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CHAPTER IIntroduction
The general theme of this dissertation will be to prove certain statements aboutlocal or positively graded Noetherian rings by passing to a suitably chosen moduleover the ring, which may in some way have nicer properties than the ring itself.The problem may then in general be broken into two parts. The �rst, which is todetermine what sorts of modules can be shown to exist over a certain class of rings,will be the subject of chapters 2 and 3. The results presented there are of interestin their own right, and provide some partial answers to questions in the literature.But the existence of such modules also has implications for questions regarding thestructure of the ring and its algebra extensions. The second part of our endeavour,which is to explore these implications, is taken up in the latter part of the dissertation.A commutative ring R is Noetherian if every ideal I of R is �nitely generated,which is to say that every element of I can be written as an R-linear combinationof �nitely many elements f1; : : : ; fn in I. This property holds for the integers Zand for any �eld K. Moreover, if R is Noetherian, then so are polynomial ringsR[X1; : : : ; Xm] over R and homomorphic images R=I, where I is an ideal of R.This already provides a wealth of examples, including the coordinate rings of a�nevarieties or the homogeneous coordinate rings of projective varieties over a �eld K,1



2which take the form R = K[X1; : : : ; Xm](f1; : : : ; fn) ;where f1; : : : ; fn are elements of the polynomial ring K[X1; : : : ; Xm].If R is the homogeneous coordinate ring of a projective variety, then the polyno-mials fi may be assumed to be homogeneous, which is to say that each fi is aK-linearcombination of monomials of the same degree. Such rings serve as the prototype forthe more general notion of an N-graded ring, a ring R with a decompositionR = �i2NRiinto additive groups, and with the property that if x 2 Rs and y 2 Rt, then xy 2Rs+t. It follows from these conditions that R0 must itself be a ring, that R+ = �i>0Riis an ideal of R, and that any maximal ideal of R generated by homogeneous elementsmust contain R+. In fact, we will always assume that R0 is a local ring (see below),so that R has a unique homogeneous maximal ideal.We will also wish to consider local rings, and even complete local rings. A localring, which possesses a unique maximal ideal, may be obtained from any Noetheriancommutative ring by inverting all elements outside of some prime ideal. If R is thecoordinate ring of an a�ne variety, then the local ring Rm obtained by localizingat a maximal ideal m is just the ring of rational functions de�ned at the point cor-responding to m. The completion of Rm with respect to its maximal ideal is thenthe Rm-algebra containing all formal power series in the generators of m. Localiza-tions and completions of Noetherian rings retain the Noetherian property. In fact,if R is any complete local ring which contains a �eld, then one may express R as ahomomorphic image of a power series ring:R = K[[X1; : : : ; Xm]](f1; : : : ; fn) ;



3where K is a �eld and one of course needs to kill only �nitely many power series fi.An open question which has inspired much of the research contained in thisdissertation is the following conjecture, which �rst appeared in [12].Conjecture 1.0.1 (Lech). Let (R;m) � (S; n) be a 
at local extension of Noetherianlocal rings. Then the multiplicity of S is greater than or equal to the multiplicity ofR. The multiplicity eR of R is de�ned as follows: let (R;m) be a local ring of Krulldimension d. Associated to R is the Hilbert function HR : N ! N given by H(t) =dimK(mt=mt+1), where K = R=m is the residue class �eld of R. For all su�cientlylarge t, HR(t) is given by a polynomial in t of dimension d� 1 (provided d � 1), andthe multiplicity eR of R is de�ned to be (d� 1)! times the leading coe�cient of thispolynomial (when d = 0, H(t) is eventually 0, and we de�ne eR to be the length ofthe ring R). So the multiplicity gives, in a certain sense, an asymptotic measure ofthe rate of growth of the ring R.The simplest example of the multiplicity is given by the so-called \fat" pointsof the a�ne line: if one considers the algebraic subset of the complex line (whichhas ring of functions C [X]) de�ned by the equation Xn = 0, the subset so de�nedis the point f0g for every n > 0. But one wishes to keep track of the fact thatthe de�ning function vanishes to degee n at this point, and that the coordinate ringR = C [X]=(Xn) varies with n. In this simple case, n is precisely the multiplicity ofthe ring.If the extension ring S in Lech's conjecture is actually a �nitely-generated R-module, then requiring the extension to be 
at is equivalent to saying that S is afree R-module. When we say that the extension is local, we mean that the maximalideal m of R embeds into the maximal ideal n of S. So in the case of a module-



4�nite extension, Lech's conjecture is equivalent to the following statement: let S bea �nitely generated free R-module, and suppose that S is given a local ring structurecompatible with that of the submodule R (think of the ring R as being the �rst freesummand of S). Then the rate of growth of the ring S, with respect to its maximalideal n, is at least as great as the rate of growth of R. Stated in this way, theconjecture seems very natural and plausible.Lech's conjecture has now stood for almost forty years, and remains open inalmost all cases, with the best partial results still those proved in Lech's original twopapers [12] and [13]. There he proved the conjecture in the case that the rings havedimension 2, in the case that the �bre S=mS is a complete intersection, and also inthe case that the embedding dimension of S does not exceed that of R by more thanone.The conjecture remains open in dimensions 3 and higher, even in the case thatR and S are graded, and S is a module-�nite (free) extension of R. However, themethod of passing to modules with special properties has shown promise in attackingthis problem. In particular, it is highly advantageous to consider R-modules whichare maximal Cohen-Macaulay (abbreviated MCM).If R is a complete local ring containing a �eld or a �nitely generated gradedalgebra over a �eld K, then R can be realized as a module-�nite extension of apower series ring A = K[[x1; : : : ; xd]] (in the complete local case) or of a polynomialring A = K[x1; : : : ; xd] (in the graded case). Any �nitely generated (graded) R-module M is then also an A-module by restriction of scalars, and in this case Mis MCM if and only if it is a free A-module (a general de�nition is given in section1.5). In particular, the ring R is Cohen-Macaulay if and only if it is a 
at extensionof the subring A. Hochster proved the existence of big (i.e. not �nitely generated)



5MCM modules for local rings containing a �eld, and used the existence of suchmodules in order to prove many important homological conjectures (see [8, 7]). Buthis conjecture that a complete local ring must possess a �nitely generated (or small)MCM module remains open for rings of dimension greater than 2 (see Theorem 1.5.3and section 6.2 for some partial results).We may extend the notion of the multiplicity to any �nitely generated moduleM over a local or graded ring R (for example, this may be done with the samesort of Hilbert function as for the ring). Then, if M is MCM, and if the subringA = K[[x1; : : : ; xd]] (or K[x1; : : : ; xd]) is chosen appropriately, the multiplicity of Mis simply the vector-space dimension of the moduleM(x1; : : : ; xd)M ;which is also equal to the free rank of M as an A-module.This makes the multiplicity of a MCM module relatively easy to compute, orat least approximate. And, as we will see, the multiplicity of the ring can oftenbe recovered from that of the module. But we will need to simplify the processof computing multiplicities even further. For this, let m be the maximal idealof the ring R. Since the multiplicity of M is just the vector-space dimension ofM=(x1; : : : ; xd)M , we can make the calculation easier by assuming that mt multi-plies M into (x1; : : : ; xd)M for some small value of t. As an extreme example, wemight even hope that mM = (x1; : : : ; xd)M , in which case the multiplicity of M isequal its minimal number of generators as an R-module. This condition will reappearin the de�nition of a linear maximal Cohen-Macaulay module (see section 1.1).Over a Cohen-Macaulay ring R of prime characteristic p > 0, we show the exis-tence of MCM modules which satisfy strong conditions of this kind. This has allowedapproximations of multiplicities which have allowed proofs of certain cases of Lech's



6conjecture. In what follows, we will denote the embedding dimension of the ring Rby edim(R). If R is the local ring at the origin of an a�ne variety X over a �eldK, then the embedding dimension is, quite appropriately, equal to the minimumdimension of an a�ne space A nK into which a neighborhood of the origin in X canbe embedded.Theorem 1.0.2. Let R be a positively graded algebra, generated by its 1-forms, overa perfect �eld K of characteristic p > 0; let m denote the homogeneous maximal idealof R. Suppose that R possesses a graded MCM module M , with all generators in thesame degree, and that the dimension of R does not exceed 4. Then Lech's conjectureholds for any 
at local extension (R;m) � (S; n). If dim(R) = 5, then the conjectureholds provided that once we reduce to the case dim(S) = 5, we have either m ,! n2or edim(S) � edim(R) + 6.Note that if R is graded rather than local, we call the extension (R;m) � (S; n)
at local if m ,! n and Rm ! Sn is 
at local.This is already a signi�cant improvement over the previously known results, andsolves the problem for a large class of graded Cohen-Macaulay rings of low dimen-sions. In fact, if R is a positively graded K-algebra of dimension 3, where K is aperfect �eld of characteristic p, then a graded MCM module is known to exist (seeTheorem 1.5.3), and so the conjecture holds even without any Cohen-Macaulaynessassumption.In the case that the base ring R is local rather than graded, the methods do notyield quite as much. Nevertheless, I have made signi�cant progress in the case thatthe base ring has Krull dimension 3.Proposition 1.0.3. Let (R;m) be a 3-dimensional local ring of positive prime char-



7acteristic p, with perfect residue �eld, and assume that R has a MCM module ofpositive rank. If (R;m) � (S; n) is a 
at local extension of 3-dimensional local rings,and if either edim(S) � edim(R) + 3 or if m ,! n2, then eR � eS.It is a theorem of Lech that, in the situation above, edim(S) is at least as greatas edim(R) (see [13]); moreover, Lech has proved the conjecture in the case that thedi�erence in embedding dimensions is 0 or 1.The proofs of these statements rely upon prime characteristic p methods in orderto produce interesting MCM modules which would not otherwise be readily available.Nonetheless, suppose we are presented instead with the coordinate ringR = K[X1; : : : ; Xn](f1; : : : ; ft)of a variety de�ned by the polynomials f1; : : : ; ft, where K is a �eld of characteristic0. If it turns out that the coe�cients of the fi are integers (which would no doubtbe the case in any example which the reader might casually write down), then onemay view the variety X as the set of solutions to certain polynomials over Z in the�eld K. In fact, points of X correspond precisely to homomorphisms from the ringR0 = Z[X1; : : : ; Xn](f1; : : : ; ft)into K.But a great deal of insight into the solutions of polynomials over Zmay be gainedby looking at the solutions in the �nite �elds Z=pZ, where p is any prime number.And these solutions are described by the ringsR = (Z=pZ)[X1; : : : ; Xn](f1; : : : ; ft) ;which have positive prime characteristic p. This indicates that the case of rings ofpositive prime characteristic is more central than might at �rst be apparent. In fact,



