =
∑k

t=1 xtst in S(i)) are in Γi, we can write

(4.5.5) ψ(i)
q (s) = c−B(i)/qσ and ψ(i)

q (st) = c−B(i)/qσt
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for all q ≥ q(i), where σ and the σt are homogeneous elements of T̂q. Hence,

xk+1ψ
(i)
q (s) =

k∑
t=1

xtψ
(i)
q (st)

in Ûq, and multiplying through by cB(i)/q yields

xk+1σ =
k∑
t=1

xtσt

in T̂q (as T̂q injects into Ûq). By Proposition 4.5.1, T̂q is a graded big Cohen-Macaulay

algebra over R. Therefore,

(4.5.6) σ =
k∑
t=1

xtτt,

where τt = 0 or τt is a homogeneous element in T̂q with deg τt = deg σ−deg xt. Thus,

from (4.5.5) and (4.5.6) we have ψ
(i)
q (s) =

∑k
t=1 xt(c

−B(i)/qτt) in Ûq.

If deg zt ≤ 0, then we see from (4.5.5) that

(4.5.7)
(deg σ − (B(i)/q) deg c)− deg xt = degψ

(i)
q (s)− deg xt

= deg s− deg xt = deg zt ≤ 0.

This implies that

deg σ ≤ deg xt + (B(i)/q) deg c.

Since deg c is positive and B(i) is independent of q, we can find q(i+ 1) ≥ q(i) such

that

(4.5.8) (B(i)/q) deg c < 1

for all q ≥ q(i + 1). We then have deg σ < deg xt + 1, i.e., deg σ ≤ deg xt, for all

such t and all q ≥ q(i+ 1). Since σ =
∑k

t=1 xtτt in T̂q, which only has non-negative

degrees, either τt = 0 or deg σ ≥ deg xt for all t. Hence we see that for all t such

that deg zt ≤ 0 either τt = 0 or deg σ = deg xt when q ≥ q(i+ 1). If deg σ = deg xt,
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however, then by (4.5.7) and (4.5.8) we see deg zt = −(B(i)/q) deg c > −1, but deg zt

is assumed to be a non-positive integer, so deg zt = 0. This implies that deg c = 0

too, a contradiction. Therefore, if deg zt ≤ 0, then τt = 0 for all q ≥ q(i+ 1).

All of this now implies that for q ≥ q(i + 1), there is a well-defined S(i)-algebra

map ψ
(i+1)
q : S(i+1) → Ûq extending ψ

(i)
q given by

ψ(i+1)
q (zt) = c−B(i)/qτt.

From (4.5.6) and (4.5.7), if τt �= 0, then we have

deg zt = deg σ − (B(i)/q) deg c− deg xt = deg τt − (B(i)/q) deg c,

so that our map is also degree-preserving. If, in addition, i ≤ h− 2, then the zt map

to c−B(i)/qT̂q, and Γi+1 maps to c−B(i+1)/qT̂q, since B(i+1) = B(i)b(i+1)+B(i) and

these elements can be written as polynomials in the zt of degree at most b(i+1) with

coefficients in Γi.

We can finally conclude that there exists a degree-preserving R+gr-algebra map

ψ(h)
q : S(h) → Ûq

for all q � 0.

Therefore 1 �= 0 in S(h) which, by Proposition 4.4.4, shows that 1 �= 0 in

Mod∞(TC(R+gr)). Combining this result with Proposition 4.4.2 and Remark 4.4.3,

we have the following:

Theorem 4.5.9. Môd∞(TC(R+gr)) and (Mod∞(TC(R+gr)))̂ are both graded big

Cohen-Macaulay R-algebras.

4.6 Consequences

If S = TC(R+gr), where R is N-graded Noetherian domain and R0 = K, then

let B = Môd∞(S) or B = (Mod∞(S))̂ . By construction, B is a degree-preserving



71

lim-graded-complete TC(R+gr)-algebra and thus (Nm)∗Mm
∩M ⊆ NB∩M for all free

R-modules M and N ⊆ M by Remark 4.3.1.

By Lemmas 4.1.3 and 4.1.11, R̂ is a complete local domain, and by our construc-

tion of B, we can see that B is an R̂-algebra. A homogeneous system of parameters

for R is a system of parameters for Rm, and so is a system of parameters for R̂ as

R̂ is faithfully flat over Rm. Hence, there exists a system of parameters for R̂ that

is a regular sequence on B. By [Ho3, Proposition 10.5], B is solid over R̂. Since R

has a completely stable test element (see Theorem 2.2.7), so does R̂. Thus, tight

closure equals solid closure in R̂ by Theorem 2.5.4, and by [HH1, Proposition 8.13c],

(Nm)∗ = ((Nm)̂ )∗ ∩Mm. Therefore,

NB ∩M ⊆ (Nm)̂ B ∩M ⊆ ((Nm)̂ )� ∩M = ((Nm)̂ )∗ ∩M = (Nm)∗ ∩M,

where the second inclusion follows because B is solid over R̂. We conclude the

following:

Corollary 4.6.1. For N ⊆M , where M is free over R, we have

(Nm)∗Mm
∩M = NB ∩M.

For any pair of R-modules N ⊆ M with u ∈M , we have u/1 ∈ (Nm)∗Mm
∩M if and

only if 1⊗ u ∈ Im(B ⊗N → B ⊗M).

The second claim follows because when we compute tight closure for a pair of

modules, we can always assume the ambient module is free by applying Proposition

2.2.3(f). If, furthermore, M is free and all N
[q]
M are contracted from Mm (e.g., M/N is

m-coprimary), then [HH1, Proposition 8.9] implies that (Nm)∗Mm
∩M = N∗

M , which

implies that N∗
M = NB ∩M in these cases.



CHAPTER 5

A Study of Solid Algebras

Due to their strong connections to tight closure theory, solid algebras continue to

be an important subject of study. In this chapter we will concentrate on Hochster’s

result, Theorem 2.5.5, which says that over a complete local domain, any algebra that

maps to a big Cohen-Macaulay algebra is solid. The converse question of whether

all solid algebras, in characteristic p, map to big Cohen-Macaulay algebras remains

open, in general.

We will further investigate solid algebras in the hope that this study will eventually

produce an answer to whether solid algebras over a complete local domain in positive

characteristic are exactly the algebras that map to big Cohen-Macaulay algebras.

Our first attempt is a direct approach that tries to exploit the local cohomology

criterion for solidity over a complete local domain (see Proposition 2.5.2(d)) to show

that every algebra modification of a solid algebra is a solid algebra, as this result will

answer the question.

The second approach is a characterization of solid algebras in terms of phantom

extensions (see Section 5.2.1 or [HH5, Section 5]) and direct limits of phantom ex-

tensions. Despite this new characterization of solid algebras, the question, “Do solid

algebras map to big Cohen-Macaulay algebras?” remains open in characteristic p.

72
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5.1 Solid Algebras and Big Cohen-Macaulay Algebras

In this section, we investigate the following question:

Question 5.1.1. In positive characteristic, does a solid algebra over a complete local

domain map to a big Cohen-Macaulay algebra?

The converse of this statement is true in any characteristic, as shown in Theorem

2.5.5. Hochster also shows that in equal characteristic 0, the answer is “no” in

general (see [Ho3, Example 10.7]), but the answer is “yes” in any characteristic when

dimR ≤ 2 (see [Ho3, Theorem 12.5]). The general answer in mixed characteristic

and in positive characteristic is unknown. We will study the question in positive

characteristic.

5.1.1 Reductions of the Problem

Let R be a complete local domain of positive characteristic p and dimension n,

and let S be a solid R-algebra. If x1, . . . , xh+1 is part of a system of parameters in

R, and s1, . . . , sh+1 are elements in S such that x1s1 + · · ·+xh+1sh+1 = 0, then recall

from Chapter 2 that

T = S[U1, . . . , Uh]/(sh+1 −
h∑
i=1

xiUi)

is an algebra modification of S over R. Using this notion, we also record the following

question originally posed by Hochster in [Ho3]:

Question 5.1.2. In positive characteristic, is every algebra modification of a solid

algebra over a complete local domain still solid?

Hochster also points out that our two questions have equivalent answers.

Lemma 5.1.3 (Hochster, [Ho3]). For any fixed complete local domain, Questions

5.1.1 and 5.1.2 are equivalent.
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Proof. Since the proof is brief, we will reproduce it here. Suppose Question 5.1.1 has

a positive answer. If S is solid over a complete local domain (R,m), then S maps to

a big Cohen-Macaulay algebra B. If T is an algebra modification of S over R, then

T also maps to B. By Theorem 2.5.5, T is solid.

If we instead suppose that Question 5.1.2 can be answered positively, then every

finite sequence of algebra modifications of a solid algebra S terminates in a solid alge-

bra T . Therefore, 1 �∈ mT (using the local cohomology criterion), and so Proposition

2.3.8 implies that S can be mapped to a big Cohen-Macaulay algebra.

While investigating Question 5.1.2, we will show that we can make several reduc-

tions to simplify the problem. We will show that one can assume R is a formal power

series ring over a field, that S is a finitely generated R-algebra domain, and that the

algebra modification is constructed with respect to a full system of parameters

Lemma 5.1.4. In order to prove that Question 5.1.2 has an affirmative answer, it

suffices to assume R = K[[x1, . . . , xn]].

Proof. Since R is a complete local domain containing a field, R is a module-finite

extension ring of A = K[[x1, . . . , xn]], where we have extended the partial system of

parameters x1, . . . , xk+1 (used to construct the algebra modification T of the solid

algebra S) to a full system of parameters x1, . . . , xn. By Proposition 2.5.2(c), S is

solid over A, and T is solid over R if and only if it is solid over A. Furthermore, T

is also an algebra modification of S over A.

If (R,m) is a complete local domain of dimension n with x1, . . . , xn any system

of parameters, then, by the local cohomology criterion, S is solid over R if and

only if Hn
m(S) �= 0. In positive characteristic, we can then deduce the following

computational result.
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Lemma 5.1.5. Let (R,m) be a positive characteristic complete local domain of di-

mension n ≥ 1 with system of parameters x1, . . . , xn. An R-algebra S is solid over

R if and only if (x1 · · ·xn)k �∈ (xk+1
1 , . . . , xk+1

n )S for all k ≥ 0.

Proof. The necessity comes from [Ho3, Observation 2.6]. For the converse, suppose

(x1 · · ·xn)k is in (xk+1
1 , . . . , xk+1

n )S, for some k. Then for all q = pe,

(x1 · · ·xn)kq ∈ (xkq+q1 , . . . , xkq+qn )S.

Let [z + (xN1 , . . . , x
N
n )S] ∈ Hd

(x1,...,xn)(S). Choose q ≥ N . Then

(x1 · · ·xn)kq ∈ (xkq+q1 , . . . , xkq+qn )S ⊆ (xkq+N1 , . . . , xkq+Nn )S.

Thus,

[z + (xN1 , . . . , x
N
n )S] = [z(x1 · · ·xn)kq + (xkq+N1 , . . . , xkq+Nn )S]

= [0 + (xkq+N1 , . . . , xkq+Nn )S].

Lemma 5.1.6. In order to answer Question 5.1.2, it suffices to do the case where

S is finite type over R.

Proof. Suppose that Question 5.1.2 has a positive answer when S is a finitely gener-

ated R-algebra. Now, let S be an arbitrary solid R-algebra with a nontrivial relation

x1s1 + · · ·+ xh+1sh+1 = 0 in S. If

T = S[U1, . . . , Uh]/(sh+1 −
h∑
i=1

xiUi)

is an algebra modification that is not solid, then for some k, we have an inclusion

(x1 · · ·xn)k ∈ (xk+1
1 , . . . , xk+1

n )T . Since elements of T are represented by polynomials

in S[U1, . . . , Uh], the inclusion above yields

(5.1.7) (x1 · · ·xn)k = xk+1
1 F1(U) + · · ·+ xk+1

n Fn(U) +

(
sh+1 −

h∑
i=1

xiUi

)
W (U),
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for polynomials Fj and W in S[U1, . . . , Uh]. Let f
(t1,...,th)
j ∈ S be the coefficient of

U t1
1 · · ·U th

h in Fj, for all j and similarly define w(t1,...,th) ∈ S as a coefficient of W

(with the convention that w(t1,...,th) = 0 if any ti < 0). With these definitions and

(5.1.7), we obtain the following system of equations in S:

(5.1.8)

x1s1 + · · ·+ xh+1sh+1 = 0

(x1 · · ·xn)k = xk+1
1 f

(0,...,0)
1 + · · ·+ xnf

(0,...,0)
n + sh+1w

(0,...,0),

x1w
(t1−1,t2,...,th) + · · ·+ xhw

(t1,...,th−1,th−1)

= xk+1
1 f

(t1,...,th)
1 + · · ·+ xnf

(t1,...,th)
n + sh+1w

(t1,...,th)

∀(t1, . . . , th) �= (0, . . . , 0).

Since the Fj and W have only finitely many nonzero coefficients, (5.1.8) is a finite

system of equations that holds in S.

Let Θ be the set of these equations, and let Σ be the finite set of all sj, f
(t1,...,th)
j ,

and w(t1,...,th). Let

S ′ = R[Σ]/(Θ),

and let

T ′ = S ′[U1, . . . , Uh]/(sh+1 −
h∑
i=1

xiUi).

Then S ′ maps to S so that S ′ is also solid over R. By our assumption, T ′ is solid

since it is an algebra modification of S ′ over R. Since the equations given by (5.1.8)

hold in S ′, we see that (x1 · · ·xn)k ∈ (xk+1
1 , . . . , xk+1

n )T ′, a contradiction.

We can also assume that S is a domain by making use of minimal solid algebras.

In [Ho3, Section 6], Hochster defines a solid R-algebra as minimal if no proper

homomorphic image of S is solid. It is clear that if S is a Noetherian solid algebra,

then S maps onto a minimal solid algebra. It is also shown in [Ho3, Section 6] that

Noetherian minimal solid algebras are domains.



77

Lemma 5.1.9. To answer Question 5.1.2, it suffices to do the case where S is a

domain.

Proof. By the last lemma, we may assume that S is of finite type over R, and so also

is Noetherian. Since S is Noetherian, it maps onto a minimal solid R-algebra S/p,

where p is a prime ideal of S. If T is an algebra modification of S over R, then

T ′ = S/p[U1, . . . , Uh]/(sh+1 −
h∑
i=1

xiUi)

is an algebra modification of S/p over R. Since T maps to T ′, T is solid if T ′ is

solid.

Lemma 5.1.10. To answer Question 5.1.2, it suffices to do the case where the

modification T is a modification of a relation on a full system of parameters

Proof. By extending the parameters x1, . . . , xh+1 to a full system x1, . . . , xn and

extending s1, . . . , sh+1 to s1, . . . , sn by setting si = 0 for all h + 2 ≤ i ≤ n, we can

reduce the problem as claimed.

We have now reduced our problem to the following question: (Notice that R ↪→ S

if S is solid because the R-module composition map R → S
α→ R, where α(1) �= 0,

is just multiplication by α(1) in the domain R.)

Question 5.1.11. Let R = K[[x1, . . . , xn]], where K is a characteristic p > 0 field,

and let S be an R-algebra domain such that R ↪→ S and x1s1 + · · ·+ xnsn = 0 in S.

If

T = S[U1, . . . , Un−1]/(sn −
n−1∑
i=1

xiUi)

is an algebra modification of S over R, and if S is solid over R, then is T solid too?

For a moment, we will let R be any complete local domain, with a system of

parameters x1, . . . , xn, in order to study properties of algebra modifications that
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are not solid over R. If T is any algebra modification of S over R for the relation

x1s1 + · · ·+xnsn = 0 in S, and T is not solid, then there is a k ∈ N and polynomials

F1, . . . , Fn,W in S[U1, . . . , Un−1] such that

(5.1.12) (x1 · · ·xn)k = xk+1
1 F1(U) + · · ·+ xk+1

n Fn(U) +

(
sn −

n−1∑
i=1

xiUi

)
W (U),

as in (5.1.7). Given (5.1.12), there exists a degree bound d ∈ N for the Fj and W

such that deg Fj, degW ≤ d, for all j.

Definition 5.1.13. Let R be a complete local domain, S be an R-algebra, and T

be an algebra modification of S over R. Given (5.1.12) and a degree bound d on the

Fj and W , we call T a hollow modification of type (k, d).

If T is a hollow modification of S with coefficients of the Fj and W denoted by

f
(t1,...,tn−1)
j and w(t1,...,tn−1) (resp.) in S, as in (5.1.8), then the following system of

equations holds in S.

(5.1.14)

x1s1 + · · ·+ xnsn = 0

(x1 · · ·xn)k = xk+1
1 f

(0,...,0)
1 + · · ·+ xnf

(0,...,0)
n + snw

(0,...,0),

x1w
(t1−1,t2,...,tn−1) + · · ·+ xn−1w

(t1,...,tn−2,tn−1−1)

= xk+1
1 f

(t1,...,tn−1)
1 + · · ·+ xnf

(t1,...,tn−1)
n + snw

(t1,...,tn−1)

∀(t1, . . . , tn−1) �= (0, . . . , 0).

If degFj, degW ≤ d, S is a domain, and R ↪→ S, then we can also see that

xjw
(0,...,0,d,0,...,0) = 0,

where d is in the jth position, and so all w(0,...,0,d,0,...,0) = 0 under the above conditions.

We will now define a family of finitely generated Z/pZ-algebras that will help

classify when an R-algebra has a hollow modification.
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Definition 5.1.15. For n ≥ 1, let

Σ(n,d) := {s1, . . . , sn, f
(t1,...,tn−1)
j , w(t1,...,tn−1) | 1 ≤ j ≤ n, t1 + · · ·+ tn−1 ≤ d}

be a set of indeterminates over Z/pZ, and let

Θ(n,k,d) := {the equations of (5.1.14)} ∪ {w(0,...,0,d,0,...,0) | 1 ≤ j ≤ n− 1}.

We now define

A(n,k,d)
p := Z/pZ[x1, . . . , xn,Σ

(n,d)]/(Θ(n,k,d)),

and

Â(n,k,d)
p := Z/pZ[[x1, . . . , xn]][Σ

(n,d)]/(Θ(n,k,d))

We can now restate the problem in Question 5.1.1 using the algebras A
(n,k,d)
p .

Proposition 5.1.16. For a complete local domain R of dimension n ≥ 1 and positive

characteristic p, the following are equivalent:

(i) Every solid R-algebra S maps to some big Cohen-Macaulay R-algebra.

(ii) No solid R-algebra has a hollow modification.

(iii) Hn
(x1,...,xn)(Â

(n,k,d)
p ) = 0, for all k, d.

(iv) Hn
(x1,...,xn)(A

(n,k,d)
p ) = 0, for all k, d.

(v) For all k, d, there exists N = N(k, d) such that

(x1 · · ·xn)N ∈ (xN+1
1 , . . . , xN+1

n )A(n,k,d)
p .

Proof. The equivalence of (i) and (ii) is given by Lemma 5.1.3. Since every element of

Hn
(x1,...,xn)(A

(n,k,d)
p ) andHn

(x1,...,xn)(Â
(n,k,d)
p ) is killed by a power of the ideal (x1, . . . , xn),

we have Hn
(x1,...,xn)(A

(n,k,d)
p ) ∼= Hn

(x1,...,xn)(Â
(n,k,d)
p ). Therefore, (iii) is equivalent to (iv).

The equivalence of (iv) and (v) can be seen from Lemma 5.1.5.

To show (ii) and (iii) are equivalent, we will use Lemma 5.1.4 to assume that

R = K[[x1, . . . , xn]]. By construction, Â
(n,k,d)
p is an R-algebra that has a hollow
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modification of type (k, d). Thus, if (ii) holds, then Â
(n,k,d)
p cannot be solid over R,

and (iii) follows. If we suppose that (iii) holds, but (ii) does not, then by Lemmas

5.1.9 and 5.1.10, there exists a solid domain S and a hollow modification T of type

(k, d) constructed with respect to x1, . . . , xn. Therefore the system of equations

(5.1.14) holds in S, and so S is an Â
(n,k,d)
p -algebra. Since we assumed that S is solid,

Â
(n,k,d)
p is also solid, but this fact contradicts (iii). Hence, we have finally shown that

(iii) implies (ii).

5.1.2 The Family of Algebras A
(n,k,d)
p , n ≤ 2

First note that if dimR = 0, then we can assume that R is a field by Lemma

5.1.4. Since all algebras over a field are solid, Question 5.1.1 obviously has a positive

answer in dimension 0. When n = 1,

A(1,k,d)
p = Z/pZ[x1, s1, f1]/(x

k
1 − xk+1

1 f1)

as d is forced to be 0. Clearly, H1
(x1)(A

(1,k,d)
p ) = 0.

For n = 2, we also show that Question 5.1.1 can be answered affirmatively. (This

fact is also demonstrated in [Ho3, Section 12] by explicitly constructing a big Cohen-

Macaulay algebra to which a given solid algebra maps.) In this case,

(5.1.17) A(2,k,d)
p =

Z/pZ[x1, x2, s1, s2, f
(t)
1 , f

(t)
2 , w(t) | 0 ≤ t ≤ d]

x1s1 + x2s2

(x1x2)
k − xk+1

1 f
(0)
1 − xk+1

2 f
(0)
2 − s2w

(0)

x1w
(t−1) − xk+1

1 f
(t)
1 − xk+1

2 f
(t)
2 − s2w

(t) ∀t ≥ 1

w(d)


We will now show that (x1x2)

k+d ∈ (xk+d+1
1 , xk+d+1

2 ) and, hence, H2
(x1,x2)

(A
(2,k,d)
p )

is 0. Throughout the rest of this section, we fix the notation, for all N ≥ 1,

IN := (xN1 , . . . , x
N
n )A(n,k,d)

p .
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Lemma 5.1.18. (a) For all N ≥ 0 and all 0 ≤ t ≤ N , st2x
N−t
1 xN2 Ik+1 ⊆ Ik+N+1.

(b) For all N ≥ 1 and 1 ≤ t ≤ N ,

st−1
2 xN−t+1

1 xN2 (s2w
(t−1))− st2xN−t

1 xN2 (s2w
(t)) ∈ Ik+N+1.

(c) For all N ≥ 1, (x1x2)
N(s2w

(0))− (x2s2)
N(s2w

(N)) ∈ Ik+N+1.

Proof. (1) Clearly (st2x
N−t
1 xN2 )xk+1

2 ∈ Ik+N+1, and, using s1x1 + s2x2 = 0,

(st2x
N−t
1 xN2 )xk+1

1 = xk+N+1−t
1 xN−t

2 (s2x2)
t = ±(xk+N+1

1 xN−t
2 st1) ∈ Ik+N+1.

(2) As st−1
2 xN−t+1

1 xN2 (s2w
(t−1))− st2xN−t

1 xN2 (s2w
(t)) = st2x

N−t
1 xN2 (x1w

(t−1) − s2w
(t)),

and x1w
(t−1) − s2w

(t) ∈ Ik+1 by (5.1.17), (a) gives the result.

(3) This part follows from repeated applications of (b).

Proposition 5.1.19. For any p, k, d, (x1x2)
k+d ∈ Ik+d+1, and as a consequence,

H2
(x1,x2)

(A
(2,k,d)
p ) = 0.

Proof. Since A
(n,k,d+1)
p → A

(n,k,d)
p , for all p, n, k, d, we may assume that d ≥ 1. By

construction of A
(2,k,d)
p in (5.1.17) and Lemma 5.1.18,

(x1x2)
k+d ≡ (x1x2)

d(s2w
(0)) ≡ (x2s2)

d(s2w
(d)) = 0,

where congruences are modulo Ik+d+1.

We have now proven the following result by way of the last proposition, Proposi-

tion 5.1.16, and [Ho3, Corollary 10.6].

Proposition 5.1.20. If R is a complete local domain of positive characteristic and

dimR ≤ 2, then an R-algebra S is solid over R if and only if S maps to a big

Cohen-Macaulay R-algebra.
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5.1.3 The Families of Algebras A
(n,k,0)
p , A

(n,k,1)
p , and A

(n,0,d)
p

The new cases where we can show that Hn
(x1,...,xn)(A

(n,k,d)
p ) = 0 are when d ≤ 1 or

when k = 0. We will present the argument for each case, including two proofs for

the d ≤ 1 case.

Proposition 5.1.21. Hn
(x1,...,xn)(A

(n,0,d)
p ) = 0, for all p, n, d.

Proof. Let congruences be taken modulo I2 = (x2
1, . . . , x

2
n)A

(n,0,d)
p . Using the defining

relations of A
(n,0,d)
p , as given in (5.1.14),

(x1 · · ·xn) ≡ (x1 · · ·xn)(snw(0)) = (x1 · · ·xn−1)(xnsn)w
(0)

= −(x1 · · ·xn−1)(x1s1 + · · ·+ xn−1sn−1)w
(0)

≡ 0.

We now handle the case of d ≤ 1. We only need to study A
(n,k,1)
p as this case will

also take care of the d = 0 case since there is a map A
(n,k,1)
p → A

(n,k,0)
p . Now, let

ε	 := (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the �th position. Then

A(n,k,1)
p =

Z/pZ[xj , sj, f
(t1,...,tn−1)
j , w(0,...,0) | 1 ≤ j ≤ n, t1 + · · ·+ tn−1 ≤ 1]

x1s1 + · · ·+ xnsn

(x1 · · ·xn)k − xk+1
1 f

(0,...,0)
1 − · · · − xk+1

n f
(0,...,0)
n − snw(0,...,0)

x	w
(0,...,0) − xk+1

1 f ε�1 − · · · − xk+1
n f ε�n ∀1 ≤ � ≤ n− 1



.

Proposition 5.1.22. For all p, n, k, Hn
(x1,...,xn)(A

(n,k,1)
p ) = 0. (The first proof will

show explicitly that (x1 · · ·xn)kp+p−1 ∈ Ikp+p = (xkp+p1 , . . . , xkp+pn )A
(n,k,1)
p .)

Proof 1. The defining relations of A
(n,k,1)
p imply that

(x1 · · ·xn)kp − (snw
(0,...,0))p ∈ Ikp+p
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and that for all 1 ≤ � ≤ n− 1, each (x	w
(0,...,0))p is in Ikp+p. We then have

(x1 · · ·xn)p−1(x1 · · ·xn)kp ≡ (x1 · · ·xn)p−1(snw
(0,...,0))p

= ±sp−1
n xp−2

n [s1(x2 · · ·xn)p−1(x1w
(0,...,0))p

+ · · ·+ sn−1(x1 · · ·xn−2)
p−1(xn−1w

(0,...,0))p]

≡ 0

modulo Ikp+p, using x1s1 + · · ·+ xnsn = 0.

Proof 2. The defining relations of A = A
(n,k,1)
p give us the following equation

(x1 · · ·xn)k = xk+1
1 (f

(0,...,0)
1 + f ε11 U1 + · · ·+ f

εn−1

1 Un−1)

+ · · ·+ xk+1
n (f

(0,...,0)
n + f ε1n U1 + · · ·+ f εn−1

n Un−1)

+w(0,...,0)(sn − x1U1 − · · · − xn−1Un−1)

in A[U1, . . . , Un−1]. By taking pth powers, we also obtain

(x1 · · ·xn)kp = xkp+p1 ((f
(0,...,0)
1 )p + (f ε11 )pUp

1 + · · ·+ (f
εn−1

1 )pUp
n−1)

+ · · ·+ xkp+pn ((f
(0,...,0)
n )p + (f ε1n )pUp

1 + · · ·+ (f εn−1
n )pUp

n−1)

+(w(0,...,0))p(spn − xp1Up
1 − · · · − xpn−1U

p
n−1)

in A[Up
1 , . . . , U

p
n−1]. We can then map A[Up

1 , . . . , U
p
n−1]→ Ax1···xn by sending

Up
j �→

−sjsp−1
n

xp−1
j xn

.

Since

spn − xp1Up
1 − · · · − xpn−1U

p
n−1 �→ spn + xp1

(
s1s

p−1
n

xp−1
1 xn

)
+ · · ·+ xpn−1

(
sn−1s

p−1
n

xp−1
n−1xn

)
= spn + sp−1

n

xn
(x1s1 + · · ·+ xn−1sn−1)

= spn + sp−1
n

xn
(−xnsn) = 0,

and since (x1 · · ·xn)p−1 clears the denominator of the image of each Up
j , we obtain

(x1 · · ·xn)kp+p−1 ∈ Ikp+p + ker(A→ Ax1···xn).

To finish, note any element of ker(A→ Ax1···xn) is killed by (x1 · · ·xn)N , for some N .

Hence, (x1 · · ·xn)N+kp+p−1 ∈ IN+kp+p.
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To summarize the state of our knowledge about Questions 5.1.1 and 5.1.2:

Proposition 5.1.23. If R is a complete local domain of dimension n and charac-

teristic p > 0, S is solid, and T is a hollow modification of type (k, d), then n ≥ 3,

k ≥ 1, and d ≥ 2.

5.1.4 The Family of Algebras A
(3,k,2)
p

We briefly examine one more case, where dimR = 3 and d = 2. After changing

notation, we have

A(3,k,2)
p =

Z/pZ[x, y, z, a, b, c, fj, gj, hj , w0, w1, w2 | 0 ≤ j ≤ 5]

ax+ by + cz

(xyz)k − xk+1f0 − yk+1g0 − zk+1h0 − cw0

xw0 − xk+1f1 − yk+1g1 − zk+1h1 − cw1

yw0 − xk+1f2 − yk+1g2 − zk+1h2 − cw2

xw1 − xk+1f3 − yk+1g3 − zk+1h3

yw2 − xk+1f4 − yk+1g4 − zk+1h4

xw2 + yw1 − xk+1f5 − yk+1g5 − zk+1h5



.

At this time, we do not have enough information about A
(3,k,2)
p to determine whether

or not H3
(x,y,z)(A

(3,k,2)
p ) = 0. Attempts have been made with Macaulay 2 [M2] to test

whether or not certain powers (xyz)N are contained in (xN , yN , zN )A
(3,k,2)
p . Even for

small values of k and p, the computations have been too complex for Macaulay 2

to perform successfully. For example, the case k = 1 and p = 2 was entered into

Macaulay 2. After twelve days, the program terminated without an answer or even

an error message.

For the time being, we will have to leave the question of whether H3
(x,y,z)(A

(3,k,2)
p )

is zero or not as an open problem.
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5.2 Solid Algebras and Phantom Extensions

In [HH5], Hochster and Huneke defined the notion of a phantom extension for

a map N → M of finitely generated R-modules, where R is a Noetherian ring of

characteristic p > 0. In this section, we will extend this definition to all R-modules

and introduce the concept of a phantom algebra over R. For a Noetherian domain R

we will show that the solid R-algebras are exactly the phantom algebras. We will also

introduce lim-phantom extensions, where α : N → M is lim-phantom if N → M ′ is

phantom for all finitely generated submodules M ′ ⊆ M such that α(N) ⊆ M ′. The

primary result, Theorem 5.2.13, will be that if R is a complete local domain, then S

is solid if and only if S is phantom if and only if S is lim-phantom. We hope that

this perspective on solid R-algebras will help to show that an algebra modification of

a solid algebra is still a solid algebra, which holds if and only if the solid algebras are

the same as the algebras that map to a big Cohen-Macaulay algebra. (See Lemma

5.1.3.)

Let R be a Noetherian ring of characteristic p > 0 throughout this section.

5.2.1 Phantom Extensions

We start with a generalized definition of phantom extensions for maps of R-

modules that is essentially the definition given by Hochster and Huneke in [HH5]

with the requirement that the modules be finitely generated removed.

Definition 5.2.1. A map α : N →M of arbitraryR-modules is a phantom extension

if there exists c ∈ R◦ such that for all e� 0, there exists a map γe : Fe(M)→ Fe(N)

such that γe ◦ Fe(α) = c(idFe(N)). We will also say that M is a phantom extension

of N . If S is an R-algebra and the structure map R → S is a phantom extension,

we will call S a phantom R-algebra.
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Remark 5.2.2. In [HH5, Remark 5.4], the following alternate description of a phantom

extension is given in the case that R is reduced. When R is reduced, the algebra

map F e : R→ R may be identified with the inclusion map R→ R1/q, where q = pe.

Thus, α : N → M is a phantom extension if there exists c ∈ R◦ such that for

all e � 0, there exists an R1/q-linear map γe : R1/q ⊗ M → R1/q ⊗ N such that

γe ◦ (R1/q ⊗ α) = c1/q(idR1/q⊗N).

We will often make use of this remark in the following results. We also note

that when R is reduced and M is a phantom extension of R, there exists a map

γe : R1/q ⊗M → R1/q, as in the remark above, for all e ≥ 0.

Lemma 5.2.3. Let R be reduced, and let M be an arbitrary R-module. If α : R→M

is a phantom extension, then there exists c ∈ R◦ such that for all e ≥ 0, there is a

map γe : R1/q ⊗M → R1/q such that γe ◦ (R1/q ⊗ α) = c1/q(idR1/q ).

Proof. Since R → M is phantom, there exists d ∈ R◦ such that for all e ≥ e0,

there is a map βe : R1/q ⊗ M → R1/q such that βe ◦ αe(r1/q) = d1/qr1/q, where

αe(r
1/q) = r1/q(1 ⊗ α(1)). Let S = (R◦)−1R, a finite product of fields since R is

reduced. Then S1/q = ((R◦)1/q)−1R1/q is also a finite product of fields. Thus, the

existence of βe shows that the map S1/q → S1/q ⊗M , induced by αe, splits for all

e ≥ e0. Since S → S1/q is faithfully flat, the map S → S ⊗M , induced by α, also

splits.

This implies that there exists c′ ∈ R◦ and an R-module map β : R⊗M → R such

that β ◦ α = c′(idR). Let q0 = pe0, and let c = (c′)q0d ∈ R◦. For all e ≥ e0, define

γe : R1/q ⊗M → R1/q by γe(u) = (c′)q0/qβe(u). Then

γe ◦ αe(1) = (c′)q0/qd1/q = c1/q.
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For e < e0, let γe : R1/q ⊗M → R1/q be defined by

γe(u) = (c′)(q0/q)−1d1/q(R1/q ⊗ β)(u).

Then γe ◦ αe(1) = (c′)(q0/q)−1d1/q(β(α(1))) = (c′)(q0/q)−1d1/qc′ = c1/q.

Therefore, when R is reduced, if α : R → M is a phantom extension, then the

e = 0 condition in the lemma shows that there exists c �= 0 in R and an R-module

map γ : M → R such that γ ◦ α(1) = c. We therefore have the following corollary.

Corollary 5.2.4. Let R be a domain, and let M be any R-module. If M is a phantom

extension of R, then M is solid.

It will also be helpful to show that when R is reduced and M is a phantom

extension of R, the map R→M is always injective.

Lemma 5.2.5. Let R be reduced, and let M be any R-module. If α : R → M is a

phantom extension, then α is injective.

Proof. Suppose α(u) = 0. Then for all e ≥ 0, Fe(α)(u) = 0 in Fe(M) too. For

e� 0, there exists γe : Fe(M) → Fe(R) such that γe ◦ Fe(α) = c(idFe(R)) since α is

phantom. Therefore, 0 = γe ◦ Fe(α)(u) = cuq, for e� 0, and so u ∈ 0∗R = 0 since R

is reduced (see Proposition 2.2.3(k)).

We will now show that when R is a domain the solid R-algebras are exactly

the phantom R-algebras by taking advantage of the multiplication in S and the qth

powers of elements of S.

Proposition 5.2.6. Let R be a domain. An R-algebra S is solid if and only if it is

a phantom R-algebra.
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Proof. By the previous corollary, we need only show that a solid algebra S is a

phantom extension of R. Since S is solid, there exists an R-linear map γ : S → R

such that γ(1) = c �= 0 in R by Proposition 2.5.2(b). Since γ is R-linear, for all q ≥ 1,

we can define an R-bilinear map βq : R1/q × S → R1/q by βq(r
1/q, s) = r1/qγ(sq)1/q,

where r ∈ R. Therefore, βq induces the R1/q-linear map γq : R1/q ⊗R S → R1/q that

sends r1/q ⊗ s to r1/qγ(sq)1/q. Moreover,

γq(r
1/q ⊗ 1) = r1/qγ(1)1/q = c1/qr1/q.

Therefore, S is a phantom extension of R.

We now show that a solid R-module need not be a phantom extension of R, even

if the module is finitely-generated and torsion-free.

Example 5.2.7. Let R be a regular local domain of dimension at least 2. Let I be

any ideal minimally generated by at least 2 elements, and let α : R ↪→ I be a fixed

injection such that α(1) �= 0. We claim that any such extension α is solid, but not

a phantom extension of R. Indeed, the inclusion map I ⊆ R shows that I is solid.

Since R is a domain, I is also a rank 1 torsion-free submodule of R, and so R is not

a direct summand of I via α. (Since I has torsion-free rank 1, I/α(R) is a torsion-

module. So, if α is split, then I = α(R) ⊕ W , where W is a torsion submodule

of I, which is not possible unless W = 0, but then I ∼= R. This contradicts the

assumption that I is generated by at least two elements.) By [HH5, Theorem 5.13],

a phantom extension R ↪→ M over a weakly F -regular ring is actually a split map.

Since a regular ring is weakly F -regular (see Proposition 2.2.3(i)) and since there is

no split map R ↪→ I, we see that I cannot be a phantom extension of R.
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5.2.2 Lim-Phantom Extensions

We now introduce the concept of a lim-phantom extension of R-modules and

demonstrate some connections between this property, phantom extensions, and solid

algebras.

Definition 5.2.8. A map α : N → M of a finitely generated R-module N to an

arbitrary R-module M is a lim-phantom extension if the map N → M ′ is a phantom

extension for all finitely generated submodules M ′ ⊆ M such that α(N) ⊆ M ′. If

S is an R-algebra, and R → S is lim-phantom, then we will call S a lim-phantom

R-algebra.

The next lemma is a generalization of [HH5, Proposition 5.7e] and will be used

to connect the concepts of phantom and lim-phantom extensions.

Lemma 5.2.9. Let N , M , M ′ be any R-modules with maps N
β→ M ′ θ→ M . Let

α = θ ◦ β. If α is a phantom extension, then β is also phantom.

Proof. Since α is phantom, there is a c ∈ R◦ such that for all e � 0, there exists

an R-linear map γe : Fe(M) → Fe(N) such that γe ◦ Fe(α) = c(idFe(N)). Let

γ′e : Fe(M ′)→ Fe(N) be the map γ′e = γe ◦ Fe(θ). Then

γ′e ◦ Fe(β) = γe ◦ Fe(θ) ◦ Fe(β) = γe ◦ Fe(θ ◦ β) = γe ◦ Fe(α) = c(idFe(N)).

The following is an immediate consequence of the previous lemma.

Lemma 5.2.10. If N →M is a phantom extension, where N is a finitely generated

R-module and M is not necessarily finitely generated, then it is also a lim-phantom

extension.
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It is also clear that when M is a finitely generated R-module, a map N → M is

a phantom extension if and only if it is a lim-phantom extension.

We are about to show that solid and lim-phantom algebras are equivalent notions

when R is a complete local domain. First, however, we need the following result.

Proposition 5.2.11. Let R be a domain that is a module-finite extension ring of

A, and let M be any R-module. If α : R→M is a phantom extension over R, then

A→M is a phantom extension over A.

Proof. Let α(1) = u ∈M , and let αq = R1/q ⊗R α. There exists c �= 0 and

γq : R1/q ⊗R M → R1/q,

an R1/q-linear map, such that γq(1⊗ u) = c1/q for all q ≥ 1. Let

ψq : A1/q ⊗AM → R1/q ⊗RM

be the natural A1/q-linear map induced by the inclusion A1/q ↪→ R1/q. Notice that

the map γq is also an A1/q-linear map.

Since R is a domain and A ⊆ R is a module-finite extension of A, R is a finitely

generated torsion-free A-module. So, there exists an h and a map f : R ↪→ Ah.

Since f(c) �= 0, there exists a projection map g : Ah � A such that the composition

η = g ◦ f : R → A yields an A-linear map with η(c) = d �= 0 in A. We can then

define ηq : R1/q → A1/q by ηq(r
1/q) = η(r)1/q, where r ∈ R, for all q ≥ 1.

Now, let θq : A1/q⊗AM → A1/q be given by θq = ηq◦γq◦ψq. Then θq is A1/q-linear,

and

θq(1⊗ u) = ηq ◦ γq(1⊗ u) = ηq(c
1/q) = η(c)1/q = d1/q.

Hence, A→M is a phantom extension over A.
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We now prove the last necessary lemma before our main result. First, recall that

an injection of R-modules N → M is pure if W ⊗ N → W ⊗M is an injection, for

all R-modules W . When M/N is finitely presented, the map is pure if and only if

the map splits, see [HR, Corollary 5.2].

Lemma 5.2.12. Let (R,m) be a complete local domain of dimension d, and let M

be any R-module. If α : R→M is a lim-phantom extension, then M is solid.

Proof. Let {Mλ}λ∈Λ be the set of all finitely generated submodules of M such that

α(R) ⊆Mλ. Then R→Mλ is phantom for all λ. Since R is a complete local domain,

R is a module-finite local extension of a regular local ring (A, n). By Proposition

5.2.11, since each R → Mλ is a phantom extension over R, A → Mλ is a phantom

extension over A. Since A→Mλ is phantom, by Lemma 5.2.5, A ↪→Mλ for all λ. As

A is regular, and so weakly F -regular, [HH5, Theorem 5.13] shows that all the maps

A ↪→ Mλ are split and, thus, are pure because Mλ is finitely generated over A. Since

M = lim−→λ
Mλ (over R or A) and all maps A ↪→ Mλ are pure, [HH7, Lemma 2.1i]

tells us that A ↪→ M is pure over A. Hence, Hd
n(A) ↪→ Hd

n(A)⊗AM ∼= Hd
n(M), and

so Hd
n(M) �= 0. Since the radical of nR in R is m, Hd

m(M) ∼= Hd
n(M) as R-modules.

By the local cohomology criterion, M is solid over R.

We can finally state our main result of the section.

Theorem 5.2.13. Let R be a complete local domain, and let S be an R-algebra.

Then S is solid if and only if S is phantom if and only if S is lim-phantom.

Proof. We know that solid implies phantom by Proposition 5.2.6. By Lemma 5.2.10

we see that phantom implies lim-phantom. The final implication follows directly

from the previous lemma.



CHAPTER 6

Seed Algebras

In this chapter we will study the class of algebras over a local ring R that map to

a big Cohen-Macaulay algebra over R. We call these algebras seeds over R. Seeds

are closely related to the class of solid algebras by Hochster’s Theorem 2.5.5. and the

fact that solid algebras are seeds when the dimension of the base ring is at most 2 (see

[Ho3, Theorem 12.5]). Although seeds and solid algebras are not generally the same

in equal characteristic 0 (see [Ho3, Example 10.7]), it is still possible that seeds and

solid algebras are the same in positive characteristic, and even in mixed characteristic,

for complete local domains. This study of seeds leads to new understanding of big

Cohen-Macaulay algebras and we hope that it will eventually lead to new insight

into solid algebras.

In the following section, we will show how seeds in positive characteristic can be

mapped to big Cohen-Macaulay algebras with some special properties. In the second

section, we will show that if R is a module-finite extension of a Cohen-Macaulay ring

A, and S is an R-algebra, then a colon-killer (see Definition 6.2.1) in S, with respect

to parameters from A, has a power that is a colon-killer with respect to parameters

from R. As a result, if S is a big Cohen-Macaulay A-algebra, then it is also a big

Cohen-Macaulay R-algebra. We will also define a special class of colon-killers, called

92
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durable colon-killers, whose existence can be used to classify when an algebra maps

to a big Cohen-Macaulay algebra in positive characteristic.

In the third section we will define minimal seeds, which are seeds that have no

proper homomorphic image that is a seed (cf. minimal solid algebras, [Ho3, Section

6]). We demonstrate that, without any finiteness conditions, every seed maps to a

minimal seed. We will first show that in positive characteristic, minimal seeds are

reduced and later show that they are, in fact, domains. These results are parallel to

analogous results for minimal solid algebras, as Noetherian solid algebras map onto

minimal solid algebras which are domains.

In the fourth section, we will examine module-finite and integral extensions of

seeds and show that these extensions are also seeds in positive characteristic. This

result may be viewed as a generalization of the fact that every complete local domain

maps to a big Cohen-Macaulay algebra. The proof is complicated. One key element

is the construction of a durable colon-killer in a particular module-finite extension

of a big Cohen-Macaulay algebra.

In the fifth section, we will use the result about integral extensions of seeds in

positive characteristic to show that minimal seeds are in fact domains and that

seeds can be mapped to quasilocal big Cohen-Macaulay algebras domains that are

absolutely integrally closed and m-adically separated.

We finally will use our new insight into seeds to prove some new facts about big

Cohen-Macaulay algebras over complete local domains in positive characteristic. We

will show that the tensor product of seeds is also a seed and that the property of being

a seed is preserved under base change between complete local domains (cf. Proposi-

tion 2.5.2(a),(e)). As a consequence, we can use the classes of big Cohen-Macaulay

algebras over complete local domains to define a closure operation equivalent to tight
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closure in characteristic p > 0.

6.1 Definition and Properties of Seeds

Definition 6.1.1. For any local Noetherian ring R, an R-algebra S is called a seed

over R if S maps to a big Cohen-Macaulay R-algebra.

Using our new terminology, Proposition 2.3.8 implies that S is a seed if and

only if S does not have a bad sequence of algebra modifications. Based on this

characterization of seeds, a direct limit of seeds is still a seed.