8it is often possible to deduce statements about rings containing a �eld of characteristic0 from the corresponding statements about rings of prime characteristic. This processof reduction to characteristic p can be quite technical, depending upon the statementin question, but the above discussion gives a good idea of the motivation behind thetechnique. In section 4.4, we outline a reduction to characteristic p argument forTheorem 1.0.2 and Proposition 1.0.3.Some related issues will be considered in the course of the dissertation. Althoughsome of the results are independent of the main line of argument, all revolve aroundthe two major themes of special conditions on maximal Cohen-Macaulay modulesand conjectures on the multiplicities of local or graded Noetherian rings.1.1 Maximal Cohen-Macaulay modules with special propertiesIn chapter 2 we de�ne and characterize certain properties of a maximal Cohen-Macaulay module M over a local or positively graded ring R. All of the conditionswhich are considered are generalizations of the condition of linearity, introducedby B. Ulrich in [20]. We may de�ne a linear maximal Cohen-Macaulay module(abbreviated lin MCM) as follows:De�nition 1.1.1. Let (R;m) be a Noetherian local ring with a �nitely generatedmaximal Cohen-Macaulay moduleM . ThenM is said to be a linear maximal Cohen-Macaulay module (or lin MCM) if eR(M) = �(M), where eR(M) is the multiplicityof the module M , and �(M) is the minimum number of generators of M as anR-module.Perhaps the greatest interest in linear MCM modules has stemmed from the factthat the associated graded module grm(M) of a lin MCM M remains MCM (see e.g.



9[1]). This provides important information, as the associated graded ring grmR oftenfalls far short of Cohen-Macaulayness, even when R is Cohen-Macaulay. However,it turns out that the existence of linear MCM modules is far easier to characterizein the graded case, and most of the existence results are for graded rings. What willconcern us more here is the numerical properties of such a module.Seen from this point of view, the linearity condition expresses a best-possiblecharacteristic of the module M . For if we assume that the residue �eld R=m of Ris in�nite, then we may choose a minimal reduction I = (x1; : : : ; xd) of m, and thede�nition implies thatM is linear if and only ifmM = IM (see section 1.5 for theoryof reduction ideals). This makes the Hilbert function, as well as the multiplicity, ofa linear MCM module especially easy to compute.Given this characterization of linearity, we may quite naturally introduce thefollowing generalization: we say that the reduction degree of a �nitely generatedMCM module M is the least integer n such that mnM � (x1; : : : ; xd)M for someminimal reduction (x1; : : : ; xd) of m. M is of course linear if and only if its reductiondegree is one.The existence of modules with low reduction degree will be shown to imply somenew cases of Lech's conjecture. In fact, it turns out that a sequence of modulesasymptotically approaching a certain reduction degree condition usually providesjust as much information as a single module actually satisfying the condition. Thepoint is that even though a module has reduction degree t, it may be the case, forsome s < t, that the length of (ms + I)M=IM is insigni�cant in comparison withl(M=IM) = e(M). Then we may treat M as if its reduction degree were s. Ourmost general de�nition is:De�nition 1.1.2. A sequence of MCM R-modules fMigi�0 is said to have reduction



10degrees approaching t if for some minimal reduction I of m,l((mt + I)Mi=IMi)l(Mi=IMi) ! 0as i!1.It is not surprising that the existence of linear maximal Cohen-Macaulay moduleshas proved very di�cult to establish, considering the strength of the linearity con-dition. Such modules are known to exist for one-dimensional rings, two-dimensionalgraded Cohen-Macaulay domains, rings of minimal multiplicity, strict complete in-tersections, and certain rings of determinantal varieties (see [2] and [1]). We willshow in chapter 3 that Segre products of graded rings with lin MCMs possess linMCMs; and that in dimension 3, any Veronese subring of a ring possessing a gradedlin MCM still admits a lin MCM.The di�culty involved in showing the existence of linear MCM modules for eventhe Veronese subrings of a polynomial ring of dimension 3 is surprising, if lin MCMsare to exist in any generality. But just as surprising is the fact that the algorithm forproducing these modules, with delicate modi�cation, produces sequences of MCMsapproaching linearity over a much broader class of rings of dimension 3. In particular,we achieve the following:Proposition 1.1.3. Suppose that R is a 3-dimensional positively graded K-algebra,generated by its 1-forms, where K is a perfect �eld of characteristic p > 0. Supposemoreover that R is a Cohen-Macaulay domain. Then R possesses a sequence of MCMmodules Mi with the property that e(Mi)=�(Mi)! 1 as i!1.In other words, such a ring R possesses a sequence of MCM modules which\approach" linearity in the numerical sense. In fact, by setting aside the more



11stringent condition of linearity, and considering instead the more general de�nitionsof chapter 2, we may prove the following much richer existence result:Theorem 1.1.4. Suppose that R is a positively graded K-algebra of dimension d �3, generated by its 1-forms, where K is a perfect �eld of characteristic p > 0. Supposemoreover that R is a Cohen-Macaulay domain. Then R possesses a sequence of MCMmodules Mi with reduction degrees approaching d� 2.As indicated earlier, this result will be extremely useful in the approximationof multiplicities. In the local (non-graded) case, one cannot achieve quite as muchwith the same methods, but we can still prove a much stronger result in positiveprime characteristic than is available in characteristic 0. By utilizing the Frobeniusendomorphism, we are able to show (Proposition 2.3.4) that any Cohen-Macaulaylocal ring R of characteristic p possesses a sequence of MCM modules with reductiondegrees approaching the dimension of R.1.2 Applications to multiplicitiesIn chapter 4 we will show how the existence of maximal Cohen-Macaulay modulesof low reduction degree can be used in order to prove certain cases of Lech's conjec-ture. One result which has been known for some time, and which was �rst shownto me by M. Hochster, is that the existence of a sequence of MCMs approachinglinearity over the base ring R implies Lech's conjecture for any 
at local extension(R;m) � (S; n). Combining this with Proposition 1.1.3 su�ces to prove the conjec-ture in the case that the base ring R is graded of dimension 3 over a perfect �eld Kof characteristic p > 0 (Proposition 4.1.5).In order to apply the existence of MCMs with higher reduction degrees, we will



12require the following generalization of another theorem of Lech, which states thatthe embedding dimension of a 
at local extension of R, of the same dimension, isalways greater than or equal to that of R (see [13]). The result presented here allowsus to replace R by a �nitely generated module M in the conclusion.Proposition 1.2.1. Let (R;m) � (S; n) be a 
at local extension of rings of the samedimension, M a �nitely generated R-module, and set M 0 = S 
R M . Then�S(nM 0) � �R(mM) + (�(n)� �(m)) � �(M):Here �R(N) represents the minimal number of generators of any R-module N ;in particular, �(m), the minimal number of generators of the maximal ideal, is theembedding dimension of the ring R. This inequality on the `embedding dimensions'of the modulesM and M 0 allows a corresponding inequality eR(M) � eS(M 0) on themultiplicities, provided thatM is chosen to be a MCM module with su�ciently smallreduction degree. This yields our �rst major result on Lech's conjecture (section 4.3).Theorem 1.2.2. Let (R;m) be a local or N-graded domain, and let (S; n) be a 
atlocal extension of R of the same dimension. Suppose that R possesses a MCM moduleM with red(M) = 3, or even a sequence of MCM modules fMig with reductiondegrees approaching 3. If m ,! n2, or if edim(S) � edim(R) + depth(grmMi) �dim(R) + 1 for each Mi, then eR � eS.Combining this with existence results of chapter 3 then allows a proof of Theo-rem 1.0.2.In the remainder of section 4.3 , we attempt to prove similar results for rings ofequal characteristic 0 (i.e. local or graded rings which contain a �eld K of charac-teristic 0). In particular, we note that since Theorem 1.2.2 requires no hypothesis onthe characteristic, we may apply this theorem in any cases in which suitable MCM



13modules can be shown to exist. The most general technique of applying the Frobe-nius is not available, but we note certain cases in which MCMs of low reductiondegree can nonetheless be shown to exist.1.3 Hilbert-Kunz multiplicities and ordinary multiplicitiesIf a commutative ring R has positive prime characteristic p, then one has theequality (x + y)p = xp + yp for any elements x and y of R. It follows that the mapF : R! R which sends each element z to zp is actually a ring endomorphism, calledthe Frobenius endomorphism. By composition, one then obtains, for any e > 0, theendomorphism F e : R ! R which takes each element to its pe power. Similarly, forany ideal I = (x1; : : : ; xt) � R and any power q = pe, the ideal I [q] generated by allqth powers of elements of I is given byI [q] = (xq1; : : : ; xqt ):Given an m-primary ideal I, this allows us to de�ne a new Hilbert-type functionassociated to R by setting HKI(t) = l(R=I [pt]):Monsky has shown [16] that this function is asymptotic in q = pt to cIqd for somepositive real number cI (see section 1.3), and we may naturally regard cI as a newmultiplicity on the ring R (called the Hilbert-Kunz multiplicity with respect to I).Remarkably, it is not known whether cI must be rational.In particular, we denote cm by cR, and in section 5.1 we show how a direct appealto this invariant yields partial results for Lech's conjecture in all dimensions. Forthe ordinary and Hilbert-Kunz multiplicities are strongly related: in general, onehas the inequalities eR � cR � eR=d!, where d is the Krull dimension of the ring R.