Lemma 6.1.2. Let (R,m) be a local Noetherian ring, and let S = lim−→λ
Sλ be a direct

limit of a directed set of R-algebras. Then S is a seed if and only if each Sλ is a seed.

Proof. Since S is an Sλ-algebra for all λ, it is clear that if S is a seed, then so is each

Sλ. Conversely, suppose that S is not a seed. We will find an Sλ that also has a bad

sequence of modifications.

As S is not a seed, it has a bad sequence of algebra modifications

S = S(0) → S(1) → · · ·S(t),

where 1 = r1s
(t)
1 + · · ·+ rkts

(t)
kt

in S(t) (with rj ∈ m),

S(i+1) =
S(i)[U

(i)
1 , . . . , U

(i)
ki

]

s(i) −∑ki

j=1 x
(i)
j U

(i)
j

,

s(i)xki+1 =
∑ki

j=1 x
(i)
j s

(i)
j in S(i), and x

(i)
1 , . . . , x

(i)
ki+1 is part of a system of parameters

in R, for all 0 ≤ i ≤ t− 1.

It is straightforward, but rather tedious, to show that some Sλ has a bad sequence

of modifications induced by the bad sequence originating with S because the sequence

is finite and involves only finitely many relevant elements. This Sλ is not a seed.
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We next show that in positive characteristic, we can use the Frobenius endomor-

phism and its iterates to map any seed to a reduced and perfect big Cohen-Macaulay

algebra.

Since we do not want to limit ourselves to the study of only reduced rings, we will

generalize our definition of R∞ to include non-reduced rings. From now on, we will

let R∞ denote the direct limit of the directed system

R→ F(R)→ F2(R) · · · → Fe(R)→ · · · ,

where Fe is the iterated Peskine-Szpiro functor. Note that R∞ = (Rred)
∞, where

Rred is the quotient of R obtained by killing all nilpotents. If R is already reduced,

then our new definition of R∞ is isomorphic to the original definition.

Lemma 6.1.3. Let R be a local Noetherian ring of positive characteristic p. If B

is a big Cohen-Macaulay R-algebra, then there is a homomorphism B → C such

that C is a reduced big Cohen-Macaulay R-algebra with C = C∞. Moreover, if B is

quasilocal, then C is also quasilocal.

Proof. Let C = B∞. Let c ∈ (x1, . . . , xk)C :C xk+1, for some partial system of

parameters in R. Since C is a direct limit of the Fe(B), there exists an e ∈ N

such that c ∈ (x1, . . . , xk)F
e(B) :Fe(B) xk+1. Since Fe(B) is just B as a ring, we

have c ∈ (xq1, . . . , x
q
k)B :B xqk+1. Since B is a big Cohen-Macaulay R-algebra, c is in

(xq1, . . . , x
q
k)B, so that c ∈ (x1, . . . , xk)F

e(B). Therefore, c ∈ (x1, . . . , xk)C. Thus,

every system of parameters in R is a possibly improper regular sequence on C. If

1 ∈ (x1, . . . , xk)C, then 1 ∈ (x1, . . . , xk)F
e(B), for some e, and so 1 ∈ (xq1, . . . , x

q
k)B,

a contradiction. Hence, every system of parameters in R is a regular sequence on C,

and C is a big Cohen-Macaulay R-algebra.

Suppose that cN = 0 in C. Then there exists an Fe(B) such that c is the image
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of b ∈ Fe(B) and bN = 0 in Fe(B). Choose pe
′ ≥ N , then b maps to bp

e′
= 0 in

Fe+e′(B). Since c is also the image of bp
e′
, c = 0 in C. Thus, C is reduced.

Now, let c ∈ C. For a given pe, we will find d ∈ C such that dp
e

= c. Choose e′

such that c is the image of b ∈ F e′(B). Then c is also the image of bp
e

in Fe′+e(B).

Let d be the image of the copy of b in Fe′+e(B). Then dp
e
= c as desired.

Finally, if B is quasilocal, then C is a direct limit of quasilocal rings via local

maps. Therefore, C is also quasilocal.

Although the above result shows that every seed in positive characteristic can be

mapped to a reduced big Cohen-Macaulay algebra, we will show later (Proposition

6.5.6) that any reduced seed (in any characteristic) can be modified into a reduced

big Cohen-Macaulay algebra.

Lemma 6.1.4. Let (R,m) be a local Noetherian ring. If B is a big Cohen-Macaulay

R-algebra and p is any prime ideal of B containing mB, then Bp is also a big Cohen-

Macaulay R-algebra. Moreover, if B is reduced (resp., R has positive characteristic

and B is reduced and perfect), then Bp is still reduced (resp., reduced and perfect).

Proof. Given xk+1(r/u) ∈ (x1, . . . , xk)Bp, where x1, . . . , xk+1 is part of a system of

parameters for R, we may assume u = 1 in showing that the relation is trivial.

Therefore, there exists a v ∈ B \ p such that xk+1(rv) ∈ (x1, . . . , xk)B. Since B is a

big Cohen-Macaulay algebra, rv ∈ (x1, . . . , xk)B, and thus r/1 ∈ (x1, . . . , xk)Bp as

needed. Furthermore, since mB �= B and p ⊇ mB, we see that mBp �= Bp, and so

Bp is a big Cohen-Macaulay algebra.

The other claims follow from the following easy lemma.

Lemma 6.1.5. If S is any reduced ring and U is a multiplicatively closed set in S,

then U−1S is also reduced. If in addition, S has positive characteristic and is perfect,
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then U−1S is also perfect.

Proof. The first claim is well known.

Now suppose that S has positive characteristic and is perfect. Given s/u in U−1S,

we need to find a qth root of s/u. Since S is perfect, we have s = aq and u = bq,

where a and b are in S. Then abq−1/u is an element of U−1S, and is a qth root of

s/u: (
abq−1

u

)q
=
aq(bq)q−1

uq
=
suq−1

uq
=
s

u
.

Another operation that we will use is the separated completion of a big Cohen-

Macaulay R-algebra with respect to the maximal ideal of R. The result of Bartijn

and Strooker, [Bar-Str, Theorem 1.7], shows that the separated completion of a big

Cohen-Macaulay algebra is still a big Cohen-Macaulay algebra. (In fact, it shows

that if a single system of parameters is a regular sequence on B, then every system

of parameters is a regular sequence on the separated completion of B.) What will be

especially useful is the fact that this completion operation will give us an m-adically

separated big Cohen-Macaulay algebra while preserving the other properties we have

worked with earlier. We will start by showing the completion operation preserves

whether a ring is reduced and perfect in positive characteristic.

Lemma 6.1.6. If A is a reduced and perfect ring of positive characteristic p, and I

is an ideal of A, then the I-adic completion Â of A is reduced and perfect.

Proof. By definition,

Â = {a = (a1, a2, a3, . . .) ∈
∏
j

A/Ij | ak ≡ aj (mod Ij), ∀k > j}.

If an = 0 in Â, then there exists q, a power of p, such that aq = 0, so that aqk ∈ Ik

for all k. Given any index j, there exists an integer k(j) such that Ik(j) ⊆ (Ij)[q].
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Therefore, for any j, we can find k(j) ≥ j such that aqk(j) ∈ (Ij)[q]. Since A is perfect,

ak(j) ∈ Ij, and since k(j) ≥ j, we have aj ∈ Ij. Hence, a = 0, and Â is reduced.

Given a = (a1, a2, . . .) ∈ Â, we will now find an element b ∈ Â such that bq = a.

Indeed, let b = (a
1/q
k(1), a

1/q
k(2), . . .), where k(j) is chosen so that k(j) ≥ j, k(j) ≥

k(j − 1), and Ik(j) ⊆ (Ij)[q]. If i ≥ k(j), then ai ≡ ak(j) (mod Ik(j)), so that

ai ≡ ak(j) (mod (Ij)[q]). Since A is perfect, we can take qth roots to see that a
1/q
i ≡

a
1/q
k(j) (mod Ij), which shows that b is a well-defined element of Â. Finally, bq =

(aj(1), aj(2), . . .), which is easily seen to be equal to a.

This lemma is the last piece we need to show that seeds map to big Cohen-

Macaulay algebras with certain rather useful properties. In the fifth section, we will

show that seeds map to big Cohen-Macaulay algebras with even stronger properties.

Proposition 6.1.7. Let (R,m) be a Noetherian local ring of positive characteristic.

Every seed over R maps to a big Cohen-Macaulay R-algebra B that is reduced, perfect,

quasilocal, and m-adically separated.

Proof. By Lemma 6.1.4, a seed maps to a quasilocal big Cohen-Macaulay R-algebra.

By Lemma 6.1.3 it maps further to a quasilocal, reduced, and perfect big Cohen-

Macaulay algebra B. By [Bar-Str, Theorem 1.7], the m-adic completion B̂, which is

m-adically separated, is still a big Cohen-Macaulay algebra, and the previous lemma

shows that it is also reduced and perfect. Finally, since B is quasilocal, it is easy

to see that the set of Cauchy sequences in B̂ with each (equivalently, one) element

of the sequence not a unit forms a unique maximal ideal of B̂ so that B̂ is still

quasilocal.
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6.2 Colon-Killers and Seeds

Hochster and Huneke used colon-killers (also called Cohen-Macaulay multipliers)

in [HH2] and [HH3] as tools for proving the existence of big Cohen-Macaulay algebras

in positive characteristic. Not surprisingly, the existence of such elements in algebras

over a local ring will be useful in determining whether an algebra is a seed or not.

We shall work with a slightly generalized version of their definition, and will define a

special class of colon-killers that will help us determine when an R-algebra is a seed.

Definition 6.2.1. Let R be a local Noetherian ring, S an R-algebra, and M an

arbitrary S-module. An element c ∈ S is a colon-killer for M over R if

c((x1, . . . , xk)M :M xk+1) ⊆ (x1, . . . , xk)M,

for each partial system of parameters x1, . . . , xk+1 in R.

We will soon prove that if B is an S-algebra, where S is a local Noetherian

integral extension of a Noetherian local ring R, and B is a a big Cohen-Macaulay

R-algebra, then B is also a big Cohen-Macaulay S-algebra. We will actually prove a

more general statement showing that a colon-killer for an S-module M over R has a

power that is a colon-killer for M over S. First, we need the next lemma connecting

colon-killers and Koszul homology. (For an introduction to Koszul complexes and

Koszul homology, we refer the reader to [BH, Section 1.6].)

Lemma 6.2.2. Let R be a local Noetherian ring, let S be an R-algebra, and let M be

an arbitrary S-module. If c ∈ S is nonzero, then the following are equivalent:

(i) Some power of c is a colon-killer for M over R.

(ii) Some power of c kills all Koszul homology modules Hi(x1, . . . , xk;M), for all

i ≥ 1 and all partial systems of parameters x1, . . . , xk.
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(iii) Some power of c kills H1(x1, . . . , xk;M), for all partial systems of parameters

x1, . . . , xk.

Proof. (ii) ⇒ (iii) is obvious. For (iii) ⇒ (i), let x = x1, . . . , xk be part of a system

of parameters for R, and let x′ = x1, . . . , xk−1. We obtain a short exact sequence

(6.2.3) 0→ Hi(x
′;M)

xkHi(x′;M)
→ Hi(x;M)→ AnnHi−1(x′;M)xk → 0

for all i, from [BH, Corollary 1.6.13(a)]. In the case i = 1, we see that there is a

surjection of H1(x;M) onto the module ((x′)M :M xk)/(x
′)M , which implies that

the latter module is killed by the same power of c that kills the former.

For (i) ⇒ (ii), assume without loss of generality that c itself is a colon-killer for

M over R. We will use induction on k to show that c2
k−1

kills Hi(x1, . . . , xk;M),

for i ≥ 1. If k = 1, then H1(x1;M) is the only nonzero Koszul homology module,

and it is isomorphic to AnnMx1 = (0 :M x1). Since c is a colon-killer for M , c kills

H1(x1;M). Now let k ≥ 2, x = x1, . . . , xk, x′ = x1, . . . , xk−1, and suppose that c2
k−2

kills Hi(x
′;M), for i ≥ 1. Using the sequence (6.2.3), we see that c2

k−1
kills Hi(x;M),

for all i ≥ 2, by the inductive hypothesis, and c2
k−2+1 kills H1(x;M) by the inductive

hypothesis together with c being a colon-killer. Therefore, if N = 2dimR−1, then cN

kills all of the relevant Koszul homology modules.

From this lemma, we can obtain our result on colon-killers.

Proposition 6.2.4. Let S be a Noetherian local ring that is an integral extension

of a local Noetherian ring R. Let M be an arbitrary S-module. If c ∈ R kills all

Koszul homology modules Hi(x1, . . . , xk;M), for all i ≥ 1, and all partial systems

of parameters x1, . . . , xk in R, then cN kills Hi(y1, . . . , yk;M), for all i ≥ 1, and all

partial systems of parameters y1, . . . , yk in S, for some N . Consequently, if c is a

colon-killer for M over R, then a power of c is a colon-killer for M over S.
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Proof. Based on the previous lemma, it is enough to prove the first claim. Let

y = y1, . . . , yk be part of a system of parameters for S. Since R ↪→ S is integral,

R/((y) ∩R) ↪→ S/(y) is also integral, so that

dimR/((y) ∩R) = dimS/(y) = dimS − k = dimR− k.

We claim that (y)∩R contains a partial system of parameters x = x1, . . . , xk for R.

Indeed, we proceed by induction on k, where the case k = 0 is trivial. We can then

assume without loss of generality that k = 1 and obtain our result from the general

fact that if I is an ideal of R such that dimR/I < dimR, then I contains a parameter

of R. If not, then for every x ∈ I, there exists a prime ideal p of R such that x ∈ p

and dimR/p = dimR. Therefore, I is contained in the union of such prime ideals,

and so by prime avoidance, I is contained in a prime p such that dimR/p = dimR.

We have a contradiction, which implies that I contains a parameter.

Thus, there exists part of a system of parameters x = x1, . . . , xk of R such that

(x)S ⊆ (y). Then a power of c kills Hi(y;M), for all i ≥ 1 by the following lemma,

where the power depends only on k, which in turn is bounded by dimR.

Lemma 6.2.5. Let S be any ring and M any S-module. Suppose (x1, . . . , xk)S ⊆
(y1, . . . , yk)S = (y)S and that c ∈ S kills Hi(x1, . . . , xm;M), for all i ≥ 1 and all

1 ≤ m ≤ k. Then cD(m) kills Hk+1−m(y;M), for 1 ≤ m ≤ k, where D(1) = 1, and

D(m) = 2k−2D(m− 1) + 2, for m ≥ 2.

Proof. We will use induction on m. For m = 1, we need c to kill Hk(y;M), but

Hk(y;M) ∼= AnnM(y) ⊆ AnnM(x1) ∼= H1(x1;M),

which implies what we want.

Now, let m ≥ 2. The hypothesis on c together with Lemma 6.2.2 implies that c is

a colon-killer for M with respect to subsequences of x1, . . . , xk, but this implies that
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c is a colon-killer for M/x1M with respect to subsequences of x2, . . . , xk. The proof

of Lemma 6.2.2 then implies that c2
k−2

kills Hi(x2, . . . , xm;M/x1M), for all i ≥ 1

and all 2 ≤ m ≤ k.

For the induction, suppose that cD(m−1) kills Hk+2−m(y;M). Consider the exact

sequence

0→ AnnMx1 →M
x1→ M →M/x1M → 0,

from which we obtain two short exact sequences

0→ AnnMx1 →M → x1M → 0

0→ x1M →M → M/x1M → 0.

These sequences then induce long exact sequences in Koszul homology:

Hi+1(y;M)
fi+1→ Hi+1(y; x1M)→ Hi(y; AnnMx1)→ Hi(y;M)

fi→ Hi(y; x1M)

Hi+1(y; x1M)
gi+1→ Hi+1(y;M)→ Hi+1(y;M/x1M)→ Hi(y; x1M)

gi→ Hi(y;M),

which in turn yield short exact sequences, for all i ≥ 0,

(∗i) 0→ Hi+1(y; x1M)

fi+1(Hi+1(y;M))
→ Hi(y; AnnMx1)→ ker(fi)→ 0

(#i) 0→ Hi+1(y;M)

gi+1(Hi+1(y; x1M))
→ Hi+1(y;M/x1M)→ ker(gi)→ 0.

Since the map of homology

Hi(y;M)
fi→ Hi(y; x1M)

gi→ Hi(y;M)

is induced by the composition M → x1M → M , which is multiplication by x1, and

since x1 ∈ (y)S, gi ◦ fi = 0, for all i ≥ 0.

Since cAnnMx1 = 0 by hypothesis, (∗i) implies that

cHi+1(y; x1M) ⊆ fi+1(Hi+1(y;M)) ⊆ ker(gi+1),
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for all i ≥ 0. Applying the inductive hypothesis to M/x1M implies that c2
k−2D(m−1)

kills Hk+2−m(y;M/x1M). Then (#k+1−m) shows that c2
k−2D(m−1) ker(gk+1−m) = 0.

Therefore, c2
k−2D(m−1)+1 kills Hk+1−m(y; x1M). To finish, notice that c2

k−2D(m−1)+1 =

cD(m)−1, which kills the image of Hk+1−m(y;M) inside Hk+1−m(y; x1M) under the

map fk+1−m. Thus, cD(m)−1Hk+1−m(y;M) is contained in ker(fk+1−m), which is killed

by c, using (∗k+1−m), and so cD(m) kills Hk+1−m(y;M), as needed.

Since 1 is a colon-killer for a big Cohen-Macaulay algebra, the previous result

gives us the promised result about big Cohen-Macaulay modules (and algebras).

Corollary 6.2.6. Let S be a Noetherian local ring that is also an integral extension

of a local Noetherian ring R. If M is an S-module and a big Cohen-Macaulay R-

module, then M is a big Cohen-Macaulay S-module.

We will now introduce another notion of a colon-killer that will be very useful for

us in the following sections when we need to determine whether a ring is a seed.

Definition 6.2.7. For a local Noetherian ring (R,m) and an R-algebra S, an element

c ∈ S is called a weak durable colon-killer over R if for some system of parameters

x1, . . . , xn of R,

c((xt1, . . . , x
t
k)S :S x

t
k+1) ⊆ (xt1, . . . , x

t
k)S,

for all 1 ≤ k ≤ n − 1 and all t ∈ N, and if for any N ≥ 1, there exists k ≥ 1 such

that cN �∈ mkS. An element c ∈ S will be simply called a durable colon-killer over

R if it is a weak durable colon-killer for every system of parameters of R.

Notice that if S = R, then all colon-killers in R that are not nilpotent are durable

colon-killers. So, if R is a domain, or even reduced, all colon-killers are durable

colon-killers. Also, if B is a big Cohen-Macaulay algebra over R, then 1 is a durable
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colon-killer. We can now use the existence of durable colon-killers to characterize

when an algebra is a seed by adapting the proof of [Ho3, Theorem 11.1].

Theorem 6.2.8. Let (R,m) be a local Noetherian ring of positive characteristic p,

and let S be an R-algebra. Then S is a seed if and only if there is a map S → T

such that T has a durable colon-killer c if and only if there is a map S → T such

that T has a weak durable colon-killer c.

Proof. If S is a seed, then S → B, for some big Cohen-Macaulay R-algebra B. As

pointed out above, 1 is a durable colon-killer in B, so T = B will suffice. For the

converses, we will modify the proof of [Ho3, Theorem 11.1] to obtain our result.

We will show that the existence of a (weak) durable colon-killer in an S-algebra T

implies that S is a seed. (All parenthetical remarks will apply to the case that T

only possesses a weak durable colon-killer.)

Suppose that S → T such that T has a (weak) durable colon-killer c (with respect

to a fixed system of parameters in R). Let S(0) := S, and given S(i) for 0 ≤ i ≤ t−1,

let

S(i+1) :=
S(i)[U

(i)
1 , . . . , U

(i)
ki

]

s(i) −∑ki

j=1 x
(i)
j U

(i)
j

,

where x
(i)
1 , · · · , x(i)

ki+1 is a system of parameters for R (the fixed system of parameters

in the latter case), and x
(i)
ki+1s

(i) =
∑ki

j=1 x
(i)
j s

(i)
j is a relation in S(i). Then

S = S(0) → S(1) → S(2) → · · · → S(t)

is a finite sequence of algebra modifications. Suppose to the contrary that S is not a

seed and the sequence is bad, so that 1 ∈ mS(t). (In the weak case, we are supposing

that S does not map to an S-algebra where the fixed system of parameters is a
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regular sequence.) We can then write

(6.2.9) 1 =
n∑
j=1

rjwj,

where rj ∈ m and wj ∈ S(t), for all j.

We will construct inductively homomorphisms ψ
(i)
e from each S(i) to Fe(T ) forming

a commutative diagram:

Fe(T )c Fe(T )c Fe(T )c · · · Fe(T )c

S(0) ��

ψ
(0)
e

��

S(1) ��

ψ
(1)
e

��

S(2) ��

ψ
(2)
e

��

· · · �� S(t).

ψ
(t)
e

��

In order to construct the maps we need to keep track of bounds, independent of

q = pe, associated with the images of certain elements of each S(i). For all 1 ≤ i ≤ t,

we will use reverse induction to define a finite subset Γi of S(i) and positive integers

b(i). We will then inductively define positive integers β(i) and B(i), which will be

the necessary bounds.

First, let

Γt := {w1, . . . , wn},

where the wj are from relation (6.2.9). Now, given Γi+1 (with 0 ≤ i ≤ t − 1), each

element can be written as a polynomial in the U
(i)
j with coefficients in S(i). Let

b(i + 1) be the largest degree of any such polynomial. For i ≥ 1, let Γi be the set

of all coefficients of these polynomials together with s(i), s
(i)
1 , · · · , s(i)

ki
. Now define

β(1) := 1, B(1) := b(1), and given B(i) for 1 ≤ i ≤ t− 1, let

β(i+ 1) := B(i) + 1 and B(i+ 1) := β(i+ 1)b(i+ 1) +B(i).

Notice that, as claimed, all β(i) and B(i) are independent of q.

Fix q = pe. By hypothesis, we have a map S(0) = S → T that can be naturally

extended to a map ψ
(0)
e : S(0) → Fe(T )c by composing with T → Fe(T )c. We next
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define a map ψ
(1)
e : S(1) → Fe(T )c that extends ψ

(0)
e , maps the U

(0)
j to the cyclic

Fe(T )-submodule c−1Fe(T ) = c−β(1)Fe(T ) in Fe(T )c, and maps Γ1 to c−b(1)Fe(T ) =

c−B(1)Fe(T ) inside Fe(T )c. To do this we need only find appropriate images of the

U
(0)
j such that the image of s(0) −∑k0

j=1 x
(0)
j U

(0)
j maps to 0.

Since

x
(0)
k0+1s

(0) =

k0∑
j=1

x
(0)
j s

(0)
j ,

we have

(x
(0)
k0+1)

qψ(0)
e (s(0)) =

k0∑
j=1

(x
(0)
j )qψ(0)

e (s
(0)
j )

in Fe(T )c, where the the image of ψ
(0)
e is contained in the image of Fe(T ) inside

Fe(T )c. As c is a (weak) durable colon-killer in T , and so also a (weak) colon-killer

in Fe(T ),

cψ(0)
e (s(0)) =

k0∑
j=1

(x
(0)
j )qσ

(0)
j ,

where the σ
(0)
j are in the image of Fe(T ) in Fe(T )c. If we define ψ

(1)
e such that

U
(0)
j �→ c−1σ

(0)
j , then we have accomplished our goal for ψ

(1)
e because the elements

of Γ1 can be written as polynomials in the U
(0)
j of degree at most b(1) = B(1) with

coefficients in S.

Now suppose that for some 1 ≤ i ≤ t − 1 we have a map ψ
(i)
e : S(i) → Fe(T )c,

where the U
(i−1)
j all map to c−β(i)Fe(T ), and Γi maps to c−B(i)Fe(T ). We will extend

ψ
(i)
e to a map from S(i+1) such that each U

(i)
j maps to c−β(i+1)Fe(T ), and Γi+1 maps

to c−B(i+1)Fe(T ).

In order to simplify notation, we drop many of the (i) labels on parameters. Then

S(i+1) =
S(i)[U1, . . . , Uk]

s−∑k
j=1 xjUj

.

Since s and the sj (in the relation xk+1s =
∑k

j=1 xjsj in S(i)) are in Γi, we can write

(6.2.10) ψ(i)
e (s) = c−B(i)σ and ψ(i)

e (sj) = c−B(i)σj ,
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where σ and the σj are elements in the image of Fe(T ) in Fe(T )c. Hence,

xqk+1ψ
(i)
e (s) =

k∑
j=1

xqjψ
(i)
e (sj)

in Fe(T )c. Multiplying through by cB(i) yields

xqk+1σ =

k∑
j=1

xqjσj

in the image of Fe(T ) in Fe(T )c. Using our (weak) colon-killer c, we have

cσ =
k∑
j=1

xqjτj ,

where τj is an element in the image of Fe(T ) in Fe(T )c. Therefore,

ψ(i)
e (s) =

k∑
j=1

xqj(c
−B(i)−1τj)

in Fe(T )c.

We now have a well-defined map ψ
(i+1)
e : S(i+1) → Fe(T )c extending ψ

(i)
e given by

ψ(i+1)
e (Uj) = c−B(i)−1τt = c−β(i+1)τt

such that the Uj map to c−β(i+1)Fe(T ), and Γi+1 maps to c−B(i+1)Fe(T ) since

B(i+ 1) = β(i+ 1)b(i+ 1) +B(i)

and these elements can be written as polynomials in the Uj of degree at most b(i+1)

with coefficients in Γi.

We can finally conclude that, for all q = pe, there exists a map

ψ(t)
e : S(t) → Fe(T )c

such that the equation (6.2.9) that puts 1 ∈ mS(t) maps to

1 =
n∑
j=1

rqjψ
(t)
e (wj).
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If we let B := B(t), then each ψ
(t)
e (wj) is in c−BFe(T ) as Γt contains these elements.

Multiplying through by cB, we see that cB ∈ m[q]T , for all q ≥ 1, where B is

independent of q, which implies that cB ∈ mkT , for all k ≥ 1. Since c is a (weak)

durable colon-killer, we have a contradiction. Therefore, no such finite sequence of

modifications of S is bad.

In the case of the durable colon-killer, we see that S is a seed over R. In the

case of a weak colon-killer, S maps to an S-algebra S ′, where a single system of

parameters of R is a regular sequence on S ′. By the result [Bar-Str, Theorem 1.7]

of Bartijn and Strooker, the separated completion of S ′ with respect to the maximal

ideal of R is a big Cohen-Macaulay R-algebra. Therefore, S is a seed in this case as

well.

Later we will use this result as a piece of the proof that integral extensions of

seeds are seeds. We will also use durable colon-killers to obtain our results in the

sixth section concerning when the seed property is preserved by base change.

6.3 Minimal Seeds

We will now introduce the class of minimal seeds. This class will help us gain

more insight into the class of big Cohen-Macaulay algebras to which a particular

seed can be mapped.

Definition 6.3.1. For a Noetherian local ring (R,m), an R-algebra S is a minimal

seed if S is a seed over R and no proper homomorphic image of S is a seed over R.

Example 6.3.2. (1) If R is a Cohen-Macaulay ring, then R is a minimal seed.

(2) If R is an excellent local domain, then R+ is a big Cohen-Macaulay algebra over

R. The ring R+ is also a minimal seed. Indeed, let J ⊆ R+, with s �= 0 in J .

Therefore, s satisfies a minimal monic polynomial xk+r1x
k−1+ · · ·+rk−1x+rk,
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with coefficients ri ∈ R. Since the polynomial is minimal and R+ is a domain,

we have a nonzero element rk ∈ J ∩R. Therefore, rk kills R+/J , and so R+/J

cannot be a seed, which shows that R+ is a minimal seed as claimed.

We also point out the following easy, but useful, fact about minimal seeds.

Lemma 6.3.3. A seed S over a local Noetherian ring R is a minimal seed if and

only if every map from S to a big Cohen-Macaulay R-algebra B is injective if and

only if every map to a seed over R is injective.

Proof. If S is minimal, then since no homomorphic image of S can be a seed, S

must be isomorphic to its image in every big Cohen-Macaulay algebra to which it

maps. Conversely, if S is not minimal, then there is a nonzero ideal I ⊆ S such that

S/I → B, for some big Cohen-Macaulay algebra B. Thus, S → B is not injective.

The second claim is equally easy to see.

A very important question one should ask about minimal seeds is whether or not

every seed maps to a minimal seed. Whereas it is currently unknown whether solid

algebras that are not Noetherian map to minimal solid algebras, we are able to show

that every seed maps to a minimal seed.

Proposition 6.3.4. Let R be a local Noetherian ring, and let S be a seed over R.

Then S/I is a minimal seed for some ideal I ⊆ S.

Proof. Let Σ be the set of all ideals J of S such that S/J is a seed. If Σ contains a

maximal element I, then S/I will be a minimal seed. Let J1 ⊂ J2 ⊂ · · · be a chain

of ideals in Σ, and let J =
⋃
k Jk. Then S/J = lim−→k

S/Jk, and since each S/Jk is a

seed, Lemma 6.1.2 implies that S/J is a seed as well. By Zorn’s Lemma, Σ has a

maximal element I.
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Now that we know minimal seeds exist, we would like to know whether they are

domains or not, as minimal Noetherian solid algebras are domains. After dealing with

integral extensions of seeds, we will prove in Section 6.5 that in positive characteristic

minimal seeds are domains. In the meantime, we will point out that minimal seeds

are reduced in positive characteristic.

Proposition 6.3.5. Let S be a minimal seed over a local ring R of positive charac-

teristic. Then S is a reduced ring.

Proof. By Lemma 6.1.3, there exists a reduced big Cohen-Macaulay algebra B such

that S → B. Since S is minimal, Lemma 6.3.3 implies that S ↪→ B. As B has no

nilpotents, neither does S.

The fact that all seeds map to a reduced seed in positive characteristic will be

helpful in the next section, when we demonstrate that integral extensions of seeds

are still seeds. In turn, that result will eventually help us prove that each seed maps

to a domain seed and also to a big Cohen-Macaulay algebra that is a domain.

6.4 Integral Extensions of Seeds

The primary goal of this section is to prove that integral extensions of seeds

are seeds in positive characteristic. Since all integral extensions are direct limits

of module-finite extensions, with Lemma 6.1.2 we can concentrate on module-finite

extensions of seeds. We begin the argument by proving that the problem can be

reduced to a much more specific problem, which we attack by constructing a durable

colon-killer in a certain module-finite extension of a big Cohen-Macaulay algebra.

Our first reduction of the problem will be that we can assume we are considering a

module-finite extension of a big Cohen-Macaulay algebra that is reduced, quasilocal,

and m-adically separated.
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Lemma 6.4.1. Let (R,m) be a local Noetherian ring of positive characteristic, and

let S be a seed with T a module-finite extension of S. Suppose that any module-finite

extension of a reduced, quasilocal, m-adically separated big Cohen-Macaulay algebra

is a seed. Then T is a seed.

Proof. By Propositions 6.3.4 and 6.3.5, S/I is a minimal reduced seed for some ideal

I. Since S/I is reduced, I is a radical ideal and so is an integrally closed ideal.

Therefore, IT ∩ S = I so that S/I injects into T/IT , which is thus a module-finite

extension of S/I. Since T is a seed if T/IT is a seed, we can now assume that S is

a reduced seed.

By Lemma 6.3.3 and Proposition 6.1.7, there exists a commutative square

T �� C

S
��

��

� � �� B,

��

where B is a reduced, quasilocal, and m-adically separated big Cohen-Macaulay

algebra, and C := T ⊗S B. If we can show that the vertical map B → C is injective,

then C will be a module-finite extension of B, and our hypotheses will imply that C

and T are seeds. Since B is reduced, the next lemma allows us to reach our goal.

Lemma 6.4.2. If S is a ring, T is an integral extension of S, and B is a reduced

extension of S, then B injects into C := T ⊗S B.

Proof. We will first prove the claim in the case that S, T , and B are all domains.

Let K be the algebraic closure of the fraction field of S, and let L be the algebraic

closure of the fraction field of B. Since T is an integral extension domain of S, we
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have the following diagram:

K
� � �� L

T
��

��

S
��

��

� � �� B.
��

��

Under the injection K ↪→ L, the ring T maps isomorphically to some subring T ′ of

L. Now let C ′ be the S-subalgebra of L generated by B and T ′. Since C = T ⊗S B,

we have a (surjective) map C → C ′ and a diagram

C ′

T ��
� �

��

C

���������

S
��

��

� � �� B

��

��

��

Since B injects into C ′, B also injects into C.

For the general case, it will suffice to show that the kernel of B → C is contained in

every prime ideal of B since B is reduced. Let p be a prime of B, and let p0 := p∩S.

Since T is integral over S, there exists a prime q0 of T lying over p0. If we put

D := T/q0 ⊗S/p0 B/p, then we obtain the following commutative diagram:

T/q0
�� D

T

����������
��

��

C

����������

S/p0
� �

��
�� B/p

��

S

����������� � ����

��

B

��

����������

Since T/q0 is still an integral extension of S/p0 and B/p is a domain extension of

S/p0, the domain case of the proof shows that B/p injects into D. Therefore, if b is
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in the kernel of B → C, then b is in the kernel of B → D, which implies that b ∈ p,

as desired.

Now, in order to show that module-finite extensions of seeds are still seeds, it

suffices to consider a module-finite extension C of a reduced, quasilocal, m-adically

separated big Cohen-Macaulay algebra B. To finish our argument that module-

finite extensions of seeds are seeds, will show that we can extend the map B ↪→ C to

another module-finite extension B# ↪→ C# such thatB# is still a reduced, quasilocal,

m-adically separated big Cohen-Macaulay algebra. In addition, our new rings will

have the property that there exists a nonzero element b ∈ B# such that b multiplies

C# into a finitely generated free B#-submodule of C#. We will then finally show

that b is a durable colon-killer in C# so that Theorem 6.2.8 implies that C is a seed.

We start the process by showing we can adjoin indeterminates and then localize

our ring B without losing any of its key properties.

Lemma 6.4.3. If (B, p) is a reduced, quasilocal, m-adically separated big Cohen-

Macaulay R-algebra, where (R,m) is a local Noetherian ring, then the ring

B#(n,s) := B[tij | i ≤ n, j ≤ s]pB[tij ],

defined for some n, s ∈ N, is also a reduced, quasilocal, m-adically separated big

Cohen-Macaulay R-algebra.

Proof. For the duration of the proof, n and s will be fixed, so we will simply write

B# instead of B#(n,s). We will let t denote the set of all tij .

Since B is reduced, B[t] is reduced after adjoining indeterminates. By Lemma

6.1.5, B# will also be reduced. As p is prime in B, the extension of p to B[t] is also

prime so that it makes sense to localize at this ideal and end up with B# quasilocal.
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The construction of B# implies that B# is a faithfully flat extension of B. There-

fore, for any ideals I and J of B, we have IB# :B# JB# = (I :B J)B# (see [N2,

Theorem 18.1]). This fact implies that every system of parameters of R will be a

possibly improper regular sequence on B#, because B is a big Cohen-Macaulay al-

gebra. Moreover, the faithful flatness also implies that mB# �= B# as mB �= B.

Hence, B# is a big Cohen-Macaulay R-algebra.

To show that B# is also m-adically separated will take a little bit more effort.

Suppose that an element F ∈ B# is in mNB#, for every N . Multiplying through

by its denominator, we obtain such an element from B[t], so that we may assume

without loss of generality that F is a polynomial in B[t]. Thus, for every N , there

exists GN �∈ pB[t] such that GNF ∈ mNB[t]. It suffices to show that any polynomial

G �∈ pB[t] is not a zerodivisor modulo mNB[t], for any N . If we put D := B/mNB,

then the image G of G in D[t] is a polynomial not in pD[t], i.e., G is a polynomial

whose coefficients generate the unit ideal of D. To finish, it suffices to apply the

following general lemma.

Lemma 6.4.4. If D is any ring and G is a polynomial in D[tλ | λ ∈ Λ] such that the

coefficients of G generate the unit ideal in D, then G is not a zerodivisor.

Proof. As in the previous proof, we will let t denote the set of all tλ. Suppose that

GH = 0, for some H ∈ D[t]. If A is the prime ring of D, then let D′ be the A-

subalgebra of D generated by the coefficients of G and H and by the elements in a

relation showing that 1 is in the ideal generated by the coefficients of G. Therefore,

GH = 0 in D′[t], and the coefficients of G still generate the unit ideal in D′, so

without loss of generality we may assume that D is Noetherian.

The Noetherian case follows from Corollary 2 on p. 152 of [Mat].
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Lemma 6.4.5. If (B, p) is a quasilocal ring, and B#(n,s) = B[tij | i ≤ n, j ≤ s]pB[tij ],

for some n and some s, then for any k ≤ n,

B#(n,s) ∼= (B#(k,s))#(n−k,s).

Proof. Let x denote the indeterminates tij such that 1 ≤ i ≤ k and 1 ≤ j ≤ s, and

let y denote the remaining indeterminates tij . Let C := B#(k,s) = B[x]pB[x], Q be

the maximal ideal of C, and D := (B#(k,s))#(n−k,s) = C[y]QC[y].

Since D is a B-algebra, there exists a unique ring homomorphism B[x,y] → D

that maps the indeterminates tij to their natural images in D. We claim that the

units in B[x,y] map to units in D under this map. Indeed, if f(x,y) is a unit in

B[x,y], then f has some coefficient that is in B \ p. If we rewrite

f(x,y) = gk(x)yk + · · ·+ g1(x)y + g0(x),

then some gi(x) is in C \Q so that the image of f is in not in the maximal ideal of

D. We therefore have a ring homomorphism φ : B#(n,s) → D.

We further claim that φ is an isomorphism. Using the previous lemma, it is easy

to verify that φ is injective. It is also routine to check that φ is surjective.

Using the construction B#(n,s) = B[tij | i ≤ n, j ≤ s]pB[tij ], where (B, p) is a

quasilocal ring, we also define

#(n,s)M := B#(n,s) ⊗B M,

for any B-moduleM . Since B#(n,s) is faithfully flat over B, whenM = C is a module-

finite extension of B, we also have that #(n,s)C is a module-finite extension of B#(n,s).

The utility of this operation is that the adjunction of indeterminates will allow us to

find B#(n,s)-linear combinations of the module generators of #(n,s)C such that these
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elements are in “general position” and, as a result, span a B#(n,s)-free submodule of

#(n,s)C. Moreover, the quotient of #(n,s)C by this free submodule will be killed by

a nonzero element b of B#(n,s). After we show the existence of such an element for

a particular value of n, we will show that the element b is a durable colon-killer in

#(n,s)C when B is a reduced, quasilocal, m-adically separated big Cohen-Macaulay

R-algebra over a local Noetherian ring (R,m).

Lemma 6.4.6. Let B be a reduced quasilocal ring, and let M be a finitely gener-

ated B-module generated by m1, . . . , ms in M . Then there exists k ≤ s such that

b( #(k,s)M) ⊆ G, where b is a nonzero element of B#(k,s) and G is a finitely generated

free B#(k,s)-submodule of #(k,s)M .

Proof. Throughout the proof, define

gi := ti1m1 + · · ·+ tisms

in any B#(n,s), where i ≤ n. Note that there exists a maximum 0 ≤ n ≤ s such that

the set {g1, . . . , gn} generates a B#(n,s)-free submodule of #(n,s)M , where B#(0,s) = B,

since #(n,s)M has s generators. If α = (tij)1≤i,j≤s, then det(α) is not in the unique

maximal ideal of B#(s,s), so that α is an invertible matrix. As m1, . . . , ms generate

#(s,s)M over B#(s,s) and α is invertible, g1, . . . , gs also generate #(s,s)M . If the gi

are linearly independent over B#(s,s), then #(s,s)M is a free module, and we can use

k = s, b = 1, and G = #(s,s)M to fulfill our claim.

Otherwise, the maximum value n is strictly less than s, and we put k := n+1. In

this case, there exists a nonzero b′ ∈ B#(k,s) such that b′gk ∈ (g1, . . . , gk−1)(
#(k,s)M).

Indeed, since n was chosen to be a maximum and k = n + 1, there must be a

nontrivial relation b′gk = b1g1 + · · · bk−1gk−1 in #(k,s)M . If b′ = 0, then we have a

nontrivial relation on g1, . . . , gk−1. As B#(k,s) ∼= (B#(k−1,s))#(1,s) (by Lemma 6.4.5),



117

we see that B#(k,s) is faithfully flat over B#(k−1,s), and so the nontrivial relation on

g1, . . . , gk−1 in #(k,s)M implies that there is a nontrivial relation on g1, . . . , gk−1 in

#(k−1,s)M , a contradiction. Hence, b′ is nonzero as claimed. Notice that the same

argument implies that g1, . . . , gk−1 still generate a finitely generated free submodule

G of #(k,s)M .

We now claim that there exists a nonzero b ∈ B#(k,s) such that b(#(k,s)M) ⊆ G.

If we put M0 := (#(k,s)M)/G, and replace m1, . . . , ms and gk by their images in

M0, then b′ kills gk. We intend to show that the annihilator of M0 cannot be zero.

Suppose to the contrary that no nonzero element of B#(k,s) kills M0. Then we have

an injective map B#(k,s) ↪→ M⊕s
0 defined by b �→ (bm1, . . . , bms).

After clearing the denominator on b′, we may assume that b′ is a polynomial in

B[t], where t denotes the set of all tij , with i ≤ k and j ≤ s. Write b′ =
∑

ν cνt
ν ,

where ν is an n × s matrix of integers, and each cν is in B. Let A0 be the prime

ring of B, and let A be the A0-subalgebra of B (finitely) generated by the nonzero

cν . Then A is Noetherian and reduced. If we let q be the contraction of p to A and

replace A by the local ring Aq, then (A, q) is a reduced local Noetherian subring of

B. We then obtain an injective map A# ↪→ B#(k,s), where A# denotes A#(k,s).

Since b′ is in A# (and still nonzero), we can define an A#-module by

N :=
A#m1 ⊕ · · · ⊕ A#ms

b′(tk1m1 + · · ·+ tksms)
.

There is then a natural map N →M0 that induces a commutative square:

B#(k,s) � � ��M⊕s
0

A#
��

��

�� N⊕s.

��

This implies that the map A# → N⊕s defined by a �→ (am1, . . . , ams) is injective

(which also shows that N �= 0). Therefore, we may now assume without loss of
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generality that B is a reduced, local Noetherian ring.

As B is reduced and Noetherian, B has finitely many minimal primes Q1, . . . , Qh

such that
⋂
iQi = 0. Since b′ is a nonzero polynomial in B#(k,s), some coefficient of b′

is not in some minimal prime Q. Thus, the image of b′ is still nonzero in (BQ)#(k,s).

Moreover, if M ′
0 := (BQ)#(k,s)⊗B#(k,s) M0, then M ′

0 is a finitely generated (BQ)#(k,s)-

module with b′(tk1m1 + · · ·+ tksms) = 0 and with an injection (BQ)#(k,s) ↪→ (M ′
0)

⊕s,

since (BQ)#(k,s) ∼= (B#(k,s))QB#(k,s). (Again, this fact implies that M ′
0 is nonzero.)

Since B is reduced and Q is minimal, BQ is a field, and so we can now assume that

B = K is a field.

In this final case, K#(k,s) ∼= K(t), and M0 is a nonzero module over a field, so

that M0 is a nonzero free K#(k,s)-module. Therefore, if b′(tk1m1 + · · ·+ tksms) = 0

in M0, then tk1m1 + · · ·+ tksms = 0 in M0. This is impossible, however, since the tij

are algebraically independent.

The resulting contradiction implies that M0 is killed by some nonzero element

b ∈ B#(k,s) in our original set-up, and since M0 was originally (#(k,s)M)/G, where G

is free over B#(k,s), we are finished.

We are now ready to show that module-finite extensions of sufficiently nice big

Cohen-Macaulay algebras are indeed seeds. As mentioned above, the key fact will

be that the element b constructed in the previous lemma is a durable colon-killer in

the modification #(k,s)C.

Lemma 6.4.7. Let (R,m) be a local Noetherian ring, and let B be a reduced, quasilo-

cal, m-adically separated big Cohen-Macaulay R-algebra. If C is a module-finite

extension of B, then C is a seed.

Proof. By Lemma 6.4.3 and the remarks made before the previous lemma, for any
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k, we have a commutative square:

B#(k,s) � � �� #(k,s)C

B

��

� � �� C,

��

where the top map is also a module-finite extension of a reduced, quasilocal, m-

adically separated big Cohen-Macaulay R-algebra, and C is generated by s elements

as a B-module. After applying the previous lemma, we may assume that there exists

a nonzero element b ∈ B such that b multiplies C into a finitely generated free B-

submodule G. In order to see that C is a seed, we show that b is a durable colon-killer

in C and then apply Theorem 6.2.8.

Indeed, let x1, . . . , xt+1 be part of a system of parameters in R and suppose that

u ∈ (x1, . . . , xt)C :C xt+1. Then by construction, buxt+1 ∈ (x1, . . . , xt)G, so as an

element of G, we have (bu) ∈ (x1, . . . , xt)G :G xt+1. Since B is a big Cohen-Macaulay

R-algebra and since G is a free B-module, G is clearly a big Cohen-Macaulay R-

module. Hence, bu ∈ (x1, . . . , xt)G ⊆ (x1, . . . , xt)C as G is a submodule of C.