14Since we can use the Frobenius endomorphism in order to produce modules whoseminimal number of generators of is asymptotic to cRqd, our methods allow us tomake estimates of eS in terms of cR, where (R;m) � (S; n) is a 
at local extension.Although the following propositions do not give a complete proof of the conjecturein any dimension, notice that they place some signi�cant bounds upon the class ofpossible counterexamples:Proposition 1.3.1. Let (R;m) � (S; n) be a 
at local extension of Cohen-Macaulayrings of positive prime characteristic p and dimension d, with R=m perfect, and letJ be a minimal reduction of n. If l(S=(mS + J)) � d!, then eR � eS. In particular,if edim(S)� edim(R) � d! + d� 1, then eR � eS.Proposition 1.3.2. If (R;m) � (S; n) is a 
at local extension of Cohen-Macaulayrings of prime characteristic p > 0 and dimension d, with R=m perfect, and if membeds into nd!, then eR � eS.In section 5.2, we consider the Hilbert-Kunz multiplicity explicitly. We are ableto show that the whole enterprise of proving inequalities on multiplicities under 
atlocal extensions and localizations can be successfully carried out if one considersthe Hilbert-Kunz multiplicity instead of the ordinary Hilbert-Samuel multiplicity.In fact, the results are not even restricted to inequalities on the Hilbert-Kunz mul-tiplicities, but actually give strong inequalities on the corresponding Hilbert-Kunzfunctions. The main results are the following:Theorem 1.3.3. Let (R;m) � (S; n) be a 
at local extension of rings of positiveprime characteristic. Then cR � cS; moreover, for any q = pe, it is in fact the casethat qt � l(R=m[q]) � l(S=n[q]), where t = dim(S)� dim(R).Theorem 1.3.4. Let (R;m) be a Noetherian local ring of characteristic p > 0, and



15let P be a prime ideal of R such that height(P )+dim(P ) = dim(S). Then cRP � cR.In fact, if t = dim(R=P ), then l(R=m[q]) � qt � l(RP=P [q]RP ) for every q = pe.The Hilbert-Kunz multiplicity is still very poorly understood in comparison withthe ordinary multiplicity; in particular, it has been computed for only a very smallclass of rings. But the results above may contribute towards a better understandingof the Hilbert-Kunz functions, as well as providing further motivation for their study.1.4 Specialized MCMs via splitting resultsIn the �nal chapter, we will show how to to use splitting results and the Frobeniusendomorphism in order to prove the existence of MCM modules with other specialproperties over certain graded rings of positive prime characteristic p. We recall thenotion of the a-invariant for graded rings and modules, which was �rst introducedby Goto and Watanabe in [6]. This notion is closely related to that of the reductiondegree, but gives somewhat better information in the case that the homogeneousmaximal ideal is not generated by one-forms. Again, our object will be to produceMCM modules whose a-invariant is su�ciently bounded. What we prove is thefollowing:Theorem 1.4.1. Let R be a �nitely generated positively graded equidimensional K-algebra, with K a perfect �eld of characteristic p > 0. Suppose R has a graded moduleM, of the same dimension, which is Cohen-Macaulay except possibly at the origin.Then R has a MCM module M with a-invariant a(M) < 0.This result is applied in section 6.2, where we solve the problem of existence ofsmall Cohen-Macaulay modules for certain Segre products of N-graded algebras overa �eld. Our most general result is the following:



16Theorem 1.4.2. Let R = R1 
seg R2 � � � 
seg Rn be a Segre product of positivelygraded rings Ri over a �eld K, and assume that each of the rings Ri has dimensionat least 2. If, for each i, Ri has a graded MCM-module Mi with a(Mi) < 0, then Rpossesses a (small) graded MCM module.The MCM module over the Segre product ring is just the Segre product of themodulesMi. A similar result on the Cohen-Macaulayness of Segre product rings wasproved by Goto and Watanabe in [6], and the above theorem follows quite directlyfrom their work.Combining the theorem with the results of section 5.1 then implies the follow-ing corollary, which gives a partial result to the conjecture on existence of �nitelygenerated MCM modules.Corollary 1.4.3. Let R1; : : : ; Rn be �nitely generated N-graded algebras over a per-fect �eld K of characteristic p > 0, with (Ri)0 = K for each i. If each ring Ri hasa �nitely generated graded maximal Cohen-Macaulay module, then the Segre productR1 
seg R2 
seg : : : 
seg Rn also has a �nitely generated graded maximal Cohen-Macaulay module.In the �nal part of chapter 6 we attempt some similar results without the as-sumptions that the ring in question be graded or have positive prime characteristic.In particular, in the characteristic 0 graded case we exploit Theorem 1.4.2, whichcontains no reference to the characteristic of the �eld.1.5 Background for the dissertationFor the general theory of local rings, the reader is referred to the text [15] of H.Matsumura. Material more speci�c to this thesis is presented in the book [3] of W.



17Bruns and J. Herzog. Nevertheless, I will attempt here to summarize those factswhich are to be used repeatedly throughout the dissertation.If (R;m) is a local or positively graded ring of Krull dimension d, then one canalways choose a system of parameters, a sequence of d elements x1; : : : ; xd in Rwith the property that the unique maximal (or homogeneous maximal) ideal m isa minimal prime of the ideal I = (x1; : : : ; xd). This is equivalent to saying thatthe homomorphic image R=I is an Artinian ring. Moreover, if the ring is graded,these elements may be chosen to be homogeneous. One de�nes a regular sequenceon an R-module M to be a sequence of elements z1; : : : ; zs in R with the propertythat the image of zi+1 in R=(z1; : : : ; zi) is a nonzerodivisor on M=(z1; : : : ; zi)M for0 � i � s� 1 (in other words, if zi+1u 2 (z1; : : : ; zi)M for some u 2 M , we requirethat u 2 (z1; : : : ; zi)M). This gives an invariant of the module M as follows:De�nition 1.5.1. The depth of the module M is the maximum integer s such thatR contains a regular sequence on M of length s. M is called a Cohen-Macaulaymodule if depth(M) = dim(M), and is called a maximal Cohen-Macaulay module(abbreviated MCM) if depth(M) = dim(R).It is easy to show that the depth of a module M must always be less than orequal to its dimension, and that a regular sequence on a module M must form partof a system of parameters for the ring R. In fact, one can show that M is maximalCohen-Macaulay if and only if every system of parameters of R is a regular sequenceon M .We will need to keep track of various invariants of a �nitely generated (graded)moduleM over the local (or graded) ring (R;m). The minimal number of generators�(M) is equal to dimK(M=mM), and is the least n for which there exists a surjectionR(n) !M ! 0. If R is an integral domain with fraction �eld L, then we de�ne the



18torsion-free rank (or just the rank) ofM to be the L-dimension of L
RM . The rankof M is also equal to the largest s for which there exists an injection R(s) ,! M . IfR is not a domain, then we will say that M has well-de�ned rank s if MP �= R(s)P forevery associated prime ideal P of R. This condition is equivalent to the existence ofa short exact sequence O! R(s) !M ! C ! 0;where zC = 0 for some element z which is a nonzerodivisor in R.An extension I � J of ideals of R is integral if there exists some positive integer ksuch that Jn+k = In � Jk for all n � 0. In this case, we also say that I is a reductionof J . If K = R=m is in�nite and J is an ideal primary to the maximal ideal m of R,it is a theorem of Northcott and Rees (see [17]) that J has a minimal reduction J 0(i.e. J 0 is minimal with respect to inclusion among the reductions of J), and that J 0must be generated by a system of parameters.The Hilbert function HM : Z! N of a �nitely generated graded module M overa Noetherian positively graded ring (R;m) with R0 Artinian is de�ned by HM(t) =lR(Mt), the length of a composition series for Mt. It is an important fact that if Ris generated over R0 by forms of degree one, then for all t su�ciently large, one hasHM(t) = PM(t), where PM(t) is a polynomial in t of degree d � 1 = dim(M) � 1.We de�ne the multiplicity of M to be (d� 1)! times the leading coe�cient of PM(t).If (R;m) is local (or graded) with m-primary ideal I (i.e. mt � I for some t � 0),and M is a �nitely generated R-module, then we de�ne the multiplicity e(I;M) ofM with respect to I to be the multiplicity of the associated graded module grIM .There are two facts about multiplicities which we will use repeatedly through-out the thesis. First, if I � J is an integral extension of m-primary ideals, thene(I;M) = e(J ;M) for any �nitely generated R-module M (see [17]). Secondly, if



19M is a maximal Cohen-Macaulay module, and if I is generated by a system of pa-rameters, it follows from the results of Serre (see [19]) that e(I;M) = l(M=IM).Putting these statements together, we see that if M is a MCM module over a localring (R;m), and I is a minimal reduction of m, then eR(M) = e(m;M) = l(M=IM).Finally, we need to develop some notation for modules over local rings (R;m) ofpositive prime characteristic p. If M is any module over the ring R, and e > 0, thenwe obtain a new module eM over R via restriction of scalars for F e. In other words,eM = M as a group, but has a new R-module structure given by r �m = rqm, wherer 2 R, m 2 M , and q = pe. In order to know that the modules eM associated toa �nitely generated module M remain �nitely generated, it is necessary to assumethat R is F-�nite; i.e. that F : R ! R gives R as a module-�nite ring extension ofitself. If R is a complete local ring with residue �eld K, or if R is a �nitely generatedalgebra over the �eld K, then R will be F -�nite so long as K is assumed to be perfect(this ensures that F : K ! K is an isomorphism). In particular, since we assumethat all rings are Noetherian, an N-graded ring R with R0 = K a perfect �eld willbe �nitely generated over K, hence F -�nite. In this case, one can show that forany e � 0 and q = pe, one has eR(eM) = qdeR(M); if M has well-de�ned rank, onealso obtains rankR(eM) = qd � rankR(M). Notice that if I is any ideal of R, thenI(eM) = I [q]M , where I [q] is the ideal of R generated by all qth powers of elementsof I.We will also be interested in knowing the minimal numbers of generators of themodules eM . Although this cannot usually be calculated precisely, much informationis provided by the following theorem of [16]:Theorem 1.5.2 (Monsky). Let (R;m) be a local ring of positive prime character-istic p, let M be a �nitely generated R-module of dimension d, and let I be any