Now, if bN ∈ ⋂tm
tC, for some N , then bN+1 ∈ ⋂tm

tG. Since B is m-adically

separated,
⋂
tm

tB = 0, and since G is free over B, we also have
⋂
tm

tG = 0. As

G is a submodule of C and the map B → C is an injection, bN+1 = 0 in B, but B

reduced implies that b = 0, a contradiction. Therefore, b is a durable colon-killer,

and C is a seed by Theorem 6.2.8.

We have now gathered together all of the tools that we will need to prove the

primary result of this section.

Theorem 6.4.8. Let (R,m) be a local Noetherian ring of positive characteristic. If

S is a seed and T is an integral extension of S, then T is a seed.
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Proof. By Lemma 6.1.2, we may assume that T is a module-finite extension of S

because integral extensions are direct limits of module-finite extensions. By Lemma

6.4.1, we may assume that S = B is a reduced, quasilocal, m-adically separated big

Cohen-Macaulay algebra. Finally, Lemma 6.4.7 implies that T is a seed.

Remark 6.4.9. We feel it is worthwhile to point out that the hypothesis that our

base ring has positive characteristic is only required in two places: (1) the existence

of a durable colon-killer implies that an algebra is a seed, and (2) all seeds map to a

reduced big Cohen-Macaulay algebra. These facts have proofs that rely heavily on

the use of the Frobenius endomorphism, but are the only two that we can prove only

in positive characteristic.

We can also view the above theorem as a generalization of the existence of big

Cohen-Macaulay algebras over complete local domains of positive characteristic.

Corollary 6.4.10 (Hochster-Huneke). If R is a complete local domain of positive

characteristic, then there exists a big Cohen-Macaulay algebra B over R.

Proof. By the Cohen structure theorem, R is a module-finite extension of a regular

local ring A. Since A is clearly a seed over itself, Theorem 6.4.8 implies that R is a

seed over A as well. Let B be a big Cohen-Macaulay algebra over A such that B is

also an R-algebra. By Corollary 6.2.6, B is also big Cohen-Macaulay over R.

6.5 More Properties of Seeds

In this section, we will show that all seeds in positive characteristic can be mapped

to quasilocal big Cohen-Macaulay algebra domains that are absolutely integrally

closed and m-adically separated. We start off the section by delivering the promised

proof that minimal seeds are domains. First, we show that we can reduce to the case

of a finitely generated minimal seed.
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Lemma 6.5.1. Let R be a local Noetherian ring. If all finite type minimal seeds are

domains, then all minimal seeds are domains.

Proof. Let S be an arbitrary minimal seed over R. Then S = lim−→λ∈Λ
Sλ, where Λ

indexes the set of all finitely generated subalgebras of S. Suppose that S is not a

domain and that ab = 0 in S with a, b �= 0. Since S is a minimal seed, S/aS and S/bS

are not seeds. Let Λ(a) and Λ(b) be the subsets of Λ indexing all finitely generated

subalgebras of S that contain a and b, respectively. Then S/aS = lim−→λ∈Λ(a)
Sλ/aSλ,

with a similar result for S/bS. Since S/aS and S/bS are not seeds, Lemma 6.1.2

implies that there exists an Sα containing a and an Sβ containing b such that Sα/aSα

and Sβ/bSβ are not seeds. Therefore, there exists a common Sγ containing a and b

such that Sγ is not a seed modulo aSγ nor modulo bSγ . We can enlarge Sγ further

and so also assume without loss of generality that ab = 0 in Sγ, since ab = 0 in S.

Since S is a seed, Sγ is a seed. Since Sγ is also finitely generated as an R-algebra,

Sγ maps onto a finitely generated minimal seed T . Therefore, ab = 0 in T , and as T

is a domain by hypothesis, a = 0 or b = 0 in T . Suppose without loss of generality

that a = 0. This implies that the map Sγ → T factors through Sγ/aSγ, which is

not a seed and so cannot map to any seed. We have a contradiction, and so S is a

domain after all.

Proposition 6.5.2. Let R be a local Noetherian ring of positive characteristic p. If

S is a minimal seed over R, then S is a domain.

Proof. By the previous lemma, we can assume that S is finitely generated over R.

By Proposition 6.3.5, we have that S is Noetherian and reduced. Let S be the

normalization of S in its total quotient ring. Then S is a finite direct product

of normal domains by Serre’s Criterion (see [E, Theorem 11.5]) and is an integral
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extension of S. By our main result of the last section, Theorem 6.4.8, S is also a

seed. Since S is a seed and a finite product D1 × · · · × Dt of domains, we will be

done once we have proven the following lemma.

Lemma 6.5.3. Let (R,m) be a Noetherian local ring. If S = S1 × · · · × St, then S

is a seed over R if and only if Si is a seed over R, for some i.

Proof. Clearly, if some Si is a seed, then S is also a seed. Suppose then that S is

a seed, but no Si is a seed. Since S is a direct product, if S → B, a big Cohen-

Macaulay algebra, then B ∼= B1 × · · · ×Bt, where each Bi is an Si-algebra. We first

claim that each Bi is a possibly improper big Cohen-Macaulay algebra. Indeed, let

xk+1b =
∑k

j=1 xjbj be a relation in Bi on a partial system of parameters x1, . . . , xk+1

from R, and let ei be the idempotent associated to Bi in B. Therefore, xk+1(bei) =∑k
j=1 xj(bjei) is a relation in B, and so bei =

∑k
j=1 xjcj, for elements cj in B.

Multiplying this equation by ei yields bei =
∑k

j=1 xj(cjei) since e2i = ei. If we let c′j

be the image of cjei in Bi, for all j, then b =
∑k

j=1 xjc
′
j in Bi, as claimed.

Now, if, as assumed, each Si is not a seed, then 1 ∈ mBi, for all i. Thus ei ∈ mB,

for all i, and so 1 =
∑

i ei ∈ mB, a contradiction. Therefore, some Si must be a seed

if S is a seed.

As a corollary, we will show that each seed maps to a big Cohen-Macaulay algebra

that is also a domain. In order to accomplish this goal, we must first demonstrate

that a domain seed can be modified into a big Cohen-Macaulay algebra domain. In

[HH7, Section 3], Hochster and Huneke prove that if S is a seed, then S maps to a

big Cohen-Macaulay algebra B constructed as a very large direct limit of sequences

of algebra modifications. To obtain our result, we will use a different direct limit

system of algebra modifications to construct a big Cohen-Macaulay algebra B.
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We will use the “A-transform”

Θ = Θ(x, y;S) := {u ∈ Sxy | (xy)Nu ⊆ Im(S → Sxy), for some N}.

See [N1, Chapter V] and [Ho3, Section 12] for an introduction to the properties of Θ.

The most useful property for us is that if x, y form part of a system of parameters in

a local Noetherian ring R and S is a seed over R, then x, y become a regular sequence

on Θ (see [Ho3, Lemma 12.4]). As a result any map from S to a big Cohen-Macaulay

R-algebra B factors through Θ. Indeed, let φ be the map S → Θ and let f : S → B.

Given u ∈ Θ, xNu = φ(s1) and yNu = φ(s2), where s1, s2 ∈ S. Since yNs1 − xNs2 is

in the kernel of φ, there exists M ≥ 0 such that xMyM+Ns1 = xM+NyMs2 in S. If

f(s1) = b1 and f(s2) = b2, then xMyM+Nb1 = xM+NyMb2 in B, and so yNb1 = xNb2

as (xy)M is not a zerodivisor in B. Moreover, since B is a big Cohen-Macaulay

algebra, b1 = xNb′1 and b2 = yNb′2, where b′1 = b′2 as (xy)Nb′1 = (xy)Nb′2 in B. We

can then extend the map f : S → B to Θ→ B by mapping u to b′1 = b′2. It is then

straightforward to check that this map is a well-defined ring homomorphism.

Suppose now that S is a seed over a local Noetherian ring R, and let

T =
S[U1, . . . , Uk]

(s− s1U1 − · · · − skUk)

be an algebra modification of S, where xk+1s = x1s1 + · · ·+ xksk is a relation in S

on a partial system of parameters x1, . . . , xk+1 in R. When k ≥ 2, we also have an

induced relation on x1, · · · , xk+1 in Θ = Θ(x1, x2;S) so that

T ′ =
Θ[U1, . . . , Uk]

(s− s1U1 − · · · − skUk)

is an algebra modification of Θ over R. We will call T ′ an enhanced algebra modifi-

cation of S over R induced by the relation xk+1s = x1s1 + · · ·+ xksk.
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With our remarks above about how any map from S to a big Cohen-Macaulay

algebra B factors through Θ, we obtain a commutative diagram

Θ �� T ′

		�
��

��
��

S

��

�� T

��

�� B

which shows that maps from algebra modifications of seeds to big Cohen-Macaulay

algebras factor through the induced enhanced modification of S when T is a mod-

ification with respect to a relation on 3 or more parameters from R. With the use

of this factorization, we can adapt the process described in [HH7, Section 3] to con-

struct a big Cohen-Macaulay algebra from a given seed as a very large direct limit

of enhanced modifications and ordinary modifications with respect to relations on 1

or 2 parameters.

The following lemma shows that enhanced algebra modifications preserve the

properties of being reduced or a domain. This fact will show us that domain seeds

and reduced seeds (in any characteristic) can be mapped to big Cohen-Macaulay

algebras that are domains or reduced, respectively.

Lemma 6.5.4. Let (R,m) be a local Noetherian ring, and let S be a domain (resp.,

reduced). If T is an enhanced algebra modification of S over R, then T is also a

domain (resp., reduced).

Proof. Let T be induced by the relation xk+1s = x1s1 + · · ·+xksk in S, where k ≥ 2.

Then x1, x2 forms a possibly improper regular sequence on Θ = Θ(x1, x2;S) (see

[Ho3, Lemma 12.4]), and so x1, s− x1U1 − · · · − xkUk is a possibly improper regular

sequence on Θ[U1, . . . , Uk]. (Any polynomial f(U) that kills s − x1U1 − · · · − xkUk
modulo x1 has a highest degree term as a polynomial in U2, but this term is killed by

x2 modulo x1. Since x2 is not a zerodivisor modulo x1, the term must be divisible by
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x1. Hence, f(U) is divisible by x1, and s−x1U1−· · ·−xkUk is not a zerodivisor modulo

x1.) Therefore, x1 is not a zerodivisor on Θ[U1, . . . , Uk]/(s−x1U1−· · ·−xkUk). The

result now follows from the following short lemma.

Lemma 6.5.5. Let A be a domain (resp., reduced). If a and x are elements of A

such that x is not a zerodivisor on A′ := A[U ]/(a − xU), then A′ is also a domain

(resp., reduced).

Proof. Since x is not a zerodivisor on A′, we have an inclusion A′ ↪→ (A′)x so that

it suffices to show (A′)x is a domain (resp., reduced). It is, however, easy to verify

that (A′)x ∼= Ax via the map that sends U to a/x (even without any hypotheses on

A or x). Since A is a domain (resp., reduced), so is Ax.

As promised, we now prove that one can modify a domain or reduced seed into

a big Cohen-Macaulay algebra with the same property. Note that the result is

characteristic free and thus independent of the reduced result proved earlier in the

first section of the chapter.

Proposition 6.5.6. Let R be a local Noetherian ring. If S is a seed and a domain

(resp., reduced), then S maps to a big Cohen-Macaulay algebra that is a domain

(resp., reduced).

Proof. To start, notice that any element of S killed by a parameter of R will be in

the kernel of any map to a big Cohen-Macaulay R-algebra B, so that the map S to B

factors through the quotient of S modulo the ideal of elements killed by a parameter

of R. When S is a domain, this ideal is the zero ideal, and when S is reduced, this

ideal is radical. Hence the quotient is still a domain (resp., reduced). Without loss

of generality, we may then assume that no element of S is killed by a parameter of
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R. Thus, any nontrivial relation xk+1s = x1s1 + · · ·+ xksk in S on part of a system

of parameters x1, · · · , xk+1 from R will have k ≥ 1.

If k = 1, then an algebra modification with respect to that relation factors through

the A-transform Θ(x1, x2;S). If k ≥ 2, then we can factor any algebra modification

through an enhanced algebra modification. Therefore, we can map S to a big Cohen-

Macaulay R-algebra that is constructed as a very large direct limit of sequences of

enhanced algebra modifications and A-transforms.

Since we are starting with a domain (resp., reduced ring) S and since A-transforms

of domains (resp., reduced rings) are domains (resp., reduced), Lemma 6.5.4 implies

that all enhanced algebra modifications and A-transforms in any sequence will con-

tinue to be domains (resp., reduced). Hence, S maps to a big Cohen-Macaulay

algebra B that is a direct limit of domains (resp., reduced rings), and so B itself is

a domain (resp., reduced).

We are now able to verify in positive characteristic that every seed can be mapped

to a big Cohen-Macaulay algebra that is a domain.

Corollary 6.5.7. Let R be a local Noetherian ring of positive characteristic. If S is

a seed, then S maps to a big Cohen-Macaulay algebra domain.

Proof. By Proposition 6.3.4, S maps to a minimal seed, and Proposition 6.5.2 implies

that the minimal seed is a domain. The previous lemma then implies that a minimal

seed can be mapped to a big Cohen-Macaulay algebra that is a domain.

As a consequence of this result, we can also show that all seeds map to big Cohen-

Macaulay algebras with a host of nice properties. We will use an uncountable limit

ordinal number in the proof and refer the reader to [HJ, Chapters 7 and 8] for the

definitions and properties of such ordinal numbers.
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Proposition 6.5.8. Let (R,m) be a local Noetherian ring of positive characteristic.

If S is a seed, then S maps to an absolutely integrally closed, m-adically separated,

quasilocal big Cohen-Macaulay algebra domain B.

Proof. We will construct B as a direct limit of seeds indexed by an uncountable

ordinal number. Let β be an uncountable initial ordinal of cardinality ℵ1. Using

transfinite induction, we will define an S-algebra Sα, for each ordinal number α < β,

and then we will define B to be the direct limit of all such Sα.

Let S0 = S. Given a seed Sα, we can form a sequence

Sα → S(1)
α → S(2)

α → S(3)
α → S(4)

α =: Sα+1,

where S
(1)
α is a minimal seed (and so a domain by Proposition 6.5.2), S

(2)
α = (S

(1)
α )+

(an integral extension of a seed and so a seed by Theorem 6.4.8), S
(3)
α is a quasilocal

big Cohen-Macaulay R-algebra (which S
(2)
α maps to by Lemma 6.1.4), and S

(4)
α is the

m-adic completion of S
(3)
α (which is m-adically separated and a big Cohen-Macaulay

algebra by [Bar-Str, Theorem 1.7]). If α is a limit ordinal, then we will define

Sα := lim−→
γ<α

Sγ.

Given our definition for Sα, for each ordinal α < β, we define

B := Sβ = lim−→
α<β

Sα.

Since each Sα maps to a domain S
(1)
α , and conversely, each S

(1)
α maps to Sα+1, the

ring B can be written as a direct limit of domains and is, therefore, also a domain.

Similarly, B is also a direct limit of absolutely integrally closed domains (using S
(2)
α ,

for each α < β). If we let L be the algebraic closure of the fraction field of B and

let Kα be the algebraic closure of the fraction field of S
(2)
α , for each α < β, then an
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element u ∈ L satisfying a monic polynomial equation over B is the image of an

element v in some Kα that satisfies a monic polynomial equation over S
(2)
α , for some

α. Since S
(2)
α is absolutely integrally closed, v is in S

(2)
α , and so its image u in L is

also in B. Therefore, B is absolutely integrally closed.

Using the rings S
(3)
α , we can see that B is the direct limit of quasilocal big Cohen-

Macaulay R-algebras, and so B is itself a quasilocal big Cohen-Macaulay algebra.

Indeed, it is easy to see that (x1, . . . , xk)B : Bxk+1 ⊆ (x1, . . . xk)B, for each partial

system of parameters x1, . . . , xk+1 of R as this fact is true in each S
(3)
α . Furthermore,

mB �= B, as the opposite would imply that mS
(3)
α = S

(3)
α , for some α, which is

impossible in a big Cohen-Macaulay algebra. It is also straightforward to verify that

a direct limit of quasilocal rings is quasilocal.

Finally, to see thatB ism-adically separated, we note thatB is a direct limit of the

S
(4)
α , where each of these rings is m-adically separated. Suppose that u ∈ ⋂km

kB.

Then for each k, there exists an ordinal α(k) such that u ∈ mkS
(4)
α(k). Let α be the

union of all the α(k). Since α(k) < β, for all k, we have a countable set of ordinal

numbers, and since β is uncountable, we see that α < β. Therefore, u ∈ ⋂km
kSα,

and so u ∈ ⋂km
kS

(4)
α = 0.

6.6 Tensor Products and Base Change

In this section, let R and S be complete local domains of positive characteristic,

and let S be an R-algebra. We will look at two previously open questions about big

Cohen-Macaulay algebras and use our previous results to provide positive answers

to the questions, which show that the class of seeds over a complete local domain

possesses further properties of the class of solid algebras.

First, given two big Cohen-Macaulay R-algebras B and B′, does there exist a big
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Cohen-Macaulay algebra C such that

B �� C

R ��

��

B′

��

commutes? An equivalent question is whether the tensor product of two seeds over

R is also a seed over R.

Another open question involves base change R → S between complete local do-

mains. Given a big Cohen-Macaulay R-algebra B, can B be mapped to a big Cohen-

Macaulay S-algebra C such that the diagram

B �� C

R ��

��

S

��

commutes? Equivalently, we could ask whether the property of being a seed is

preserved under this manner of base change since B ⊗R S fills in the diagram and

would map further to a big Cohen-Macaulay S-algebra if it were a seed over S.

We will show that both of these questions have positive answers in positive char-

acteristic. First, we address the question of why the tensor product of seeds is a

seed. We will derive our result from the case of a regular local base ring and make

use of tight closure and test elements for the general case. We will need the next two

lemmas to obtain our result in the regular case.

Lemma 6.6.1. If S and T are any commutative rings such that T is flat over S, I

is an ideal of S, and x ∈ S, then IT :T x = (I :S x)T .

Proof. Over S, we have an exact sequence

0→ I :S x

I
→ S

I
x→ S

I
.
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Since T is flat over S, the sequence remains exact when we tensor with T . Therefore,

IT :T x/IT ∼= (I :S x/I)⊗S T ∼= (I :S x)T/IT , and we are done.

Lemma 6.6.2. If C is a big Cohen-Macaulay algebra over a local ring (S, n) and D

is faithfully flat over C, then D is a big Cohen-Macaulay S-algebra.

Proof. Let x1, . . . , xk+1 be part of a system of parameters for S, and let d be an

element of (x1, . . . , xk)D :D xk+1. Using the lemma above,

d ∈ ((x1, . . . , xk)C :C xk+1)D ⊆ ((x1, . . . , xk)C)D = (x1, . . . , xk)D

because C is a big Cohen-Macaulay S-algebra. Finally, as D is faithfully flat over

C, and nC �= C, nD �= D either.

Now, if A is a regular local ring, andB and B′ are big Cohen-Macaulay A-algebras,

then B is faithfully flat over A by Proposition 2.3.2. Therefore, B⊗AB′ is faithfully

flat over B′, and since B′ is a big Cohen-Macaulay A-algebra, we can use the previous

lemma to conclude:

Lemma 6.6.3. If A is a regular local Noetherian ring, and B and B′ are big Cohen-

Macaulay A-algebras, then B ⊗A B′ is a big Cohen-Macaulay A-algebra as well.

Consequently, if S and S ′ are seeds over A, then S ⊗A S ′ is a seed over A.

We can now establish our first result, concerning tensor products of seeds.

Theorem 6.6.4. Let (R,m) be a complete local domain of positive characteristic.

If (Si)i∈I is an arbitrary family of seeds over R, then
⊗

i∈I Si is also a seed over R.

Consequently, if B and B′ are big Cohen-Macaulay R-algebras, then there exists a

big Cohen-Macaulay R-algebra C filling the commutative diagram:

B �� C

R ��

��

B′

��
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Proof. Since a direct limit of seeds over R is a seed over R by Lemma 6.1.2, we

may assume that I is a finite set. By induction, we may assume that I consists

of two elements. We may then also assume that S1 = B and S2 = B′ are big

Cohen-Macaulay R-algebras. By the Cohen Structure Theorem, R is a module-finite

extension of a complete regular local ring A.

We next want to reduce to the case that R is a separable extension of A. Notice

that for any q = pe, R[A1/q] is still a module-finite extension of A1/q, a complete

regular local ring. Furthermore, B[A1/q] and B′[A1/q] are clearly still big Cohen-

Macaulay R[A1/q]-algebras, and if B[A1/q] ⊗R[A1/q ] B
′[A1/q] is a seed over R[A1/q],

then it is also a seed over R, which will show that B ⊗R B′ is a seed over R, as

needed. We may therefore replace A and R by A1/q and R[A1/q] for any q ≥ 1. We

claim that for any q � 1, we obtain a separable extension A1/q → R[A1/q]. Indeed,

suppose that R is not separable over A. Passing to the fraction field K of A, we have

that K ⊗A R is a finite product of finite field extensions of K. We may then assume

that L is a finite inseparable field extension of K and show that L[K1/q] is separable

over K1/q, for some q � 1. For any element y of L whose minimal polynomial

is inseparable, we can find q sufficiently large so that the minimal polynomial of

y in L[K1/q] over K1/q becomes separable. Since L is a finite extension, for any q

sufficiently large, L[K1/q] becomes separable over K1/q, which implies that R[A1/q]

will be separable over A1/q.

We can now assume without loss of generality that R is separable over A. Let J

be the ideal of R⊗AR generated by all elements killed by an element of A. We claim

that R0 := (R⊗A R)/J is a reduced ring. As R0 is a separable extension of A (since

R is separable), if r is a nilpotent element, then r satisfies a polynomial Xq over A.

Thus, the separability implies that r must also satisfy the polynomial X, i.e., r = 0.
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Since B and B′ are big Cohen-Macaulay R-algebras and R is a module-finite

extension of A, we also have that B and B′ are big Cohen-Macaulay A-algebras.

By Lemma 6.6.3, B ⊗A B′ is also a big Cohen-Macaulay A-algebra. The R-algebra

structures of B and B′ induce a natural map from R ⊗A R to B ⊗A B′. Since the

latter ring is big Cohen-Macaulay over A, the ideal J in R⊗A R is contained in the

kernel of the map to B⊗AB′. Therefore, the map R⊗AR→ B⊗AB′ factors through

R0.