20m-primary ideal. Then the function HKI;M : N ! N de�ned by HKI;M(e) =l(M=I [pe]M) is asymptotic in q = pe to cI;Mqd for large e, where cI;M is some positivereal number.The real number cI;M is called the Hilbert-Kunz multiplicity of M with respect toI, and the function HKI;M is called the Hilbert-Kunz function of M with respect toI. Since we will usually be interested in the case that I = m, we denote cm;M by cMand simply refer to this as the Hilbert-Kunz multiplicity of M . Notice that, since�(eM) = l(eM=m � eM) = l(M=m[q]M)in the case that R is F -�nite and R=m is perfect, this gives us at least an asymptoticapproximation of the numbers of generators of the modules eM . We remark that ifM has well-de�ned positive rank over R, then cM = rankR(M) � cR.We de�ne the local cohomology of a �nitely generated module as follows: for anyn � 0, the natural surjection R=mn+1 ! R=mn induces mapsExtiR(R=mn;M)! ExtiR(R=mn+1;M)for all i � 0. We de�ne the local cohomology modules of M byH im(M) = lim! ExtiR(R=mn;M):The local cohomology modules are Artinian, but are not �nitely generated in general.They are related to the depth of an R-module in the following way: if M is an R-module of depth t and dimension d, then Hdm(M) 6= 0, H tm(M) 6= 0, and H im(M) = 0for any i < t or i > d. Thus, we see thatdepth(M) = minfi : H im(M) 6= 0g:



21If (R;m) local or positively graded (with R0 Artinian) is Cohen-Macaulay ofdimension d, then the canonical module !R of R is the unique (up to non-uniqueisomorphism) R-module satisfying!_R = Hom(!;ER(K)) �= Hdm(R);where ER(K) is then injective hull of the residue �eld K over R. The local dualitytheorem then implies that for any i � 0,H im(M)_ = Hom(H im(M); ER(K)) �= Extd�iR (M;!R)for any �nitely generated R-module M , and hence ExtiR(M;!R) = 0 if and onlyif i > dim(R) � depth(M). If R is module-�nite over a regular ring A (e.g. if Ris positively graded with R0 = K a �eld, or if R is complete local), then !R �=HomA(R;A) (actually HomA(R;A(�dim(A))) in the graded case). If the local ringR is a homomorphic image of a regular ring S with dim(S) � dim(R) = t, then!R �= ExttS(R; S).If !R is a canonical module for R, then M� = Hom(M;!R) gives a dualizingfunctor on on the class of MCM R-modules. In particular,M� is MCM and (M�)� �=M for any MCM module M . Moreover, ifO!M1 !M2 !M3 ! 0is a short exact sequence of MCM modules, thenO!M�3 !M�2 !M�1 ! 0is also a short exact sequence of MCM modules. In fact, if R is module-�niteover a regular ring A, or a homomorphic image of a regular ring S (but not nec-essarily Cohen-Macaulay), then one may still obtain a dualizing functor with the



22same properties on the set of MCM modules by setting M� = HomA(M;A) orM� = ExttS(M;S), where t = dim(S)� dim(R), as appropriate. One can show thatany of these de�nitions give the same operation (�)� in the case that more than oneof them is de�ned. Finally, if N is a module over (R;m), we de�ne the socle of N bySoc(N) = AnnNm, the largest submodule of N which is killed by m. Then, if M isa MCM R-module and I is a parameter ideal of R, we de�ne the type r(M) of M byr(M) = dimKSoc(M=IM):It can be shown that the type is independent of the choice of the parameter idealI. Moreover, if we have a dualizing operation (�)� on MCM modules, then r(M) =�(M�) for any MCM module M . This fact will be used repeatedly in the argumentsof chapter 4.I end the introduction with a theorem which will be used repeatedly throughoutthe dissertation, and whose proof will serve as something of a paradigm for muchof the work which follows. The theorem was proved independently by Hartshorneand by Peskine and Szpiro [18], but remained unpublished until it was rediscoveredby Hochster, who gave a proof in [7]. It implies the existence of �nitely generatedMCM modules for a 3-dimensional graded ring over a perfect �eld of positive primecharacteristic, the only signi�cant case in which the question of existence of smallMCM modules has been answered in dimension 3. Its proof uses the general fact thatif M is a graded module over a positively graded ring R of characteristic p > 0, theneM naturally splits into q = pe summands as an R-module. One gets such splittingfor the simple reason that qth powers of elements of R raise degrees by a multiple ofq when applied to M . Thus, the action of R on eM preserves the submodules eM(i)generated by forms of M of degree i mod q, which are therefore direct summands.(Some of the summands may be 0, but for any D > 0, at least D summands will be



23nonzero for all e su�ciently large.)Theorem 1.5.3 (Hartshorne-Peskine-Szpiro). Let R be a �nitely generated N-graded equidimensional K-algebra with R0 = K a perfect �eld of characteristic p > 0,and let m be the homogeneous maximal ideal. Suppose R has a �nitely generatedgraded equidimensional module M with dim(M) = dim(R), and that MP is maximalCohen-Macaulay over RP for any prime P 6= m. Then R has a �nitely generatedMCM-module.Proof: Since K is perfect, eM is a �nitely generated module for each e. Moreover,eM = �0�j<pe eM(i); where eM(i) = �j�imod peMj:We will show that, for su�cientlylarge e, at least one of the summands eM(i) is MCM.By hypothesis, the local cohomology modules Hjm(eM) are �nite-length for j <dim(R). Moreover, it follows from the de�nition that Hjm(eM) �= e(Hjm(M)) for allj and any e � 0. Hence, we may conclude that for all e greater than or equal tosome �xed e0, each Hjm(eM), j < dim(R), is a K-vector space of �xed dimension 
j,and that the Frobenius map induces an isomorphism Hjm(eM) �= Hjm(e+1M).Thus, if we choose e large enough so that M has at least P 
j nonzero di-rect summands, then since �j<dim(R)Hjm(eM) has dimension P 
j, we must have�j<dim(R)Hjm(eM(i)) = 0 for some some nonzero summand eM(i). It follows thateM(i) is a �nitely generated maximal Cohen-Macaulay module for R. 2



CHAPTER IIMaximal Cohen-Macaulay modules satisfying specialconditions
2.1 De�nitions and backgroundThe following de�nition was �rst introduced by Ulrich in [20]. In that paper,Ulrich was able to give a simple characterization of the Gorenstein property for aCohen-Macaulay local ring in the presence of a MCM module which is su�cientlyclose to being linear, as de�ned below. Ulrich's theorem, and some further develop-ments along the same lines, will be presented in section 4.De�nition 2.1.1. Let (R;m) be a Noetherian local ring with a �nitely generatedmaximal Cohen-Macaulay module M . Then M is said to be linear (or a maximallygenerated maximal Cohen-Macaulay module) if e(M) = �(M).The �rst existence results for linear MCMs were set out by J. Brennan, J. Her-zog, and B. Ulrich in [2]. There they showed the existence of lin MCMs for one-dimensional rings, two-dimensional graded Cohen-Macaulay domains, rings of min-imal multiplicity, and certain rings of determinantal varieties. The most signi�cantexistence result to appear subsequently is that of Backelin, Herzog, and Ulrich in[1]. There the existence of lin MCMs was proved for local rings which are strictcomplete intersections (i.e. both the ring and its associated graded ring are complete24



25intersections).A question posed in Ulrich's original paper [20] was whether every local Cohen-Macaulay ring posesses a linear MCM module. There is as yet no known coun-terexample, although the condition is so strong as to make a positive answer seemunlikely in general. Moreover, the existence of lin MCMs in any particular case hasvery strong consequences, as will be seen below. In this chapter and the next, wewill give a positive answer to the question for some new classes of rings, as well asmany existence results for related but somewhat less restrictive notions.If we assume that the residue �eld of R is in�nite, then we may choose a minimalreduction I = (x1; : : : ; xd) of m. Now we know that e(M) = l(M=IM) and �(M) =l(M=mM). It is then obvious that e(M) � �(M) (the general case of this inequalitycan be deduced by extending the residue �eld) and that M is linear if and only ifmM = IM . It is this characterization of linearity which is to be stressed in much ofthe work presented here.A further approach to formulating the question of existence of lin MCMs is asfollows: assume that R either is complete local and contains an in�nite �eld, or else ispositively graded over an in�nite �eld K. Then we may choose a minimal reduction(x1; :::; xd) of the maximal ideal m and express R as a module-�nite extension of thepower series ring A = K[[x1; : : : ; xd]] (or of the polynomial ring A = K[x1; : : : ; xd]).Now a MCM module M over R must also be MCM, hence free, over the regular ringA. Thus, a MCM module over R is simply a free A-module with the added structureof an R-module.Question 2.1.2. Let R be a complete local ring containing an in�nite �eld, and let(x1; :::; xd) be a minimal reduction of the maximal ideal m. Set A = K[[x1:::xd]] � R.Can you de�ne, for some n, an A-algebra homomorphism R ! Mn(A)? Given



26such a homomorphism, can you de�ne another one (for possibly greater value of n),such that all elements of m map to matrices with all entries in the maximal ideal(x1; :::; xd)?Of course, giving an A-algebra map R ! Mn(A) is equivalent to de�ning an R-module structure on A(n) which extends the usual A-module structure. If the moduleM de�ned in this way is linear, then we know that mM = (x)M , which is to saythat elements of m act upon An by matrices with entries in (x).Both of the above correspond to solving polynomial equations with coe�cients inA in some matrix ringMn(A); namely, the same equations satis�ed by the generatorsof R as an A-algebra. They may also be considered as solving in A certain polynomialequations on the entries of the matrices, simply by considering a matrix equation asa system of n2 equations on the entries of the matrices.In the graded case, the problem of mapping to a matrix ring over a regular subringcan be translated into even more familiar terms:Lemma 2.1.3. If R is a positively graded K-algebra, generated by its 1-forms, andif R possesses a lin MCM (i.e. there is a map R!Mn(A), as above, with no entrieswith nonzero constant coe�cient), then there is a solution in which the entries of thematrices are linear forms in the elements x1; : : : ; xd of A = K[x1; : : : ; xd].Proof: As noted above, constructing such a mapping is equivalent to �nding solu-tions fZi = Fi 2 Ag of �nitely many polynomial equationsGj(x1; : : : ; xd; Z1; : : : ; Zr) 2 A[Z1; : : : ; Zr];where the Zi correspond to the entries of matrices in Mn(A) to which the generatorsof R are to be mapped. Since R is graded, the Gj are homogeneous elements of theideal (x1; : : : ; xd; Z1; : : : ; Zr).



27Thus, since the polynomials Fi have zero constant term, it is easy to see thatthe lowest degree (potentially nonzero) component of Gj(x1; : : : ; xd; F1; : : : ; Fr) inA is given by Gj(x1; : : : ; xd; f1; : : : ; fr), where fi is the linear term of Fi; whencefZi = fig must also give a solution. 2Thus, �nding a lin MCM M over R which has free rank n over A is equivalentto solving the polynomial equations Gj(x1; : : : ; xd; f1; : : : ; fr) with linear forms fi =a1x1 + : : : + anxd. But these identities hold if and only if the coe�cients of all themonomials in the expansion are 0, and these coe�cients are given by polynomials inthe coe�cients a over K. So the existence of such a module M is equivalent to thestatement that a certain a�ne variety contained in A drn2K is nonempty. Note that itis not at all clear that one can give a similar characterization of the existence of a(not necessarily linear) MCM module, since there is no way of bounding the degreesof the polynomials which occur as entries in a potential matrix solution. What wehave really used above is a version of the following result on linear MCM modules(see [2]):Proposition 2.1.4 (Brennan, Herzog, and Ulrich). IfM is a linear MCM mod-ule over a local ring (R;m), then the the associated graded module grm(M) is MCMover grm(R).This result is interesting in light of the fact that no such statement can be madewith regard to a general MCM module over R.The following de�nitions give weakenings of the linearity property which will be ofuse in later sections. Note that given a Cohen-Macaulay local (or positively graded)ring (R;m) and a minimal reduction I of m, there certainly exists some n > 0such that mn � I. So another approach to the problem of lin MCMs is to consider



28the question: what is the minimum integer n such that for some MCM R-moduleM , mnM � IM? And, in particular, is n = 1? This leads one to the followinggeneralization:De�nition 2.1.5. Let M be a �nitely generated MCM-module over a local ring(R;m). Then we de�ne the reduction degree of the module M (denoted red(M)) tobe the least integer n such that mnM � (x1; : : : ; xd)M for some minimal reduction(x1; : : : ; xd) of m.Of course, reduction degree one is just linearity. And ifM = R, then the reductiondegree corresponds to the reduction number of the maximal ideal m.In future sections it will also be necessary to allow the following somewhat lessrigid de�nition. Although more complex, this notion will prove just as worthwhilein applications to Lech's conjecture, and it allows for far stronger existence results.De�nition 2.1.6. A sequence of MCM R-modules fMigi�0 is said to have reductiondegrees approaching t if for some minimal reduction I of m,l((mt + I)Mi=IMi)l(Mi=IMi) ! 0as i!1.2.2 PropertiesIn this section we will show how the modules de�ned in section 1 behave withrespect to certain standard operations on maximal Cohen-Macaulay modules. First,suppose that (R;m) is a Cohen-Macaulay local ring with canonical module !R (fora treatment of canonical modules see [3]). It is known that the class of MCM R-modules is preserved under the operation of dualizing into !R (see section 1.5). The



29following theorem shows that the class of linear MCM modules is also preservedunder this operation. Moreover, if the dual module is linear, its structure can begiven somewhat more speci�cally.Theorem 2.2.1. Let (R;m) be a Cohen-Macaulay local ring with in�nite residue�eld K, and suppose R has canonical module !R. Let M be a MCM R-module. ThenM is linear if and only if the module M� = HomR(M;!R) is linear. Moreover, inthis case one has �(M) = �(M�).Proof: Since M �= HomR(M�; !R), it su�ces to prove the only if implication.It is a well-known fact that if M is MCM, then so is M� (see e.g. [3], Theorem3.3.10). So suppose that M is linear; i.e. that mM = IM for some parameter idealI = (x1; : : : ; xd). To see that M� is also linear, it su�ces to show that M�=IM� iskilled by the maximal ideal m. Note thatM�=IM� = HomR(M;!R)
R R=I �= HomR=I(M=IM; !R=I!R)(see [3]). Since M is linear, M=IM is a K-vector space of dimension �(M), and iskilled by m; and since I is a parameter ideal in the Cohen-Macaulay ring R, it followsthat !R=I!R �= !R=I = ER=I(K), the injective hull of the residue �eld. Finally, sinceHomR=I(K;ER=I(K)) �= K, it follows that M�=IM� is isomorphic to a K-vectorspace of dimension �(M), which shows that M� is linear with �(M) generators. 2So now suppose that (R;m) is Cohen-Macaulay with canonical module !R, andhas a non-free linear MCM module M . Then we may write down a presentationO! U ! Rn !M ! 0where n = �(M) and U is (necessarily) MCM. Applying the operation HomR(�; !R),



30we get a new exact sequence of MCM modulesO!M� ! !nR ! U� ! 0where M� is linear and �(M�) = �(M) = n. Hence, if I is a parameter ideal suchthat mM = IM , we get an injection Kn �= M=IM ,! !n=I!n, the image of whichmust equal to the n-dimensional socle of !n=I!n. These considerations immediatelyyield the following:Corollary 2.2.2. Let (R;m) be a Cohen-Macaulay local ring with canonical module!R, and let I be a minimal reduction of the maximal ideal m. Let � represent alifting to ! of a generator of the socle of !=I!. Then R has a linear MCM module ifand only if there exist, for some n > 0, elements uij of I!R such that the submoduleN of !nR spanned by the n elements(� + u11; u12; : : : ; u1n); (u21; � + u22; u23; : : : ; u2n); : : : ; (un1; : : : ; unn�1; �+ unn)has the property that !nR=N is MCM.We will need to know later on that the more general properties of reduction degreeare also preserved by this sort of dualizing. Since it is not necessary to assume thatthe ring R is Cohen-Macaulay, I do not wish to assume the existence of a canonicalmodule over R. Nevertheless, one may often de�ne a functor (�)� with many of thesame properties, as was seen in section 1.5.Proposition 2.2.3. Let R be a local or positively graded algebra containing a �eld,and assume that R admits a dualizing functor (�)� on MCM modules (of the kindde�ned in section 1.5). Then for any MCM module M over R, one has red(M) =red(M�). Likewise, if fMig is a sequence of MCMs over R, then this sequence hasreduction degrees approaching t if and only if the same is true of the sequence fM�i g.



31Proof: We �rst note that completion at the maximal ideal commutes with dualizing;i.e. that (M̂)� �= (M�)^ for any R-module M . This follows from the 
atness ofR ! R̂ and from the fact that the maximal ideal of R extends to that of R̂ (see[3], section 3.3). Moreover, since the de�nitions of reduction degree and sequencesapproaching a certain reduction degree refer only to �nite length quotients of modulesover R, these properties are preserved under the operation of completion at themaximal ideal. Similarly, if R is a complete local ring with coe�cient �eld K, all ofthe relevant properties and operations are preserved when we extend K to a larger�eld L.It follows that we may reduce to the case that R is a complete local ring within�nite coe�cient �eld K. If I = (x1; : : : ; xd) is a minimal reduction of mR, letA = K[[x1; : : : ; xd]] � R. We may now assume that the operation (�)� on MCMR-modules is de�ned by M� = HomA(M;A) (see section 1.5).First note that M�=IM� �= HomK(M=IM;K). It immediately follows that if mtkills the module M=IM , then it also kills the module M�=IM�. This shows thatred(M�) � red(M), and since M �= (M�)�, we see that red(M) = red(M�).Secondly, note that for any M , we have l(M=IM) = l(M�=IM�). Thus, to provethe second statement, it su�ces to give a uniform bound for� = l�(mt + I)M�IM� �in terms of � = l�(mt + I)MIM � :But since M�=IM� = (M=IM)_ = HomK(M=IM;K), we have from the followinglemma that � � �(mt) � �, where of course �(mt) is a constant independent of themodule M . Thus, if the modules fMig have reduction degrees approaching t, the



32same must be true of their duals fM�i g. 2Lemma 2.2.4. Let M be a �nitely generated module over an Artinian K-algebra A,and let J be an ideal of A. Then l(JM_) � �(J) � l(JM).Proof: Since M__ = M , it is equivalent to show that for any M , l(JM) � �(J) �l(JM_). First, we wish to see thatl(JM_) = l(M)� l(AnnMJ) = l(M=AnnMJ):For this, set J = (x1; : : : ; xn), and consider the exact sequence0! AnnMJ !M !M (n);where the last map is given by the n � 1-column matrix with the x's as its entries.Since applying the functor _ is exact, this induces the short exact sequenceO! JM_ !M_ ! (AnnMJ)_ ! 0;from which the conclusion follows (note that dimKM_ = dimKM for any �nitelygenerated module M).But now we need only note that the vector space JM is spanned by elements ofthe form xm, where x is a generator of J and m 2M n AnnMJ . Thusl(JM) � �(J) � l(M=AnnMJ) = �(J) � l(JM_);as required. 2Finally, if (R;m) is a local ring of dimension d which admits a minimal reductionI = (x1; : : : ; xd), then the condition of linearity on a MCM module M , namelymM = IM , corresponds to the regularity condition in the case that M = R is



33the ring itself. It is known that regularity is maintained under the operation oflocalization. Moreover, if M is MCM over R, and P is a prime ideal, then thelocalized module MP = M 
 RP remains MCM over RP . So a natural question iswhether the localizationMP at a prime ideal of a linear MCM module over R is stilllinear. Unfortunately, the answer is negative:Example 2.2.5. There exist linear MCM modules which do not remain linear uponlocalizing. In particular, if R is a homogeneous 2-dimensional Cohen-Macaulay do-main with in�nite residue �eld, and R is not normal, then R has a lin MCM M anda height one prime P such that MP is not linear.Proof: If R is a homogeneous 2-dimensional Cohen-Macaulay domain with in�niteresidue class �eld, then R admits a linear MCM module M and an exact sequenceO! N !M ! I ! 0;where N is MCM and I is an height 2 homogeneous ideal of R (this was proved byBrennan, Herzog, and Ulrich in [2]).Thus, if P is a prime ideal of R of height one, we see thatO! NP !MP ! RP ! 0remains exact, from which it follows that if MP is linear, then RP is also linear, i.e.regular. Thus MP cannot be linear for any non-regular height one prime P of R. 22.3 Existence of MCMs with low reduction degreeFor a Cohen-Macaulay local ring R, one can always �nd a MCM module with re-duction degree less than that of the ring itself, or a module whose ratio of multiplicityto number of generators is smaller than that of the ring.