Since R is a domain and a homomorphic image of R⊗AR (and so a homomorphic

image of R0), the kernel of R0 → R is a prime ideal P . Moreover, since R0 is also a

module-finite extension of A, the dimensions of R and R0 are the same, so that P is

a minimal prime of R0. Finally, notice that the kernel of B ⊗A B′ → B ⊗R B′ is the

extended ideal P (B ⊗A B′), since it is also generated by the elements r ⊗ 1− 1⊗ r,
for all r ∈ R. We therefore obtain a commutative diagram

B ⊗A B′ �� B ⊗R B′

R0
��

��

R

��

where the horizontal maps are the result of killing the minimal prime ideal P of R0

(resp., P (B ⊗A B′)).

We will now show that B ⊗R B′ is a seed over R by constructing a weak durable

colon-killer with respect to the systems of parameters of R that are contained in A.

We can then apply Proposition 6.2.4 and Theorem 6.2.8 to finish the proof.

Since R0 is reduced and P is a minimal prime, there exists c′ �∈ P such that

c′P = 0. Therefore, c′P (B ⊗A B′) = 0 too. As c′ �∈ P , its image in R is nonzero.

Since R is a complete local domain (and so local, reduced, and excellent), R has a

test element c′′ �= 0 by Theorem 2.2.6. Let c = c′c′′, a nonzero test element of R, and
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let d be a lifting of c to R0 so that dP (B ⊗A B′) = 0.

Now, suppose that x1, . . . , xn is a system of parameters of A, and suppose that

xk+1u ∈ (x1, . . . , xk)(B ⊗R B′), for some k ≤ n− 1. Then

xk+1u ∈ ((x1, . . . , xk) + P )(B ⊗A B′),

and xk+1du ∈ (x1, . . . , xk)(B ⊗A B′). Since B ⊗A B′ is a big Cohen-Macaulay A-

algebra, du ∈ (x1, . . . , xk)(B ⊗A B′), and so cu ∈ (x1, . . . , xk)(B ⊗R B′), as c and

d have the same image in B ⊗R B′. Therefore, c is a colon-killer for systems of

parameters of A in B⊗RB′. By Proposition 6.2.4, we may replace c by a power that

is a colon-killer for systems of parameters of R.

Finally, suppose that cN ∈ ⋂km
k(B ⊗R B′). Then Theorem 2.5.4 and Theorem

2.5.5 imply that cN ∈ ⋂k((m
k)∗) since B⊗RB′ is solid over R. (The solidity ofB⊗RB′

follows from Proposition 2.5.2(a).) As c is a test element in R, cN+1 ∈ ⋂km
k = 0,

a contradiction. Hence, c is a durable colon-killer in B ⊗R B′, and so B ⊗R B′ is a

seed over R by Theorem 6.2.8.

We now proceed to the question of whether being a seed over a complete local

domain of positive characteristic is a property that is preserved by base change to

another complete local domain. If R → S is a map of complete local rings, then

[AFH, Theorem 1.1] says that the map factors through a complete local ring R′ such

that R→ R′ is faithfully flat with regular closed fiber, and R′ → S is surjective. It

therefore suffices to treat the cases of a flat local map with regular closed fiber and

the case of a surjective map with kernel a prime ideal. We start with an elementary

lemma and then prove the result for the flat local case.

Lemma 6.6.5. Let (A,m) be a local Noetherian ring, and let B be a flat, local

Noetherian R-algebra. If y1, . . . , yt is a regular sequence on B/mB, then y1, . . . , yt is
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a regular sequence on B, and B/(y1, . . . , yt)B is flat over A.

Proof. The proof is immediate by induction on t, where the base case of t = 1 is

given by [Mat, (20.F)].

With this lemma, we are ready to prove our base change result for flat local maps.

It is perhaps interesting to note that our argument only requires that the closed

fiber is Cohen-Macaulay, not regular. Unlike the surjective case, we will not need to

assume that our rings have positive characteristic, are complete, or are domains.

Proposition 6.6.6. Let R→ S be a flat local map of Noetherian local rings with a

Cohen-Macaulay closed fiber S/mS, where m is the maximal ideal of R. If T is a

seed over R, then T ⊗R S is a seed over S.

Proof. It suffices to assume that T = B is a big Cohen-Macaulay R-algebra, and by

[Bar-Str, Theorem 1.7], it suffices to show that a single system of parameters of S

is a regular sequence on B ⊗R S since this result shows that such a ring maps to an

S-algebra where every system of parameters of S is a regular sequence.

Fix a system of parameters x1, . . . , xd for R. Since S is faithfully flat over R,

we have the dimension equality dimS = dimR + dimS/mS. Hence, the images of

x1, . . . , xd in S can be extended to a full system of parameters x1, . . . , xd, xd+1, . . . , xn

of S, where xd+1, . . . , xn is a system of parameters for S/mS. As x1, . . . , xd form a

regular sequence on B, for any 1 ≤ k ≤ d− 1, we have an exact sequence:

0→ B/(x1, . . . , xk)B
xk+1−→ B/(x1, . . . , xk)B,

and since S is flat over R, the sequence remains exact after tensoring with S. Thus,

xk+1 is not a zerodivisor on

(B/(x1, . . . , xk)B)⊗R S ∼= (B ⊗R S)/(x1, . . . , xk)(B ⊗R S),
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for any 1 ≤ k ≤ d− 1.

It now suffices to show that xd+1, . . . , xn is a regular sequence on the quotient

B := (B ⊗R S)/(x1, . . . , xk)(B ⊗R S).

Let I := (x1, . . . , xd)R, and let R := R/I, and S := S/IS. Then S is faithfully flat

over R, and since xd+1, . . . , xn is a system of parameters for the Cohen-Macaulay ring

S/mS, it is a regular sequence on S/mS ∼= S/mS, where m = m/I, the maximal

ideal of R. We can now apply Lemma 6.6.5 to R and S to conclude that xd+1, . . . , xn

is a regular sequence on S and that S/(xd+1, . . . , xk)S is flat over R, for all d+ 1 ≤

k ≤ n.

For any d ≤ k ≤ n− 1, we have a short exact sequence

0→ S/(xd+1, . . . , xk)S
xk+1−→ S/(xd+1, . . . , xk)S → S/(xd+1, . . . , xk, xk+1)S → 0,

where xd+1, . . . , xk is the empty sequence when k = d. Since S/(xd+1, . . . , xk+1)S is

flat over R, we have TorR1 (B, S/(xd+1, . . . , xk+1)S) = 0. Therefore,

0→ B ⊗R (S/(xd+1, . . . , xk)S)
xk+1−→ B ⊗R (S/(xd+1, . . . , xk)S)

is exact, and since

B ⊗R (S/(xd+1, . . . , xk)S) ∼= (B ⊗R S)/(xd+1, . . . , xk)(B ⊗R S),

xd+1, . . . , xn is a possibly improper regular sequence on B ⊗R S. We can now finally

see that x1, . . . , xd, xd+1, . . . , xn is a possibly improper regular sequence on B ⊗R S

as B ⊗R S ∼= (B ⊗R S)/I(B ⊗R S). If, however, (B ⊗R S)/n(B ⊗R S) = 0, where n

is the maximal ideal of S, then B ⊗R (S/nS) = 0, which implies that the product

(B/mB)⊗R/m (S/nS) = 0 over the field R/m. Therefore, B/mB = 0 or S/nS = 0,

but neither of these occurs, so we have a contradiction. Hence, x1, . . . , xn is a regular

sequence on B ⊗R S, and so B ⊗R S is a seed.
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We will now deal with the case of a surjective map R → S of complete local

domains of positive characteristic. We can immediately reduce to the case where

S = R/P , where P is a height 1 prime ideal of R. We will first demonstrate the

result when R is normal and then show how the problem can be reduced to the

normal case using Theorem 6.4.8 concerning integral extensions of seeds.

In the normal case, we will make use of test elements again. When R is normal,

the singular locus I has height at least 2. Since Rc is regular for any c ∈ I, when R

is also a reduced excellent local ring, [HH6, Theorem 6.1] implies that some power

cN is a test element of R. Hence, if P is a height 1 prime of R, there exists a test

element c of R not in P . We record this fact in the following lemma.

Lemma 6.6.7. Let R be a normal excellent local ring of positive characteristic. If

P is a height 1 prime of R, then there is a test element c ∈ R \ P .

Lemma 6.6.8. Let (R,m) be a complete local, normal domain of positive charac-

teristic, and let S = R/P , where P is a height 1 prime of R. If T is a seed over R,

then T/PT is a seed over S.

Proof. It suffices to assume that B = T is a big Cohen-Macaulay R-algebra. Since

R is normal and ht P = 1, we see that RP is a DVR. Therefore, PRP is a principal

ideal, which we may assume is generated by the image of an element x ∈ R. Each

element of P is then multiplied into xR by some element of R \ P , and since P is

finitely generated, there exists c′ ∈ R \ P such that c′P ⊆ xR. By Lemma 6.6.7,

there exists a test element c′′ ∈ R \ P , and so if we put c := c′c′′, then c is a test

element, cP ⊆ xR, and c is not in P .

We claim that c is a weak durable colon-killer for B/PB so that B/PB will be

a seed over S = R/P by Theorem 6.2.8. Extend x to a full system of parameters
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x, x2, . . . , xd for R. Then xt2, . . . , x
t
d is a system of parameters for S, for any t ∈ N.

Suppose that bxtk+1 ∈ (xt2, . . . , x
t
k)B/PB, for some k ≤ d−1 and some t. This relation

lifts to a relation bxtk+1 ∈ (xt2, . . . , x
t
k)B +PB in B, and so cbxtk+1 ∈ (x, xt2, . . . , x

t
k)B

because c multiplies P into xR. Since B is a big Cohen-Macaulay R-algebra, we

have cb ∈ (x, xt2, . . . , x
t
k)B, and so cb ∈ (xt2, . . . , x

t
k)B/PB.

To finish, suppose that cN ∈ ⋂k(m/P )kB/PB, where m/P is the maximal ideal

of S = R/P . We can then lift to B to obtain cN ∈ ⋂k(m
k + P )B. Since R is a

complete local domain, and B is a big Cohen-Macaulay R-algebra, Theorem 2.5.6

implies that cN ∈ ⋂k(m
k+P )∗, and since c was chosen to be a test element, we have

cN+1 ∈ ⋂k(m
k + P ) = P . We now have a contradiction as c �∈ P . Therefore, the

image of c in B/PB is a weak durable colon-killer, and so B/PB is a seed over S

by Theorem 6.2.8.

We finally treat the case of an arbitrary surjection of complete local domains by

reducing to the case of the previous lemma.

Proposition 6.6.9. Let R → S be a surjective map of positive characteristic com-

plete local domains. If T is a seed over R, then T ⊗R S is a seed over S.

Proof. We can immediately assume that the kernel of R → S is a height 1 prime

P of R. Let R′ be the normalization of R in its fraction field. Then R′ is also a

complete local domain. Since R′ is an integral extension of R, there exists a height

1 prime Q lying over P .

By Corollary 6.5.7, T maps to a big Cohen-Macaulay R-algebra domain B, and

so we may replace T by B and assume that T is a domain. We then have an integral

extension T [R′] of T inside the fraction field of T . Since T is a seed over R, Theorem

6.4.8 implies that T [R′] is also a seed over R. Therefore, T [R′] maps to a big Cohen-
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Macaulay R-algebra C (which is also an R′-algebra), and so Corollary 6.2.6 implies

that C is a big Cohen-Macaulay R′-algebra since R′ is integral over R. We now have

the commutative diagram:

C �� C/QC

T



������������ ��

��

T/PT



���������

R′ �� R′/Q

��

R

�������������� ��

��

S

��

������������

since S = R/P and Q lies over P . By Lemma 6.6.8, C/QC is a seed over R′/Q.

Since R′/Q is an integral extension of S = R/P , every system of parameters of S is

a system of parameters of R′/Q, and so C/QC is also a seed over S, but this implies

that T/PT is also a seed over S, as needed.

Now that we have shown that the property of being a seed over a complete local

domain is preserved by flat base change with a regular closed fiber (Proposition 6.6.6)

and by surjections (Proposition 6.6.9), we may apply [AFH, Theorem 1.1] to factor

any map of complete local domains into these two maps. We therefore arrive at the

following theorem, which answers the base change question asked at the beginning

of the section.

Theorem 6.6.10. Let R→ S be a local map of positive characteristic complete local

domains. If T is a seed over R, then T ⊗R S is a seed over S. Consequently, if B is

a big Cohen-Macaulay R-algebra, then there exists a big Cohen-Macaulay S-algebra
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C filling the commutative diagram:

B �� C

R ��

��

S

��

6.7 Seeds and Tight Closure in Positive Characteristic

Because we have the two main results from the last section (Theorems 6.6.4 and

6.6.10), we can now use the class of all big Cohen-Macaulay R-algebras B(R), where

R is a complete local domain of characteristic p, to define a closure operation for all

Noetherian rings of positive characteristic. A key point is that B(R) is a directed

family and has certain base change properties. By Theorem 2.5.6, our new closure

operation is equivalent to tight closure for complete local domains of positive char-

acteristic, but the results above imply many of the properties one would want in a

good closure operation directly from the properties of big Cohen-Macaulay algebras,

independent of tight closure. This result adds evidence to the idea that such a closure

operation can be defined for more general classes of rings.

Definition 6.7.1. Let R be a complete local domain of positive characteristic, and

let N ⊆ M be finitely generated R-modules. Let N �
M be the set of all elements

u ∈ M such that 1 ⊗ u ∈ Im(B ⊗R N → B ⊗R M), for some big Cohen-Macaulay

R-algebra B.

Let S be a Noetherian ring of positive characteristic, and let N ⊆ M be finitely

generated S-modules. Let N �
M be the set of all u ∈ M such that for all S-algebras

T , where T is a complete local domain, 1 ⊗ u ∈ Im(T ⊗S N → T ⊗S M)�T⊗SM
. We

will call N �
M the �-closure of N in M .

We will see in Lemma 7.4.4 that the two definitions of �-closure coincide for com-
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plete local domains. We also show in the following chapter that �-closure satisfies

many nice properties, including persistence, (IS)�S ∩R ⊆ I�R for module-finite exten-

sions, I� = I for ideals in a regular ring, phantom acyclicity, and colon-capturing.



CHAPTER 7

Axioms for a Good Closure Operation

In equal characteristic, tight closure, or similar methods, can be used to show

the weakly functorial existence of big Cohen-Macaulay algebras. See Theorem 2.3.5,

[HH3], [HH7, Section 3], and [Ho3]. In these cases, the notion of weakly functorial

is that given in Theorem 2.3.5.

By weakly functorial existence of big Cohen-Macaulay algebras for a class of local

Noetherian rings C , we will mean, however, that we can assign a directed family B(R)

of big Cohen-Macaulay R-algebras to each R ∈ C such that given an R-algebra S,

with S ∈ C , and B ∈ B(R), there exists C ∈ B(S) such that the diagram below

commutes.

B �� C

R ��

��

S

��

We call B(R) a directed family if for all B,C ∈ B(R), there exists D ∈ B(R) such

that B and C both map to D as R-algebras.

The intent of this chapter is to investigate, for a given class of rings, what may

be the minimal necessary axioms which a closure operation must possess in order to

be a good analogue of tight closure. Another motivation is that we hope that the

existence of a closure operation satisfying sufficiently powerful axioms will imply the

141
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weakly functorial existence of big Cohen-Macaulay algebras, although we have not

been able to complete this program here.

In the second and third sections, we will show various consequences of the existence

of a closure operation that satisfies our list of axioms. The third section concentrates

on an analogue of phantom extensions (see Section 5.2.1 or [HH5] for the tight closure

notion of phantom extension). Phantom extensions are used in [HH5, Discussion

5.15] to give another proof of the existence of big Cohen-Macaulay modules in positive

characteristic. We introduce our analogue of phantom extensions, and the properties

we know about them, in the hope that they may eventually be used in a proof that

our axioms (or a larger set) imply the existence of big Cohen-Macaulay algebras.

As part of the “minimality” condition on our axioms, we will require that each

axiom can be derived from the weakly functorial existence of big Cohen-Macaulay

algebras. We will define a closure operation on ideals and modules using contracted-

expansion from big Cohen-Macaulay algebras and then show that this closure op-

eration satisfies all of our axioms. We will also extend our definition to general

Noetherian rings using the definition for complete local rings.

If C is the class of complete local domains of positive characteristic p, then R+

is a big Cohen-Macaulay algebra for all R ∈ C . Given a map R → S, there is a

“compatible” map R+ → S+. If B(R) = {R+} for all R ∈ C , then the plus closure

is the derived closure operation from this family of big Cohen-Macaulay algebras.

In the previous chapter we showed that the family of all big Cohen-Macaulay

R-algebras B(R) in the class of complete local domains of positive characteristic p

is a directed family (see Theorem 6.6.4) and induces a weakly functorial existence

of big Cohen-Macaulay algebras (see Theorem 6.6.10), so that the family of all big

Cohen-Macaulay algebras in positive characteristic very naturally induces a good
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closure operation, i.e., setting B(R) to be the class of all big Cohen-Macaulay R-

algebras wills give a closure operation that will satisfy our axioms. Over complete

local domains, this operation coincides with tight closure.

7.1 The Axioms

Definition 7.1.1. Let R be a full subcategory of Noetherian rings such that, for

all R ∈ R, all homomorphic images and localizations of R are in R, all completions

of localizations are in R, and all R-algebra DVRs are in R. We will call such a

category R a suitable category of Noetherian rings. Let C be the full subcategory

of R of all complete local domains.

A closure operation satisfying the following list of axioms will be denoted by N �
M

for the closure of N within M , and throughout we will call this the �-closure of N

in M .

Axioms 7.1.2. In the following, R and S are rings in R, a suitable category, with S

an R-algebra; I is an ideal of R; and N ⊆M andW are finitely generated R-modules.

Let C be the full subcategory of R of all complete local domains.

(1) N �
M is a submodule of M containing N .

(2) If M ⊆W , then N �
W ⊆M �

W .

(3) If f : M → W , then f(N �
M) ⊆ f(N)�W .

(4) (persistence) Im(S ⊗R N �
M → S ⊗R M) ⊆ Im(S ⊗R N → S ⊗R M)�S⊗RM

. In

particular, if N = I and M = R, we have I�RS ⊆ (IS)�S.

(5) I�RN
�
M ⊆ (IN)�M .

(6) (N �
M)�M = N �

M , i.e., the �-closure of N in M is closed in M .

(7) If N �
M = N , then 0�M/N = 0.

(8) If u+ pM ∈ Im(N/pN →M/pM)�M/pM , calculated over R/pR, for all minimal



144

primes p of R, then u ∈ N �
M .

(9) If u/1 ∈ (Nm)�Mm
, calculated over Rm, for all maximal ideals m of R, then

u ∈ N �
M .

(10) Let S be faithfully flat over R. If 1 ⊗ u ∈ Im(S ⊗R N → S ⊗R M)�S⊗RM
,

calculated over S, then u ∈ N �
M . In particular, if N = I and M = R, we have

(IS)�S ∩R ⊆ I�R.

(11) Let S be a module-finite extension of R. If 1⊗u ∈ Im(S⊗RN → S⊗RM)�S⊗RM
,

calculated over S, then u ∈ N �
M .

(12) If R is regular, then N �
M = N .

(13) (phantom acyclicity) For R ∈ C , a complete local domain, let G• be a finite

free complex over R:

0→ Gn → Gn−1 → · · · → G1 → G0 → 0.

Let αi be the matrix map Gi → Gi−1, and let ri be the determinantal rank of

αi, for 1 ≤ i ≤ n. Let bi be the free rank of Gi, for 0 ≤ i ≤ n. Denote the ideal

generated by the size r minors of a matrix map α by Ir(α). If bi = ri + ri−1

and ht Iri(αi) ≥ i, for all 1 ≤ i ≤ n, then Zi ⊆ (Bi)
�
Gi

, where Bi is the image

of αi+1 and Zi is the kernel of αi. In other words, if the previous rank and

height conditions are satisfied, then the cycles are contained in the �-closure of

the boundaries.

Remark 7.1.3. Axioms (4), (8), (9), and (10) allow us to reduce many problems to

the case of complete local domains since the completion of a local ring is faithfully

flat over the base. Essentially, this allows us to ignore the larger class R and mainly

work over the class of complete local domains C when necessary.

Remark 7.1.4. Comparing to Proposition 2.2.3 and Theorems 2.2.9, 2.2.10, and
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2.2.11, we see that tight closure is known to possess all of these axioms, except

for Axioms (9) and (10). If, however, we defined tight closure for complete local

domains and then extended to all positive characteristic rings R by testing tight

closure over all complete local R-algebra domains, then we would have the notion of

formal tight closure, as described by Hochster in [Ho3, Remark 8.7]. Formal tight

closure obeys all of the axioms above.

7.2 Corollaries of the Axioms

Using the axioms of the last section, we can derive many nice properties. Included

amongst these properties are colon-capturing and the fact that, like tight closure, the

�-closure of an ideal is contained in its integral closure. Throughout this section, R

is a suitable category, and C is the full subcategory of R consisting of all complete

local domains of R.

Lemma 7.2.1 (colon-capturing). Let R be a local ring in R such that every system

of parameters of R is a system of parameters in R̂/p, for every minimal prime p of

R̂. If x1, . . . , xk+1 is part of a system of parameters for R, then

(x1, . . . , xk) :R xk+1 ⊆ (x1, . . . , xk)
�.

Proof. Using Axioms (8) and (10) and our hypothesis on R, we can assume R is a

complete local domain.

Let G• := K•(x1, . . . , xk+1;R), the Koszul complex for x1, . . . , xk+1. Let Z be

the kernel of G1 → G0, and let B be the image of G2 → G1. Let ε1, . . . , εk+1 be

the standard basis for G1 = K1(x1, . . . , xk+1;R) ∼= Rk+1. Then Z is the collection

of vectors (r1, . . . , rk+1) such that r1x1 + · · · + rk+1xk+1 = 0 in R, and B is the

submodule of G1 generated by {xjεi − xiεj | 1 ≤ i, j ≤ k + 1}. Let π : G1 � R be

the projection map (r1, . . . , rk+1) �→ rk+1, so that π(B) = (x1, . . . , xk)R. Axiom (3)



146

implies that π(B�
G1

) ⊆ π(B)�R = (x1, . . . , xk)
�. If uxk+1 = x1r1 + · · ·+ xkrk, then the

vector (−r1, . . . ,−rk, u) is in Z. By phantom acyclicity, (−r1, . . . ,−rk, u) ∈ B�
G1

,

which implies that u = π(−r1, . . . ,−rk, u) ∈ (x1, . . . , xk)
�.

Lemma 7.2.2. If R ∈ R and I ⊆ R, then I� ⊆ I, the integral closure of I.

Proof. An element x ∈ R is in I if and only if h(x) ∈ IV for every homomorphism

h : R → V such that V is a DVR, and ker h is a minimal prime of R. (See [HH1,

Section 5] or [L].) By Axiom (4), x ∈ I� implies that h(x) ∈ (IV )�V , for all such maps

h : R → V . Axiom (12), however, implies that (IV )�V = IV so that the conclusion

holds.