34Proposition 2.3.1. Let (R,m) be a local Cohen-Macaulay ring with reduction num-ber n (i.e. mn = Imn�1 for some minimal reduction I of m), and assume that R isnot regular. Then:1. R has a MCM-module M with reduction degree less than n.2. R has a MCM-module M with e(M) � eR2 � �(M).Proof: Let Ui be the ith syzygy module of K = R=m. Then for su�ciently large d,Ud and Ud+1 are MCM. Moreover if (x1; : : : ; xn) is a minimal reduction of m, thenthe exact sequence O! Ud+1 ! Rs ! Ud ! 0of MCM modules with Ud+1 mapping into mRs yeilds the exact sequenceO! Ud+1=(x)Ud+1 ! Rs=(x)Rs ! Ud=(x)Ud ! 0Now, it is clear that the image of mn�1Ud+1 after going mod (x) maps tomn(Rs=(x)Rs) = 0in the second exact sequence; and hence mn�1Ud+1 � (x)Ud+1: Thus, the MCMmodule Ud+1 has reduction degree less than or equal to n� 1.Moreover, since the projective dimension of K is in�nite, we must be able tochoose d as above so that Ud and Ud+1 are MCM, and �(Ud+1) � s = �(Ud). Sincemultiplicities are additive on short exact sequences, we know that e(Ud)+ e(Ud+1) =s � eR. It follows that for at least one of Ud and Ud+1, one must havee(Ui) � (s=2) � eR � eR2 � �(Ui): 2Of course, one would like to generalize the above argument in order to show howto proceed from a MCM module M with reduction degree n to one with reduction



35degree (n � 1). But it is not clear that we can construct short exact sequences inthe same way as above for a general M . Nevertheless, it is worthwhile to pose thequestion in its strongest form:Question 2.3.2. Let M be a MCM-module over (R;m) which is not linear. Thenis there a short exact sequence of MCM-modules0! U !M s ! N ! 0such that U maps into mM s? (Equivalently, does there exist some s > 0 and somesubmodule U � mM s such that M=U is a MCM R-module?). A positive answerwould imply, by an inductive argument, not only the existence of lin MCMs, butalso that the Grothendieck group of MCM modules over R is generated by the linearMCM modules.Since the maximal ideal of a local ring (R;m) of �xed dimension d may havearbitrarily high reduction number, the above results are still not very satisfying.But, at least for rings of prime characteristic p > 0, one can give an existence resultdependent only upon the dimension of the ring. In the case that the reductionnumber t of mR is high, these results are much better than those achieved above.Lemma 2.3.3. Let (R;m) be any d-dimensional local ring of characteristic p > 0.If I = (x1; : : : ; xd) is a minimal reduction of m, then for su�ciently large q = pe,(md+1)[q] � I [q].Proof: There exists t > 0 such that mn = In�tmt for all n � t. But then, as longas q � t, it is clear that(md+1)[q] � mdq+q � Idq+q�t � Idq � I [q]:2



36Proposition 2.3.4. Let (R;m) be a d-dimensional F-�nite ring of characteristicp > 0, with perfect residue �eld K. If R possesses a MCM module M , then themodules eM are MCM modules of reduction degree less than or equal to d + 1 forsu�ciently large e. Moreover, the sequence of modules feMge�0 has reduction degreesapproaching d.Proof: The �rst statement immediately follows from the lemma, sincemd+1 � (eM) = (md+1)[q]M:For the second note that, by the same argument as above, we havemt(md)[q] � mdq+t � Idq � I [q]for all su�ciently large q. Thus, for e >> 0, the module(md + I)(eM)I(eM)is killed by mt (via the usual module structure). Since such a module, seen asan R-module via the usual module structure, clearly needs at most �(md) � �(M)generators, we thus see thatl�(md + I)(eM)I(eM) � � l(R=mt) � �(md) � �(M);independently of e.Since the ranks and multiplicities of the modules eM approach in�nity (exceptin the case d = 0, which is trivial), this shows that their reduction degrees mustapproach d. 2Proposition 2.3.5 (Graded case). If (R;m) is a �nitely generated positively gradedalgebra over a perfect �eld K of characteristic p > 0, with R0 = K, and if R is Cohen-Macaulay except at the origin (i.e. RP is Cohen-Macaulay for any prime P not equal



37to the irrelevant ideal m), then R has a MCM-module M with mdM � IM . If Ris generated over K by one-forms, then one also obtains a sequence of MCMs withreduction degrees approaching d� 1.Proof: As before, if mn = In�tmt for all n > t, then it is clear that, for su�cientlylarge q, (md)[q]I t � Idq�t+t � I [q]. Thus, the length of md(eR)=I(eR) is bounded by�(md) times the length of R=I t for all large e.By theorem 1.5.3, we know that for some t � 0 and all su�ciently large e, themodule eR will have at least �(md) � l(R=I t) + 1 (nonzero) MCM direct summands.It follows that at least one such summand must be MCM with reduction degree lessthan or equal to d.For the second part, note that there exists some a � 0 such that for q >> 0,there exists q� a � b < q such that Mb;q (the summand of eR generated by forms ofdegree b mod q) is MCM. But then mt+a(md�1)[q] multiplies the summand Mb;q intoI [q], and we may argue as above to show that there is a sequence of MCM summandsof the modules eR which have reduction degrees approaching d� 1. 22.4 A theorem of Ulrich in characteristic p > 0In this section I wish to give an application of the prime-characteristic techniquesto a theorem of Ulrich which appeared in the original paper [20]. We start byshowing the existence of linear MCM modules for a certain class of local rings ofpositive prime characteristic p. The conditions placed upon these rings are ratherrestrictive, as their maximal ideal m is already required to be very close to equalinga parameter ideal I, in the sense that m = IF , the Frobenius closure of I. However,we can show that any local Cohen-Macaulay ring of characteristic p has a multitude



38of nice extension algebras which have this property.De�nition 2.4.1. Let R be a ring of positive prime characteristic p, and let I be anideal of R. Then the Frobenius closure IF of I in R is the set of elements z 2 R suchthat for some e � 0 (equivalently, for every e >> 0), zpe 2 I [pe]. The tight closureI� of I is the set of elements z 2 R with the property that czpe 2 I [pe] for all e � 0,where c is some nonzerodivisor in R.Both IF and I� are ideals, and it is not di�cult to show that both are containedin the integral closure of I.Lemma 2.4.2. Let (R,m) be an F-�nite Cohen-Macaulay local ring of characteristicp > 0. If m = IF for some parameter ideal I = (x1; : : : ; xd), then R has a linearMCM module.Proof: Since m is �nitely generated, we may choose e > 0 such that m[q] = I [q],where q = pe. Now, if we just let eR stand for R viewed as a module over itselfvia the eth power of the Frobenius endomorphism, it is easy to see that m( eR) =m[q]R = I [q]R = I( eR). Moreover, as R is Cohen-Macaulay, xq1; : : : ; xqd is a regularsequence on R; whence x1; : : : ; xd is a regular sequence on eR. Thus eR is a linearMCM module for R. 2Proposition 2.4.3. Let (R,m) be an F-�nite Cohen-Macaulay local ring of char-acteristic p > 0. Then there exists a 
at local module-�nite extension of R whichpossesses a linear MCM module. In fact, for any system of parameters x1; : : : ; xd ofR, and for any su�ciently large q = pe (dependent upon the system of parameters(x)), the free extension S = R[z1; : : : ; zd](zq1 � x1; : : : ; zqd � xd)has a linear MCM module.



39Proof: Let I = (x) be an ideal generated by a system of parameters of R. Thenclearly, for su�ciently large q = pe, we have m[q] � I. But the elements z1; : : : ; zdobviously form a system of parameters ofS = R[z1; : : : ; zd](zq1 � x1; : : : ; zqd � xd)and since the maximal ideal n of S is generated by m and the z's, we see thatn[q] = m[q]S + (zq)S = (zq)S. Hence n is the Frobenius closure of a parameter ideal,and the result now follows from the preceding lemma. 2Note that this shows that any property which is preserved by contraction froma faithfully 
at extension, and which is implied by the existence of a linear MCMmodule, will hold for all Cohen-Macaulay local rings with positive prime character-istic p and perfect residue �eld. In particular, it raises the question of whether theexistence of a linear MCM is such a property.Question 2.4.4. If R � S is a 
at local extension of local Cohen-Macaulay rings ofthe same dimension, and if S has a linear MCM module, must R have one?Finally we may deduce the following consequence from the existence of linearMCM modules over the free extensions described above. According to Lemma 2.4.2,eS is a linear MCM module for the extension ring S in Proposition 2.4.3. But notethat F e(S) � R � S, and the same reasoning as before shows that this makes R alinear MCM module over S, since m[q]R + (zq)R = (zq)R.The following theorem was proved by Ulrich in [20].Theorem 2.4.5 (Ulrich). Let R be a local Cohen-Macaulay ring, and suppose Mis a �nitely generated MCM R-module of positive rank such that



401. 2�(M) > eR � rank(M).2. ExtiR(M;R) = 0 for 1 � i � dim(R).Then R is Gorenstein.In general, R is Gorenstein if and only if the second condition holds for everyMCM module M . The theorem says that if a certain module M has su�ciently nicenumerical properties, then it su�ces to check condition 2 for this particular module.In particular, if M is a linear MCM module of positive rank for R, the theoremimplies that R is Gorenstein if and only if ExtiR(M;R) = 0 for 1 � i � dim(R) (theonly if direction follows from the fact that R is its own canonical module). Moreover,if R is a local ring of characteristic p > 0, and S is the free extension of R de�nedabove, then it is clear that:1. S is Cohen-Macaulay if and only if R is, by faithful 
atness.2. S=(z) �= R=(x), whence these residues also must have isomorphic socles.Hence R is Gorenstein if and only if S is; and if R is Cohen-Macaulay and F -�nite,S may be chosen so that it has R as a linear MCM module, when viewed as anS-module via a suitable power of the Frobenius endomorphism. From this we obtainthe following:Corollary 2.4.6. Let (R;m) be an F-�nite Cohen-Macaulay local domain of char-acteristic p > 0, and let q = pe be chosen so thatS = R[z1; : : : ; zd](zq1 � x1; : : : ; zqd � xd)has R (viewed as an S-module via F e(S) � R) as a linear MCM module. Then R isGorenstein if and only if ExtiS(R; S) = 0 for all i � 1.



41Proof: The corollary of course follows from the theorem and subsequent discussion,provided we show that the MCM-module used in the corollary has positive rank. Ifthe extension ring S is a domain, then this is necessarily the case. And it is easy tosee that if R is a domain, then the nilpotent ideal of S is prime: for if ab is nilpotentfor elements a and b of S, then aqbq is also nilpotent, where aq and bq are nonzeroelements of R, which implies that either aq = 0 or bq = 0. Hence S will be a domainif and only if it is reduced.So assume that s =Pi riza is a nilpotent element of S, where the sum is takenover monomials in z with 0 � aj < q for each 1 � j � d, and ri 2 R for all i. Takingqth powers, we get that sq = P rqixa = 0, since it is at least a nilpotent element ofR. This says that the monomials fxa11 � � �xadd : 1 � ai < qg have a nontrivial relationover R[q]. Such a relation would continue to hold in the completion R̂, which ismodule �nite over the power series ring A = K[[x1; : : : ; xd]]. But this is contradictedby the fact that there is no such relation over A[q] and the fact that R[q] �= R isCohen-Macaulay, hence 
at over A[q]. 2



CHAPTER IIIExistence results for specialized maximal Cohen-Macaulaymodules
3.1 Linear MCM modules over monomial ringsIn trying to �nd some new classes of Cohen-Macaulay rings for which linearMCM modules can be shown to exist, a good place to look is among the classes ofmonomial rings and determinantal rings, where combinatorial arguments may allowactual computations of such numerical invariants as the multiplicity. At least oneresult in this direction has already been attained, and appears in the article [2]:Proposition 3.1.1 (Brennan, Herzog, Ulrich). Let s � r � 0 be positive inte-gers, A = K[x1; : : : ; xn] a polynomial ring over the �eld K, and C an r � s ma-trix whose entries are linear forms in A. Assume, moreover, that grade(Ir(C)) =height(Ir(C)), where Ir(C) is the ideal of A generated by the r � r minors of C.Then R = A=Ir(C) admits a linear MCM module M .I will not reproduce the proof, except to say that the result stated here may bededuced from the case of the ring of generic r � r minors, where n = r � s and C isjust the matrix which has the variables as its entries. The generic ring is known tobe Cohen-Macaulay by a result of Eagon and Northcott (see [5]). In the statementabove the condition on the grade of Ir(C) is necessary in order to ensure that R is42



43Cohen-Macaulay.This result of course invites the following more general:Question 3.1.2. Let A = K[xij : 1 � i � m; 1 � j � n] be a polynomial ring overthe �eld K, where we assume that m � n. Let X be the m � n matrix whose ijentry is xij, and set Rr(X) = A=Ir(X) for 1 � r � m. For which choices of m, n,and r does Rr(X) admit a linear MCM module?The results of Eagon and Hochster in [4] show that all of the rings Rr(X) areCohen-Macaulay. The proposition stated above gives a positive answer to the ques-tion in the case that r is maximal; namely r = m. Here I will give a proof in thecase that r is minimal (excepting the trivial case r = 1): namely r = 2.Proposition 3.1.3. For any m and n, and any �eld K, the ring of generic 2 � 2minors R2(X) admits a linear MCM module.Proof: The �rst thing we need to note is that R2(X) is isomorphic to the K-subalgebra R of the polynomial ring K[X1; : : : ; Xm; Y1; : : : ; Yn] generated by themonomials Xa11 � � �Xamm Y b11 � � �Y bnnwithP ai =P bj (i.e. R is the Segre product of the polynomial ringsK[X1; : : : ; Xm]and K[Y1; : : : ; Yn]). Indeed, it is clear that we may map R2(X) onto R by sendingxij to XiYj, since the relations on the xij in R2(X) are generated by those of theform xijxkl�xilxkj. Since both rings are known to be domains of the same dimensionm+ n� 1 (see e.g. [3]), this map must be an isomorphism.We will henceforward work with the ring R. Note that, for any integer t > 0,there exists a ring homomorphism ft : R! R which is the identity on K and sendsXiYj to X tiY tj for all i and j. Moreover, R viewed as an R-module in this way splits



44into direct summandsMt(c1; : : : ; cm; d1; : : : ; dn) generated over K by the monomialsXa11 � � �Xamm Y b11 � � �Y bnnwith ai � ci and bi � di mod t, and P ai =P bj.Since R is Cohen-Macaulay, R viewed as an R module via ft will be a MCMmodule, and hence any summand must also be MCM. I claim that, for any t > m,the module W = Mt(�1;�1; : : : ;�1; 0; 0; : : : ; 0;�m)is linear (here the �rst m entries are -1).First we wish to show that the rank of W as an R-module is 1. But thisis clear from the fact that we may obtain any monomial in W from the elementX t�11 � � �X t�1m Y tm�mn 2 W by successively multiplying by elements of the formX tiY tn or Y tiY tn = X t1Y tiX t1Y tn ;all of which are tth powers of elements of the fraction �eld of R.Thus e(W ) = e(R), which can be calculated as follows. Since the dth power ofthe maximal ideal of R is generated by all products of monomials of degree d in apolynomial ring of dimension m with monomials of degree d in a polynomial ring ofdimension n, the leading term of the Hilbert polynomial for R must be:dm�1(m� 1)! � dn�1(n� 1)! :It follows thatdim(R) = m + n� 1 and e(R) = (m+ n� 2)!(m� 1)!(n� 1)! = �m+ n� 2m� 1 �:All that remains to show is that W needs at least e(R) generators as an R-module. But since R acts on W by tth powers, this follows if we can �nd e(R)



45distinct monomials in W in which the exponents of the X's are all less than t. Thisrequirement is easily seen to be satis�ed by the monomials:X t�11 � � �X t�1m Y i1t1 � � �Y in�1tn�1 Y int+t�mn ; where nXj=1 ij = m� 1;since the number of such elements is equal to the number of monomials of degreem � 1 in n variables, namely �m+n�2m�1 �. Thus �(W ) � e(R), which completes theproof that W is a linear MCM module over R. 2Note 3.1.4. Many other choices for the residues of the exponents and for the degreeof the map from R to itself will yield linear MCM modules. In particular, the sameproof as the one given above shows thatMt(�j1; : : : ;�jm; 0; : : : ; 0;� mXk=1 jk)is linear as long as t >Pmk=1 jk.The problem of existence of linear MCM modules for generic rings of minors hasthus been solved in the cases of 2�2 minors and maximal minors. So it is reasonableto hope that one can give a positive answer for all of the rings Rr(X) of generic r� rminors. For future reference, we record the following (see [11]): for any m;n; r > 0,if we set A = K[Xij]1�i�m;1�j�n, then we have dim(A=Ir+1(X)) = (m+n� r) � r ande(A=Ir+1(X)) = det ��m + n� i� jm� i ��i;j=1;::: ;r = n�r�1Yi=0 (m+ i)! i!(r + i)! (m� r + i)!Although we started out studying determinantal rings, the proof of the proposi-tion used the structure of the ring as a toric subring of a polynomial ring, i.e. asa normal subring generated by monomials. This leads us to ask whether the samemethods might allow us to show the existence of linear MCM modules for all toricrings. In particular, for such a ring R, one always has maps ft : R! R as above, and



46R viewed as a module in this way splits into MCM direct summands Mt(i1; : : : ; iN),as before. One may ask whether some such module is always linear. The followingexample shows that this is not always the case.Example 3.1.5. Let S be the monomial subring ofK[X1; : : : ; Xr; Y1; : : : ; Ys; Z1; : : : ; Zt]generated by all monomials which have the same total degree in each of the threesets of variables X, Y , and Z (where we assume that r; s; t > 1). Let fq : S ! S bethe map de�ned by multiplying all exponents of monomials by q, as above. Then forno choice of residues 0 � ai; bi; ci < q is the moduleMq(a1; : : : ; ar; b1; : : : ; bs; c1; : : : ; ct)(nonzero and) linear MCM.Proof: As in the preceding proposition, one can see that the modules Mq(i) haverank 1, and that the multiplicity of the ring S is(r + s+ t� 3)!(r � 1)!(s� 1)!(t� 1)! = �r + s + t� 3r � 1 � � �s+ t� 2s� 1 �:So suppose we have chosen the residues, and assume, without loss of generality,that rX1 ai � sX1 bi � tX1 ci:The module W = Mq(a; b; c) will then be generated as an S-module by those mono-mials in S whose exponents have the appropriate residues mod q, and which have theproperty that all the exponents occuring in at least one of the three sets of variablesare less than q. Because of the way we ordered the sums of the residues, this implies



47that W is generated by monomials in which all the exponents on the Z's are lessthan q; i.e. by monomialsXa1+i1q1 Xa2+i2q2 � � �Xar+irqr Y b1+j1q1 Y b2+j2q2 � � �Y bs+jsqs Zc11 � � �Zcttwith Pr1 ik = (1=q)(Pt1 cl �Pr1 ai) < t and Ps1 jk = (1=q)(Pt1 cl �Ps1 bs) < t. Asbefore, it follows that the number of such monomials is less than or equal to�r + t� 2t� 1 � � �s+ t� 2t� 1 � = �r + t� 2r � 1 � � �s+ t� 2s� 1 �:And this number is clearly less than the multiplicity of S. 23.2 Segre products of rings with lin MCMsIn this section I wish to prove a very general theorem on the existence of linearMCM modules over Segre product rings. Embedded within the proof can be foundan alternative argument for Proposition 3.1.3. But the theorem also implies theexistence of lin MCMs for the rings considered in Example 3.1.5, as well as for manyothers. A central idea of the proof, which will appear again later on, is to use thefact that the Hilbert function of a lin MCM is equal to the Hilbert function of a freemodule over a polynomial ring. This often allows one to generalize constructions forpolynomial rings to any graded ring which possesses a lin MCM M , by working withthe module M instead of the ring.First we give the formal de�nition of the Segre product ring, then our result onlinear MCM modules.De�nition 3.2.1. Let R and S be positively graded algebras over a a �eld K, withR0 = S0 = K. Then the Segre product ring R 
seg S is the positively gradedK-subalgebra of R
K S with graded pieces (R
K S)t = Rt 
K St for all t � 0.