The following list of properties mimics the list of properties given for tight closure

of modules in [HH1, Section 8].

Lemma 7.2.3. Let R ∈ R. In the following, N , N ′, Ni, and Mi are all R-

submodules of the finitely generated R-module M , and I is an ideal of R.

(a) Let I be any set. If Ni ⊆M , for all i ∈ I, then (
⋂
i∈I Ni)

�
M ⊆

⋂
i∈I(Ni)

�
M .

(b) Let I be any set. If Ni is �-closed in M , for all i ∈ I, then
⋂
i∈I Ni is �-closed

in M .

(c) (N1 +N2)
�
M = ((N1)

�
M + (N2)

�
M)�M .

(d) (IN)�M = (I�RN
�
M)�M .

(e) If N is �-closed in M , then N :M I is �-closed in M , and N :R N
′ is �-closed

in R.

(f) Let N ′ ⊆ N ⊆M . Then u ∈ N �
M if and only if u+N ′ ∈ (N/N ′)�M/N ′.

(g) If I is a finite set, N =
⊕

i∈I Ni, and M =
⊕

i∈I Mi, then N �
M =

⊕
i∈I(Ni)

�
M .

(h) Let J be the nilradical of R. Then 0�R = J . If R is reduced, then 0�R = 0.

(i) Let J be the nilradical of R. Then JM ⊆ N �
M .
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Proof. (a) Let u ∈ (
⋂
i∈I Ni)

�
M . By Axiom (2), u ∈ (Ni)

�
M for all i ∈ I.

(b) Since each Ni is �-closed, the conclusion follows from (a) and Axiom (6).

(c) As Ni ⊆ (Ni)
�
M , Axiom (2) implies that

(N1 +N2)
�
M ⊆ ((N1)

�
M + (N2)

�
M)�M .

Conversely, Ni ⊆ N1 +N2, with Axiom (2), implies that (Ni)
�
M ⊆ (N1 +N2)

�
M .

Therefore, (N1)
�
M + (N2)

�
M ⊆ (N1 +N2)

�
M . Axioms (2) and (6) then yield

((N1)
�
M + (N2)

�
M)�M ⊆ ((N1 +N2)

�
M)�M = (N1 +N2)

�
M .

(d) IN ⊆ I�RN
�
M implies that (IN)�M ⊆ (I�RN

�
M)�M by Axiom (2). For the converse,

Axiom (6) implies that it is sufficient to show I�RN
�
M ⊆ (IN)�M , which is exactly

Axiom (5).

(e) Since I(N :M I) ⊆ N (resp., (N :R N
′)N ′ ⊆ N), by Axioms (2) and (5),

I�R(N :M I)�M ⊆ (I(N :M I))�M ⊆ N �
M = N

(resp., (N :R N
′)�R(N ′)�M ⊆ ((N :R N

′)N ′)�M ⊆ N �
M = N). Therefore,

(N :M I)�M ⊆ N :M I�R

(resp., (N :R N ′)�R ⊆ N :R (N ′)�M). Since N :M I�R is trivially contained in

N :M I (resp., N :R (N ′)�M ⊆ N :R N
′), N :M I (resp., N :R N

′) is �-closed.

(f) Since (M/N ′)/(N/N ′) ∼= M/N , it is enough to show the case where N ′ = 0.

Let π : M → M/N be the natural surjection. If u ∈ N �
M , then Axiom (3)

implies that u+N = π(u) ∈ (π(N))�M/N = 0�M/N . Conversely, if u+N ∈ 0�M/N ,

then applying Axiom (3) to the map M/N →M/N �
M yields u+N �

M ∈ 0�
M/N�

M

.

By Axiom (7), 0 is �-closed in M/N �
M , so u+N �

M is zero in the quotient.
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(g) Let πi : M → Mi be the natural projection, and let ιi : Mi →M be the natural

inclusion, for all i. By Axiom (3), πi(N
�
M ) ⊆ πi(N)�Mi

= (Ni)
�
Mi

. Therefore,

N �
M ⊆

⊕
i(Ni)

�
Mi

in M =
⊕

iMi. Conversely, we apply Axiom (3) to the map

ιi to see ιi((Ni)
�
Mi

) ⊆ ιi(Ni)
�
M , which is contained in N �

M by Axiom (2). Thus,⊕
i(Ni)

�
Mi
⊆ N �

M .

(h) First, assume that R is a domain. Then u ∈ 0�R, and by Lemma 7.2.2, u is in

the integral closure of the zero ideal. Since (0) is a prime ideal, it is integrally

closed, and u = 0. For a general R, if u ∈ 0�R, then for all minimal primes p of

R, u ∈ 0�R/p = 0. This implies that u is in all minimal primes of R, and so u

is in J . Conversely, if u ∈ J , then u = 0 in R/p for all minimal primes p, and

u ∈ 0�R/p for all such p. By Axiom (8), u is in 0�R.

(i) By (h), JM = 0�RM , and since M = M �
M , we have JM ⊆ (0M)�M = 0�M by

Axiom (5). Then Axiom (2) implies that JM ⊆ 0�M ⊆ N �
M .

7.3 �-Phantom Extensions

In this section we want to define a notion of phantom extensions for �-closure. We

will continue the use of the axioms of Section 7.1 as our definition of �-closure and

will assume that all rings are in a suitable category R.

Since phantom extensions were used in [HH5] to produce a new proof of the exis-

tence of big Cohen-Macaulay modules in positive characteristic, a study of �-phantom

extensions may be very useful in showing the existence of big Cohen-Macaulay mod-

ules, or even algebras, in suitable categories.

Recall from Section 5.2.1 or [HH5] that for a map α : N →M of finitely generated

R-modules, α is a phantom extension if there exists c ∈ R◦ such that for all e� 0,
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there exists γe : Fe(M)→ Fe(N) such that γe ◦ Fe(α) = c(idFe(N)).

Via the Yoneda correspondence, every short exact sequence

0→ N
α→M → Q→ 0

corresponds to a unique element ε of Ext1
R(Q,N). Let P• be a projective resolu-

tion of Q = M/α(N). Then Ext1
R(Q,N) is isomorphic to H1(HomR(P•, N)), and ε

corresponds to a unique element of H1(HomR(P•, N)).

Given the map α : N → M , and the corresponding element ε of Ext1
R(Q,N),

Hochster and Huneke called ε phantom if a cocycle representative of ε in HomR(P1, N)

is in the tight closure of Im(HomR(P0, N)→ HomR(P1, N)) within HomR(P1, N). In

the case that N = R, Hochster and Huneke provide the following equivalence.

Theorem 7.3.1 (Theorem 5.13, [HH5]). Let R be a reduced Noetherian ring of

positive characteristic. An exact sequence

0→ R
α→M → Q→ 0

is a phantom extension if and only if the corresponding element ε ∈ Ext1
R(Q,R) is

phantom in the sense described just above.

We will use this latter property to define �-phantom extensions with respect to

�-closure.

Definition 7.3.2. Let R be a reduced Noetherian ring, M be a finitely generated

R-module, and α : R→ M an injective R-linear map. With Q = M/α(R), we have

an induced short exact sequence

0→ R
α→M → Q→ 0.

Let ε ∈ Ext1
R(Q,R) be the element corresponding to this short exact sequence via

the Yoneda correspondence. If P• is a projective resolution of Q consisting of finitely
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generated projective modules Pi, then we will call ε �-phantom if a cocycle represent-

ing ε in HomR(P1, R) is in Im(HomR(P0, R)→ HomR(P1, R))� within HomR(P1, R).

We will call α a �-phantom extension of R if ε is �-phantom. We will also call the

module M �-phantom.

Since the choice of projective resolution above is not canonical, we must demon-

strate that whether ε ∈ Ext1
R(Q,R) is phantom or not is independent of the choice

of P•. Let Q• be another projective resolution of Q consisting of finitely generated

projective modules. Given ε ∈ Ext1
R(Q,R) representing the short exact sequence

0→ R
α→M → Q→ 0,

let φ ∈ HomR(P1, R) (resp., φ′ ∈ HomR(Q1, R)) be a corresponding cocycle. Assume

that φ ∈ Im(HomR(P0, R) → HomR(P1, R))� in HomR(P1, R). We will show that

φ′ ∈ Im(HomR(Q0, R)→ HomR(Q1, R))� in HomR(Q1, R).

We can lift the identity map Q
id→ Q to a map of complexes:

(#) · · · �� P1
�� P0

�� Q �� 0

· · · �� Q1
��

f

��

Q0
��

��

Q ��

id

��

0

If we let (−)∨ denote HomR(−, R), then taking the dual of (#) yields the commuta-

tive diagram

(#∨) · · · P ∨
1

��

f∨
��

P ∨
0

��

��

Q∨��

id
��

0��

· · · Q∨
1

�� Q∨
0

�� Q∨�� 0��

Via the Yoneda correspondence, φ �→ φ′ under the map f∨. Since the element φ is

in Im(P ∨
0 → P ∨

1 )�P∨
1
, applying Axiom (3) to f∨ gives us

φ′ = f∨(φ) ∈ Im(P ∨
0 → Q∨

1 )�Q∨
1
.
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Since Im(P ∨
0 → Q∨

1 ) ⊆ Im(Q∨
0 → Q∨

1 ) in Q∨
1 , Axiom (2) shows φ′ ∈ Im(Q∨

0 → Q∨
1 )�Q∨

1
,

as claimed.

Now that we have a well-defined notion of �-phantom extensions, we will derive

some of the properties of tight closure phantom extensions for �-phantom exten-

sions using our definition and axioms. We start with a result analogous to [HH5,

Proposition 5.7a,e].

Lemma 7.3.3. Let R be a reduced Noetherian ring, let M be a finitely generated

R-module, and let α : R→ M be a �-phantom extension.

(a) If S is any reduced flat R-algebra, then the induced map S ⊗ α : S → S ⊗RM

is a �-phantom extension of S. In particular, S may be any localization of R.

(b) If β : R → N is an injection and φ : N → M such that α = φ ◦ β, then β is

also a �-phantom extension of R.

Proof. (a) Given the short exact sequence 0→ R
α→ M → Q→ 0, we apply S ⊗R −

to obtain

0→ S
S⊗α→ S ⊗RM → S ⊗R Q→ 0,

which is still exact because S is flat. The element 1 ⊗ ε in S ⊗R Ext1
R(Q,R) ∼=

Ext1
S(S⊗RQ, S) corresponds to this new sequence. Let P• be a projective resolution

of Q as in the definition above. Since S is flat, S⊗RP• remains a projective resolution

of Q. As S ⊗R HomR(Pi, R) ∼= HomS(S ⊗R Pi, S), if ε is represented by the cocycle

φ ∈ HomR(P1, R), then 1 ⊗ ε is represented by the image of the cocycle 1 ⊗ φ in

HomR(S ⊗R P1, S). By Axiom (4),

1⊗ φ ∈ Im(HomS(S ⊗R P0, S)→ HomS(S ⊗R P1, S))�

in HomS(S ⊗R P1, S). Therefore, S ⊗ α is a �-phantom extension of S.
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(b) From the injective maps α and β, where α is injective since it is �-phantom,

we get a commutative diagram with exact rows:

0 �� R
α ��M

π �� Q �� 0

0 �� R
β ��

id

��

N
π′

��

φ

��

Q′ ��

φ

��

0

where φ(u+β(R)) = φ(u)+α(R). Let ε ∈ Ext1
R(Q,R) correspond to the top row, and

let ε′ ∈ Ext1
R(Q′, R) correspond to the bottom row via the Yoneda correspondence.

The map φ induces a map ψ : Ext1
R(Q,R)→ Ext1

R(Q′, R). By [Mac, Lemma III.1.2],

ψ(ε) corresponds to the short exact sequence 0→ R→ N ′ → Q′ → 0, where

N ′ := {(m,n) ∈M ⊕Q′ | π(m) = φ(n)}.

We claim that N is isomorphic to N ′. Indeed, let f : N → N ′ be the map

f(n) = (φ(n), π′(n)) = (φ(n), n).

The target of f is N ′ as π(φ(n)) = φ(π′(n)), and f is clearly R-linear. If f(n) = (0, 0),

then n = 0 implies that n = β(r), for some r ∈ R. Then α = φ ◦ β implies that

φ(n) = α(r), but φ(n) = 0 and α injective means that r = 0 so that n = β(0) = 0.

Therefore, f is injective. Given (m,n) in N ′, we have f(n) = (φ(n), n). Since

π(m) = φ(n), π(m− φ(n)) = 0, and m− φ(n) = α(r), for some r ∈ R. Thus,

f(n+ β(r)) = (φ(n+ β(r)), n) = (φ(n) + α(r), n) = (m,n),

and so f is also surjective.

Therefore, ψ(ε) = ε′. If P• is a projective resolution of M consisting of finitely

generated projective modules, and P ′
• is a projective resolution of N consisting of

finitely generated projective modules, then by hypothesis, a cocycle representing ε in

HomR(P1, R) is also in Im(HomR(P0, R)→ HomR(P1, R))�. We can lift φ : Q′ → Q to
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a map of complexes P ′
• → P•. After applying HomR(−, R), we get the commutative

diagram

HomR(P1, R)

g

��

HomR(P0, R)��

��
HomR(P ′

1, R) HomR(P ′
0, R)��

where the map g induces ψ : Ext1
R(Q,R) → Ext1

R(Q′, R). Therefore, if we apply

Axioms (2) and (3), the cocycle in HomR(P ′
1, R) representing ε′ = ψ(ε) is also in

Im(HomR(P ′
0, R)→ HomR(P ′

1, R))�. Thus, ε′ is also phantom.

We now demonstrate more explicitly what it means for a module to be �-phantom.

In the local case we will derive extra information. Let R be reduced (resp., let (R, p)

be reduced and local). For a finitely generated R-moduleM and an injection R
α→M ,

if we set Q = M/α(R) as above, we have the short exact sequence

(7.3.4) 0→ R
α→M → Q→ 0.

Let w1, . . . , wn−1 be elements of M such that the images w1, . . . , wn−1 in Q form a

generating set for Q (resp., a minimal generating set), and let wn = α(1) so that

w1, . . . , wn generate M . Let

(7.3.5) · · ·F2 → F1
β1→ F0

β0→ Q→ 0

be a free resolution of Q (resp., a minimal free resolution), where F0
∼= Rn−1 with

basis ε1, . . . , εn−1 such that β0 is given by εi �→ wi. We can also choose a basis for

F1
∼= Rm such that β1 is given by the (n− 1)×m matrix

β1 :=


b11 · · · b1m

...
. . .

...

bn−1,1 · · · bn−1,m
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(where the entries bij are in p when (7.3.5) is a minimal resolution over (R, p)). We

can then construct the diagram

(7.3.6) Rm
γ1 ��

id
��

Rn
γ0 ��

π

��

M ��

����

0

Rm
β1 �� Rn−1

β0 �� Q �� 0

where Rn has basis ε1, . . . , εn, π(εi) = εi for i < n, and π(εn) = 0. The map γ0 is

given by εi �→ wi, and γ1 is given by the n×m matrix

γ1 :=



b11 · · · b1m

...
. . .

...

bn−1,1 · · · bn−1,m

bn1 · · · bnm


,

where bnjwn + b1jw1 + · · ·+ bn−1,jwn−1 = 0 in M , for 1 ≤ j ≤ m. (Such a bnj exists

for all j because b1jw1 + · · ·+ bn−1,jwn−1 = 0 in Q = M/Rwn.)

From the construction, it is clear that (7.3.6) commutes and that γ0 ◦ γ1 = 0.

The choice of the wi implies that (7.3.6) is exact at M . To see that ker γ0 ⊆ Im γ1,

suppose that r1w1 + · · · rnwn = 0 in M . Then r1w1 + · · ·+ rn−1wn−1 = 0 in Q, and

so there exist s1, . . . , sm in R such that

β1(s1, . . . , sm)tr = (r1, . . . , rn−1)
tr,

where (−)tr denotes the transpose of a matrix. Then

γ1(s1, . . . , sm)tr = (r1, . . . , rn−1, r)
tr ∈ Rn.

Since γ0 ◦ γ1 = 0, we see that r1w1 + · · ·+ rn−1wn−1 + rwn = 0 in M . Therefore our

hypothesis implies that rwn = rnwn, and so

α(r − rn) = (r − rn)α(1) = (r − rn)wn = 0.
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Since α is injective, r = rn so that the vector (ri) ∈ Im γ1.

We can now conclude that the top row of (7.3.6) is a finite free presentation of

M . (Since we do not know a priori whether w1, . . . , wn form a minimal basis for

M in the local case, we do not know whether the bnj are in p, i.e., we do not know

whether our presentation of M is minimal when R is local.)

We also obtain a commutative diagram

(7.3.7) 0 �� R
α ��M �� Q �� 0

F2
��

��

Rm
β1 ��

φ

��

Rn−1
β0 ��

ψ

��

Q ��

id

��

0

where ψ(εi) = wi, and φ is given by the 1 × m matrix (−bn1 · · · − bnm). Because

b1jw1 + · · · + bnjwn = 0 in M , for 1 ≤ j ≤ m, it is clear that (7.3.7) commutes as

claimed. We can then take the dual of (7.3.7) into R:

(7.3.8) 0

��

R��

φtr

��

HomR(M,R)��

��

HomR(Q,R)��

id
��

0��

F2 Rm�� Rn−1
βtr
1�� HomR(Q,R)�� 0��

Let Z be the kernel of Rm ∼= HomR(Rm, R) → HomR(F2, R) ∼= F2, and let B be

the image of βtr
1 . Then an element of Ext1

R(Q,R) is an element of Z/B. In fact,

as described in [HH5, Discussion 5.5], the element of Ext1
R(Q,R) corresponding to

the short exact sequence (7.3.4) is represented by the map φ : Rm → R in (7.3.7).

Equivalently, it is represented by the image of φtr in (7.3.8).

We are now ready to state an equivalent condition for a finitely generated R-

module M to be �-phantom over a local ring.

Lemma 7.3.9. Let R be a reduced ring, let M be a finitely generated module, and

let α : R → M be an injective map. Using the notation of the preceding discussion,

α is a �-phantom extension of R if and only if the vector (bn1, . . . , bnm)tr is in B�
Rm,
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where B is the R-span in Rm of the vectors (bi1, . . . , bim)tr, for 1 ≤ i ≤ n − 1, and

(−)tr denotes transpose.

If, moreover, (R, p) is local, then we can choose the bij to be in p, for 1 ≤ i ≤ n−1

and all j.

Proof. By our definition and the constructions above, α is �-phantom if and only if the

cocycle representing the corresponding element ε in Ext1
R(Q,R) is in (Im βtr

1 )�Rm . As

pointed out above, ε is represented by the image of φtr, which is (−bn1, . . . ,−bnm)tr.

Moreover, the image of βtr
1 is the R-span of the row vectors of β1, which is the R-span

of (bi1, . . . , bim)tr, for 1 ≤ i ≤ n− 1.

The second claim follows from the parenthetical remarks in the discussion just

above.

We can now prove the following fact, an analogue of [HH5, Proposition 5.14].

Lemma 7.3.10. Let R be reduced, and let M be a finitely generated R-module. If

α : R→M is a �-phantom extension, then the image of α(1) is not in pMp, for any

prime ideal p of R.

Proof. Suppose there exists a prime p such that α(1) ∈ pM . This remains true

when we localize at p, and by Lemma 7.3.3(a), αp is a �-phantom extension of Rp.

Therefore, we can assume that (R, p) is a reduced local ring. Using the notation

above developed for the reduced local case, α(1) = wn. So, α(1) ∈ pM if and only

if wn = r1w1 + · · · + rn−1wn−1 such that the ri are in p. This occurs if and only if

the vector (−r1, . . . ,−rn−1, 1)tr is in ker(Rn → M) = Im(Rm → Rn) = Im γ1. In

order for a vector with last component a unit to be in Im γ1, the last row of γ1 must

generate the unit ideal, i.e., (bn1, . . . , bnm)R = R. Therefore, there exists j0 such that

bnj0 ∈ R \ p. By Lemma 7.3.9, since α is �-phantom, the vector (bn1, . . . , bnm)tr is in
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B�
Rm , where B is the R-span in Rm of the vectors (bi1, . . . , bim)tr, for 1 ≤ i ≤ n− 1.

Since R is local, we may assume that every bij , for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m, is

in pR, Axiom (2) implies that (bn1, . . . , bnm)tr is in (pRm)�Rm . Using Axiom (3), for

the projection Rm → R mapping onto the jth0 -coordinate, we see that bnj0 ∈ (pR)�R,

but (pR)�R = p by Lemma 7.2.2. This implies that bnj0 cannot be a unit, and so

α(1) �∈ pM .

In order to use �-phantom extensions to produce big Cohen-Macaulay modules

(resp., algebras) using the previous lemma, we would still need to show that module

(resp., algebra) modifications of �-phantom extensions are still �-phantom extensions.

If this were true, then any finite sequence of modifications of a �-phantom extension

would terminate in a �-phantom extension. No such sequence could then be a bad

sequence because the image of 1 would not be in the expansion of the maximal ideal

of R. Therefore, �-phantom extensions merit further study.

7.4 A Closure Operation Derived From Big Cohen-Macaulay Algebras

Let R be a suitable category of rings (as defined in Section 7.1), and let C be

the full subcategory of R of all complete local domains. In this section, we will

also assume that for each (R,m) ∈ C , there exists a directed family B(R) of big

Cohen-Macaulay R-algebras such that

(i) if B ∈ B(R) and S is an R-algebra in R, then there exists C ∈ B(S) such

that the diagram below commutes.

(7.4.1) B �� C

R ��

��

S

��

(ii) if S ∈ C is an R-algebra with dimS = dimR+dimS/mS, then B(S) ⊆ B(R),
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where B(R) directed means that for any B,C ∈ B(R), there exists D ∈ B(R) such

that both B and C map to D.

The hypothesis that dimS = dimR + dimS/mS is equivalent to the condition

that the image of every partial system of parameters in R remains part of a system

of parameters in S since R and S are complete local. (See [Ho3, Remark 2.7].)

Remark 7.4.2. Theorems 6.6.4 and 6.6.10 of the last chapter show that if we let R be

the category of all rings of positive characteristic and let B(R) be the class of all big

Cohen-Macaulay R-algebras, for each complete local domain R, then the definitions

R and B(R) satisfy the conditions given above.

We will now define a closure operation, using the big Cohen-Macaulay algebras

B(R), by initially defining it for C and then extending the definition to all of R.

We will then show that this closure operation satisfies the axioms from Section 7.1.

Definition 7.4.3. Let R ∈ C , and let N ⊆ M be finitely generated R-modules.

Then N �
M is the set of all elements u ∈M such that 1⊗u ∈ Im(B⊗RN → B⊗RM),

for some B ∈ B(R).

Let S ∈ R, and let N ⊆M be finitely generated S-modules. Then N �
M is the set

of all u ∈M such that for all S-algebras T , where T ∈ C ,

1⊗ u ∈ Im(T ⊗S N → T ⊗S M)�T⊗SM
.

We will call N �
M the �-closure of N in M .

Before proving that the axioms hold, we must show that the definition of �-closure

for R is consistent with the definition for C .

Lemma 7.4.4. If R ∈ C , and N ⊆ M are finitely generated R-modules, then N �
M

is independent of which definition above is applied.
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Proof. Let u ∈M . If 1⊗u ∈ Im(T ⊗RN → T ⊗RM)�T⊗RM
for all R-algebras T , such

that T ∈ C , then this is certainly true for T = R. Therefore, membership defined

by the second criterion implies the first.

Now suppose that there exists B ∈ B(R) such that 1⊗u ∈ Im(B⊗RN → B⊗RM).

Let S be an R-algebra such that S ∈ C . Then there exists C ∈ B(S) that fills in

the commutative square (7.4.1). Hence, the image of u is in

Im(C ⊗B (B ⊗R N)→ C ⊗B (B ⊗R M))

∼= Im(C ⊗R N → C ⊗R M)

∼= Im(C ⊗S (S ⊗R N)→ C ⊗S (S ⊗RM)),

and so 1 ⊗ u ∈ Im(S ⊗R N → S ⊗R M)�S⊗RM
. Thus, the first criterion also implies

the second.

(7.4.5) For the remainder of this section, R and S are rings in R with S an R-algebra;

I is an ideal of R; and N ⊆M and W are finitely generated R-modules.

Proposition 7.4.6 (Axiom 1). With notation as in (7.4.5), the set N �
M is a sub-

module of M containing N .

Proof. From the definition, it is clear that it suffices to show the case where R ∈ C .

Let u, v ∈ N �
M , and let r ∈ R. Since B(R) is directed, there exists a common

B ∈ B(R) for u and v such that 1 ⊗ u and 1 ⊗ v are in Im(B ⊗R N → B ⊗R M).

Therefore, 1⊗(ru+v) ∈ Im(B⊗RN → B⊗RM) as well. This shows that ru+v ∈ N �
M .

Finally, if u ∈ N , then 1⊗ u ∈ Im(B ⊗R N → B ⊗RM), for any B ∈ B(R), so that

N �
M contains N .

Proposition 7.4.7 (Axiom 2). With notation as in (7.4.5), if M ⊆W , then N �
W ⊆

M �
W .
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Proof. Let u ∈ N �
W , and let T ∈ R be an R-algebra. Then

1⊗ u ∈ Im(T ⊗R N → T ⊗RW )�T⊗RW
.

Since Im(T ⊗R N → T ⊗RW ) ⊆ Im(T ⊗RM → T ⊗RW ), it is enough to show the

case where R ∈ C .

Let R ∈ C , and let u ∈ N �
W . Then there exists B ∈ B(R) such that

1⊗ u ∈ Im(B ⊗R N → B ⊗RW ) ⊆ Im(B ⊗R M → B ⊗RW ).

Therefore, u ∈M �
W .

Proposition 7.4.8 (Axiom 3). With notation as in (7.4.5), if f : M → W , then

f(N �
M) ⊆ f(N)�W .

Proof. Let R ∈ C initially. Then u ∈ N �
M implies that there exists B ∈ B(R) such

that 1⊗u ∈ Im(B⊗RN → B⊗RM). This implies that 1⊗u =
∑

i bi⊗ vi such that

bi ∈ B and vi ∈ N . Hence 1 ⊗ f(u) =
∑

i bi ⊗ f(vi), where f(vi) ∈ f(N), for all i.

This means that 1⊗ f(u) ∈ Im(B ⊗R f(N)→ B ⊗RW ) so that f(u) ∈ f(N)�W .

If S ∈ R and u ∈ N �
M , then for any S-algebra T , where T ∈ C ,

1⊗ u ∈ Im(T ⊗S N → T ⊗S M)�T⊗SM
.

The map f : M → W induces T ⊗ f : T ⊗S M → T ⊗S W . Since T ∈ C , the last

paragraph implies that 1⊗ f(u) ∈ (T ⊗ f)(Im(T ⊗S N → T ⊗S M))�T⊗SW
, but this

module is Im(T ⊗S f(N)→ T ⊗S W )�T⊗SW
. Therefore, f(u) ∈ f(N)�W .

Proposition 7.4.9 (Axiom 4: persistence). With notation as in (7.4.5),

Im(S ⊗R N �
M → S ⊗RM) ⊆ Im(S ⊗R N → S ⊗RM)�S⊗RM

.

In particular, if N = I and M = R, we have I�RS ⊆ (IS)�S.
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Proof. The second claim follows directly from the first claim. For the first, let R→ S

be a map such that R and S are in R, and let N ⊆ M be finitely generated R-

modules with u ∈ N �
M . We must show that 1 ⊗ u in S ⊗R M is an element of

Im(S ⊗R N → S ⊗RM)�S⊗RM
.

Suppose that T ∈ C is an S-algebra. Then T is also an R-algebra. Since u ∈ N �
M ,

we have 1 ⊗ u ∈ Im(T ⊗R N → T ⊗R M)�T⊗RM
. Since the functors T ⊗R − and

T ⊗S (S ⊗R −) are isomorphic, we also have that

1⊗ (1⊗ u) ∈ Im(T ⊗S (S ⊗R N)→ T ⊗S (S ⊗RM))�

in T ⊗S (S ⊗RM), so that 1⊗ u ∈ Im(S ⊗R N → S ⊗RM)�S⊗RM
as required.

Proposition 7.4.10 (Axiom 5). With notation as in (7.4.5), I�RN
�
M ⊆ (IN)�M .

Proof. By a straightforward application of Axioms (9), (10), and (8), we may assume

that R is a complete local domain in C . If u ∈ I�RN �
M , then u =

∑
i aivi such that

ai ∈ I�R and vi ∈ N �
M . Since B(R) is directed, there exists a single B ∈ B(R) such

that ai ∈ IB and 1 ⊗ vi ∈ Im(B ⊗R N → B ⊗R M) for all i. Thus, ai =
∑

k rikcik,

where rik ∈ I and cik ∈ B, for all i and k, and 1⊗ vi =
∑

j bij ⊗ wij , where bij ∈ B
and wij ∈ N , for all i and j.

In B ⊗RM , we have

1⊗ u = 1⊗
∑
i

aivi =
∑
i

ai(1⊗ vi)

=
∑
i

(
∑
k

rikcik)(
∑
j

bij ⊗ wij) =
∑
i,j,k

(cikbij)⊗ (rikwij),

where cikbij ∈ B and rikwij ∈ IN . Thus, 1 ⊗ u ∈ Im(B ⊗R IN → B ⊗R M), so

u ∈ (IN)�M .

Proposition 7.4.11 (Axiom 6). With notation as in (7.4.5), (N �
M )�M = N �

M .
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Proof. Let T ∈ C be an R-algebra. If u ∈ (N �
M)�M , then

1⊗ u ∈ Im(T ⊗R N �
M → T ⊗RM)�T⊗RM

.

By Axioms (3) and (4),

1⊗ u ∈ (Im(T ⊗R N → T ⊗RM)�T⊗RM
)�T⊗RM

.

Thus, if the claim is true for C , then 1⊗ u ∈ Im(T ⊗R N → T ⊗R M)�T⊗RM
, and so

u ∈ N �
M .

Hence, we assume that R ∈ C , and u ∈ (N �
M)�M . Then

1⊗ u ∈ Im(B ⊗R N �
M → B ⊗RM),

for some B ∈ B(R). This means that 1⊗u =
∑

i bi⊗vi, where bi ∈ B and vi ∈ N �
M for

all i. For each i, there exists Ci ∈ B(R) such that 1⊗vi ∈ Im(Ci⊗RN → Ci⊗RM).

Since B(R) is directed, there exists C ∈ B(R) that is a B-algebra and a Ci-algebra

for all i, with f : B → C. We can then write 1 ⊗ vi =
∑

j cij ⊗ wij, where cij ∈ C

and wij ∈ N , for all i and j. As an element of C ⊗M ,

1⊗ u =
∑
i

f(bi)⊗ vi =
∑
i

∑
j

f(bi)cij ⊗ wij ,

which is an element of Im(C ⊗R N → C ⊗RM). Thus, u ∈ N �
M .

Proposition 7.4.12 (Axiom 7). With notation as in (7.4.5), if N �
M = N , then

0�M/N = 0.

Proof. For R ∈ C , if u := u + N ∈ 0�M/N , then there exists B ∈ B(R) such that

1⊗ u = 0 in B ⊗RM/N . Since B ⊗RM/N ∼= B ⊗R M/Im(B ⊗R N → B ⊗RM),

1⊗ u ∈ Im(B ⊗R N → B ⊗R M).

Thus, u ∈ N �
M = N , and u = 0.
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For R ∈ R, if u ∈ 0�M/N , then for every R-algebra T in C , 1⊗u ∈ 0� in T⊗RM/N ,

calculated over T . Using T ⊗RM/N ∼= T ⊗RM/Im(T ⊗RN → T ⊗RM), the image

of 1 ⊗ u in T ⊗R M/Im(T ⊗R N → T ⊗R M) is in 0�. By Axiom (3), the image of

1⊗ u in T ⊗RM/Im(T ⊗R N → T ⊗RM)�T⊗RM
is also in 0�. By Axiom (6) and the

previous paragraph, 0� = 0 here, so 1 ⊗ u ∈ Im(T ⊗R N → T ⊗R M)�T⊗RM
for all

such T . Hence, u ∈ N �
M = N , and u = 0.

Proposition 7.4.13 (Axiom 8). With notation as in (7.4.5), if u + pM is in

Im(N/pN → M/pM)�M/pM , calculated over R/pR, for all minimal primes p of R,

then u ∈ N �
M .

Proof. Let R ∈ R, and let T be an R-algebra in C . The kernel of R→ T is a prime

ideal, so there exists a minimal prime p of R such that the map R → T factors

through R/p. Then u ∈ Im(N/pN → M/pM)�M/pM implies that

1⊗ u ∈ Im(T ⊗R/p N/pN → T ⊗R/p M/pM)�,

in T ⊗R/p M/pM , since T is an R/p-algebra. This implies that

1⊗ u ∈ Im(T ⊗R N → T ⊗R M)�T⊗RM
.

Therefore, u ∈ N �
M .

Proposition 7.4.14 (Axiom 9). With notation as in (7.4.5), if u/1 ∈ (Nm)�Mm
,

calculated over Rm, for all maximal ideals m of R, then u ∈ N �
M .

Proof. Let R ∈ R, and let (T, n) be an R-algebra in C . If m is a maximal ideal of R,

then f : R→ T factors through Rm if and only if f−1(n) ⊆ m. If R→ T does factor

through any such Rm, then T is also an Rm-algebra, and u/1 ∈ (Nm)�Mm
implies that

1 ⊗ u/1 ∈ Im(T ⊗Rm Nm → T ⊗Rm Mm)� in T ⊗Rm Mm. This in turn implies that

1⊗ u ∈ Im(T ⊗R N → T ⊗RM)�T⊗RM
.



164

Thus, u ∈ N �
M if, for every such R-algebra T , there exists a maximal ideal m such

that f−1(n) ⊆ m. Suppose to the contrary that there is a T such that f−1(n) �⊆ m,

for all maximal ideals m of R. Then f−1(n) must be the unit ideal, which implies

that T = nT , a contradiction since T is a local Noetherian ring.

Proposition 7.4.15 (Axiom 10). With notation as in (7.4.5), let S be faithfully flat

over R. If

1⊗ u ∈ Im(S ⊗R N → S ⊗R M)�S⊗RM
,

calculated over S, then u ∈ N �
M . In particular, if N = I and M = R, we have

(IS)�S ∩ R ⊆ I�R.

Proof. The second claim follows directly from the first. Let u ∈M be such that 1⊗u

is in Im(S⊗RN → S⊗RM)�S⊗RM
. By Axiom (9), it is enough to show u ∈ (Nm)�Mm

,

for all maximal ideals m of R. For any such m, since S is faithfully flat over R, there

exists a prime n of S lying over m. Then Rm → Sn is a faithfully flat local map.

Using Axiom (4), we can then assume, without loss of generality, that R and S are

local and R→ S is a local map.

Suppose that the claim is true when both rings are complete local. Using persis-

tence again, for the map S → Ŝ, and using the fact that R̂ → Ŝ is still a faithfully

flat map, we can conclude that u ∈ N̂ �
cM

, calculated over R̂. If T is an R-algebra in

C , then T is also an R̂-algebra. Therefore,

1⊗ u ∈ Im(T ⊗ bR (R̂⊗R N)→ T ⊗ bR (R̂⊗RM))�

in T ⊗ bR (R̂⊗RM), and so 1⊗ u ∈ Im(T ⊗R N → T ⊗RM)�T⊗RM
as needed.

We can now assume that R and S are complete local rings and that R → S is a

faithfully flat local map. It suffices to show that u ∈ Im(N/pN →M/pM)�M/pM , for

all minimal primes p of R, by Axiom (8). Let p be a minimal prime of R. Then S/pS
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is still faithfully flat over R/p, and we can choose q a prime of S that is minimal

over pS such that dimS/q = dimS/pS. Then

dimS/q = dimS/pS = dimR/p + dim(S/pS)/m(S/pS)

by the faithful flatness of S/pS over R/p. We can then conclude that

dimS/q = dimR/p + dim(S/q)/m(S/q).

Using persistence for the map S → S/q with Axiom (8), we can assume that R and

S are complete local domains in C such that dimS = dimR+ dimS/mS.

Now, 1⊗u ∈ Im(S⊗RN → S⊗RM)�S⊗RM
implies that there exists a big Cohen-

Macaulay S-algebra B in B(S) such that the image of 1⊗ u is in

Im(B ⊗S (S ⊗R N)→ B ⊗S (S ⊗RM)).

Therefore, 1⊗ u ∈ Im(B⊗RN → B⊗RM), where B ∈ B(R) by condition (ii) from

the start of the section, and so u ∈ N �
M .

Remark 7.4.16. The method used in the preceding proof to reduce from the complete

local case to the complete local domain case is essentially the same argument used

by Hochster in [Ho3, Lemma 3.6c].

Proposition 7.4.17 (Axiom 11). With notation as in (7.4.5), let S be a module-

finite extension of R. If

1⊗ u ∈ Im(S ⊗R N → S ⊗R M)�S⊗RM
,

calculated over S, then u ∈ N �
M .

Proof. By Axiom (9), it is enough to check the claim at each maximal ideal m of R.

Pairing this with Axiom (4) for the map S → (R \m)−1S, we may assume without
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loss of generality that (R,m) is local, every maximal ideal of S lies over m, and

R→ S is still a module-finite extension.

If we then use persistence for the map S → Ŝ (where Ŝ is the m-adic completion

of S), Axiom (10) for the faithfully flat map R→ R̂, and the fact that Ŝ ∼= R̂⊗R S,

we can assume that R is complete local. If we now use Axiom (4) for S → S/q

and Axiom (8), where q is a minimal prime of S lying over a minimal prime p of R,

then we may assume that (R,m) is a complete local domain, S is a module-finite

extension domain, dimR = dimS, and every maximal ideal of S lies over m.

Since there exists an S-algebra T such that T is a complete local domain with

dimT = dimS obtained by localizing S at a maximal ideal, completing, and then

killing a minimal prime, T is a local R-algebra with dimT = dimR + dimT/mT .

By condition (ii) from the beginning of the section, B(T ) ⊆ B(R).

Let u ∈ M such that 1⊗ u ∈ Im(S ⊗R N → S ⊗R M)�S⊗RM
. Then

1⊗ u ∈ Im(T ⊗R N → T ⊗R M)�T⊗RM
,

using the isomorphism of T ⊗S (S⊗R−) and T ⊗R−, and so there exists B ∈ B(T )

such that the image of 1⊗ u is in Im(B ⊗T (T ⊗R N)→ B ⊗T (T ⊗RM)), which is

isomorphic to Im(B ⊗R N → B ⊗RM). Hence, u ∈ N �
M as B is also in B(R).

Proposition 7.4.18 (Axiom 12). With notation as in (7.4.5), if R is regular, then

N �
M = N .

Proof. Suppose the claim is true when R is regular local. Then u ∈ N �
M implies, by

persistence, that u/1 ∈ (Nm)�Mm
, for all maximal ideals m of R. Since Rm is regular

local, u/1 ∈ Nm, for all m, and this implies that u ∈ N .

We can now assume that (R,m) is regular local. Suppose the claim is true for

complete regular local rings. Using Axiom (4), the image of u is in N̂ �
cM

= N̂ because
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R̂ is regular. Therefore, the image of u in M/N maps to zero via the map

φ : M/N → R̂⊗R (M/N).

Since R̂ is faithfully flat over R, φ is injective (see [Mat, 4.c(i)]) so that u ∈ N .

Now we can assume that R is a complete regular local ring and, hence, R ∈ C .

Then u ∈ N �
M means that there is a B ∈ B(R) such that

1⊗ u ∈ Im(B ⊗R N → B ⊗R M).

By Lemma 2.1 of [HH7], B is faithfully flat over R. Therefore, u maps to zero under

the injective map M/N → B ⊗R (M/N), and u ∈ N by [Mat, 4.c(i)].

For the following result and proof, we refer the reader to Theorem 2.2.11 for a

statement of phantom acyclicity for tight closure and to [HH1, Section 9] for a general

overview of phantom acyclicity. For the topic of K-depth and the generalization of

the Buchsbaum-Eisenbud acyclicity criterion used below, see [Ab, Sections 1.1, 1.2]

and [Nor, Appendix B].

Proposition 7.4.19 (Axiom 13: phantom acyclicity). With notation as in (7.4.5),

let R ∈ C , be a complete local domain, and let G• be a finite free complex over R:

0→ Gn → Gn−1 → · · · → G1 → G0 → 0.

Let αi be the matrix map Gi → Gi−1, and let ri be the determinantal rank of αi, for

1 ≤ i ≤ n. Let bi be the free rank of Gi, for 0 ≤ i ≤ n. Denote the ideal generated by

the size r minors of a matrix map α by Ir(α). If bi = ri+ ri−1 and ht Iri(αi) ≥ i, for

all 1 ≤ i ≤ n, then Zi ⊆ (Bi)
�
Gi

, where Bi is the image of αi+1 and Zi is the kernel

of αi. In other words, if the previous rank and height conditions are satisfied, then

the cycles are contained in the �-closure of the boundaries.
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Proof. Choose B ∈ B(R). Then B⊗RG• has the same rank condition as G•, and the

K-depth of Iri(αi) on B is at least ht Iri(αi) ≥ i since B is a big Cohen-Macaulay

algebra over R. By the generalized Buchsbaum-Eisenbud acyclicity criterion (see

[Ab, Theorem 1.2.3]), B ⊗R G• is acyclic. Therefore,

Im(B ⊗R Zi → B ⊗R Gi) ⊆ Im(B ⊗ αi+1) = Im(B ⊗R Bi → B ⊗R Gi),

and so if u ∈ Zi, then 1⊗u ∈ Im(B⊗RBi → B⊗RGi), which says that u ∈ (Bi)
�
Gi

.

We have now verified that all axioms of Section 7.1 are satisfied by the closure

operation we defined based on the existence of big Cohen-Macaulay R-algebras for

complete local domains.



CHAPTER 8

Open Questions

In this final chapter, we present several questions that are left for future study.

Question 8.1. Let R be a standard graded K-algebra domain of positive charac-

teristic p such that K is algebraically closed, and let m be the homogeneous maxi-

mal ideal. Can the equivalence of tight closure and graded-plus closure for finitely

generated modules N ⊆ M such that M/N is m-coprimary be used to prove the

equivalence of the closure operations for all finitely generated modules?

Can this be done if one additionally assumes that the ideal of all test elements is

m or is m-primary, as is the case for the cubical cone?

Question 8.2. What is the injective hull EA∞(K∞), when A = K[x1, . . . , xn] or

A = K[[x1, . . . , xn]], n ≥ 2, and K is a field of positive characteristic? Is EA∞(K∞)

the module of all formal sums with DCC support as described in Section 3.3?

Question 8.3. Is every solid algebra S over a complete local domain R of positive

characteristic a seed over R?

Question 8.4. Are the main results of Chapter 6 true in the equal characteristic 0

case? In particular, if R contains a copy of Q, are integral extensions of seeds over R

still seeds over R? If R is also a complete local domain, are tensor products of seeds

169
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over R still seeds? If S is also a complete local domain and an R-algebra, does any

seed over R map to a seed over S?

Can these equal characteristic 0 results be achieved using a reduction to charac-

teristic p argument?

Question 8.5. Theorem 6.4.8 shows that if R is a local Noetherian ring of positive

characteristic and S is a seed domain over R, then the absolute integral closure S+

of S is still a seed over R. Is S+ actually a big Cohen-Macaulay algebra over R, at

least when R is an excellent local domain?

A positive answer to this last question would greatly generalize Hochster and

Huneke’s theorem in [HH2] that R+ is a big Cohen-Macaulay algebra over R when

R is an excellent local domain.

Question 8.6. When R is a complete regular local ring of positive characteristic,

what are the minimal seeds over R?

In [Ho3], Hochster asks the same question for minimal solid algebras. If one could

show that these minimal seeds are in fact integral extensions of R, then an immediate

consequence would be the equivalence of tight closure and plus closure.

Question 8.7. Let (R,m) be an excellent local domain of positive characteristic. If

B is a big Cohen-Macaulay R-algebra and also an R+-algebra, is B faithfully flat

over R+? What if B is m-adically separated or absolutely integrally closed?

A positive answer to either of the previous questions would show that tight closure

equals plus closure. The results of Chapter 6 allow us to only check the case where

B is m-adically separated and absolutely integrally closed.

Question 8.8. Are the axioms of Chapter 7 strong enough to imply some form of

the Briançon-Skoda Theorem, at least for regular rings?
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Question 8.9. Are the axioms of Chapter 7 strong enough to imply the weakly func-

torial existence of big Cohen-Macaulay algebras over complete local domains? Are

they strong enough to imply any existence result for big Cohen-Macaulay algebras

or modules?



BIBLIOGRAPHY

172



173

BIBLIOGRAPHY

[Ab] I. Aberbach, Finite phantom projective dimension, Amer. J. Math. 116 (1994), 447–477.

[Ab2] I. Aberbach, Tight Closure in F -rational rings, Nagoya Math. J. 135 (1994), 43–54.

[AHH] I. Aberbach, M. Hochster, and C. Huneke, Localization of tight closure and modules
of finite phantom projective dimension, J. Reine. Angew. Math. 434 (1993), 67–114.

[AFH] L. Avramov, H.-B. Foxby, and B. Herzog, Structure of local homomorphisms, J. Algebra
164 (1994), no. 1, 124–145.

[Bar-Str] J. Bartijn and J.R. Strooker, Modifications Monomiales, Séminaire d’Algébre
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