48Proposition 3.2.2. Let (R;m) and (S; n) be positively graded K-algebras generatedby their 1-forms, where K is an in�nite �eld and m and n represent irrelevant ideals;and suppose that R and S are integral domains. If R and S each possess a linearMCM module, then their Segre product ring R 
seg S also possesses a linear MCMmodule.Proof: If R and S have linear MCM modules M and N , respectively, then theassociated graded modules grm(M) and grn(N) are linear MCMs with all generatorsin degree 0 (see Proposition 2.1.4). From here on we assume that M and N havethese properties.We may use graded Noether normalization to choose 1-forms X1; : : : ; Xr in Rand Y1; : : : ; Ys in S such that R and S are graded module-�nite extensions of thepolynomial rings A = K[X1; : : : ; Xr] and B = K[Y1; : : : ; Ys], respectively. SinceM is a graded lin MCM over R, we know that M is free of rank c = eR(M) as anA-module; moreover, mM = (X)M , which is to say that every 1-form of R actson M �=A Ac by a matrix of linear forms in the X's. Similarly, N �=B Bd, whered = eS(N), and 1-forms of S act on N via matrices of linear forms in the Y 's.Note that we have a module-�nite extension A 
seg B � R 
seg S, and thatA
segB is isomorphic to the subring of the polynomial ringK[X1; : : : ; Xr; Y1; : : : ; Ys]generated over K by all monomials which have the same total degree in the X's asin the Y 's. The polynomial ring K[X; Y ] then splits over A
seg B into submodulesU� generated by all monomials � with the property that degX� � degY � = �, andit follows from a result of Goto and Watanabe that U� is MCM over A 
seg B fors > � > �r (see [6]).Although the polynomial ringK[X1; : : : ; Xr; Y1; : : : ; Ys] is generally not a moduleover R 
seg S, the free K[X1; : : : ; Xr; Y1; : : : ; Ys] - module M 
K N of rank cd is



49an R 
seg S - module with induced module structure. Moreover, since 1-forms of R(respectively S) act on M �= Ac (respectively N �= Bd) by matrices of 1-forms ofK[X] (resp. K[Y ]), we see that M 
K N still splits as an R 
seg S - module intothe direct summands (M 
K N)� = (K[X; Y ](cd))� = the submodule of M 
K Ngenerated by the vectors f(v1; : : : ; vcd) : each vi 2 U�gLet us denote (M 
K N)0 by M 
seg N and (M 
K N)s�1 by W . It followsfrom Goto and Watanabe's result that both M 
seg N and W are MCM modulesover A
seg B; hence they are also MCM over R 
seg S. Moreover, if we denote theirrelevant ideals of A 
seg B and R 
seg S by I and J , respectively, then we knowthat I(M 
seg N) = J(M 
seg N) and IW = JW .It follows, in the �rst place, thate(J ;M 
seg N) = e(I;M 
seg N) = cd � �r + s� 2s� 1 �;since M 
seg N is free of rank cd over A 
seg B, which has multiplicity equal to�r+s�2s�1 �. Likewise, �R
segS(W ) = �A
segB(W ) = cd � �A
segB(Us�1):And since Us�1 is minimally generated over A 
seg B by monomials in the X's ofdegree s�1, we have �A
segB(Us�1) = �r+s�2s�1 �. Thus, we have shown that the minimalnumber of generators ofW over R
seg S is equal to the multiplicity of of the moduleM 
seg N .Now, since R
segS is a domain, it will follow thatW is a linear MCM for R
segS,provided that we can show that W and M 
seg N have the same rank as R 
seg S-modules. Note that there is certainly an inclusionM 
seg N ,! W



50given by multiplication by Xs�11 (we could of course also use any other form of degrees� 1 in the X's). Moreover, a typical element of W has the formw = (Xi f1i(X)�1i; : : : ;Xi fcd;i(X)�cd;i) 2 (K[X; Y ])(cd);with each �ji 2 A
seg B and each f a form of degree s� 1. Rewriting, we see thatw =Xji fji(X)�ji; where �ji = �ji � ej 2M 
seg N:Thus, it su�ces to notice that for any form f of degree s � 1 in K[X], and forany � 2M 
seg N , one hasf(X) � � = f(X)Y s�11Xs�11 Y s�11 �Xs�11 � = � �Xs�11 �;where � is in the fraction �eld L of R 
seg S. This implies that the injection ofM 
seg N into W given above induces an isomorphismL
 (M 
seg N) �! L
Wof L- vector spaces; and we have shown that rank(M
segN) = rank(W ), as required.23.3 Linear MCM modules over Veronese ringsAnother class of monomial rings for which we might naturally hope to answerthe question of the existence of linear MCMs is the class of Veronese subrings ofpolynomial rings. In dimensions 2 and 3, the question of existence of lin MCMs ispositively answered for these rings. Moreover, in the same way as for Segre products,the proofs can be adapted to the case of Veronese subrings of a ring R which possessesa linear MCM. Finally, the proofs of existence entail a classi�cation of graded MCMsover Veronese subrings which may be of interest in its own right.



51The methods for constructing linear MCMs over Veronese rings of dimension 3turn out to yield far-reaching generalizations, as we will see in subsequent sections.Results to be presented there should indicate that the class of Veronese subrings ofregular rings is more representative of the class of graded K-algebras than might at�rst be apparent.We �rst need to introduce some notation. If S is any Noetherian Z-graded ringwith graded pieces Si, and t is any positive integer, then the tth Veronese subring ofS is the subring S(t) = �i2ZSit:Note that S is a �nitely generated graded S(t)-module, and that S splits into a directsum S = �t�1i=0Si;t;of S(t)-modules, where Si;t = �a2ZSi+at.Likewise, ifM is a graded S-module, then M becomes an S(t)-module via restric-tion of scalars, and one has an S(t)-module splittingM = �t�1i=0Mi;t;where the modules Mi;t are de�ned in the analogous way.Note that if M is MCM over S, then the module-�niteness of S over S(t) impliesthat M is MCM over S(t). It follows that all of the direct summands Mi;t mustbe MCM, as well. In particular, this shows that all Veronese subrings of a Cohen-Macaulay ring are Cohen-Macaulay. Finally, it is easy to see that if S is a domaingenerated by 1-forms over a �eld K, then the torsion-free rank over S(t) of any ofthe modules Si;t is one, whence the torsion-free rank of S over S(t) is t.



52Although the existence of lin MCMs over Veronese rings of dimension 2 is known(see [2]), the method used here gives a very satisfactory answer in this case:Proposition 3.3.1. Let R = S(t), the tth Veronese subring of the polynomial ringS = K[X; Y ] in 2 variables over the �eld K. Then any MCM module over R isisomorphic to a direct sum of modules of the form Si;t.Proof: If M is a graded MCM module over R, let Q = (S 
R M)__, the re
ex-ivization of the expanded module. Then Q is Cohen-Macaulay (see [3]), hence freeover S. But we may also note that, since M is already re
exive over R, we haveM = Q0;t. The conclusion is now apparent. 2Let S = K[X; Y ], as above. Since the multiplicity of the Veronese subring R =S(t) is t, it follows that the multiplicity of each of the R-modules Si;t is also t. Butfor each 0 � i < t the module Si;t is generated by the i+ 1 monomials of degree i inX and Y . We thus obtain:Corollary 3.3.2. If S = K[X; Y ], then S�1;t is the unique indecomposable linearMCM module over S(t) for every t.The situation becomes more interesting in dimension 3, where we actually obtainnew results. I will �rst give the classi�cation of MCMs over the Veronese subrings,then the results on lin MCMs. As above, S = K[X; Y; Z] will be a polynomial ringin 3 variables over a �eld. Note that the graded canonical module of S is S(�3),whence the canonical module of S(t) is S3;t (see [6]).Proposition 3.3.3. Let R be the tth Veronese subring of S = K[X; Y; Z]. Thenevery �nitely generated graded MCM module over R is equal to W0;t, where W is a



53second syzygy over S of a �nitely generated graded module N with the property thatNit = 0 for any integer i (in particular, N is killed by mtS).Proof: As before, letM be a graded MCMmodule over R, and letM� = Hom(M;!R).Now let Q = (S 
R M�)��; since Q has depth at least 2 over S, pdSQ � 1. That is,we have an exact sequence: O! Sa ! Sb ! Q! 0:Applying the functor Hom(�; S(�3)) to this sequence, we get a new exact sequence:0! Q� ! Sb ! Sa ! N ! 0where N = Ext1S(Q; !S).Now there are just two things to note. First of all, we know since M is re
exivethat Q0;t = M�, and it can then easily be seen that Q�0;t = M . Q� is obviously asecond syzygy of N , so the second thing is to show that N has the required proper-ties. It follows from general results on the Hom and Ext functors that N is graded.Moreover, since N0;t = Ext1R(M�; !R) and M� is MCM, it follows that N0;t = 0. 2Note that the conclusion of the proposition does include the case of the modulesSi, since free S-modules are of course second syzygies of the zero module.In the special case where R = S(2) this leaves us with only R, S1;2, and W =(Syz2(K))0;2 as indecomposable MCM modules. In dimension 3, the �rst two areeasily seen not to be linear; but it turns out that the last is. In a similar fashion,one may show the existence of lin MCMs over all Veronese subrings in dimension 3:Proposition 3.3.4. Let R = S(t) be the tth Veronese subring of the polynomial ringS = K[X; Y; Z] of dimension 3. Then R has a linear MCM module of rank 2.



54Proof: Let N be the kernel of the free S-module mapS(�1)t+1 A! St�1de�ned by the matrix
A =

26666666666664
X Y Z 0 � � � 0 0 00 X Y Z � � � 0 0 0� � �0 0 0 � � � X Y Z 00 0 0 � � � 0 X Y Z

37777777777775Now set M = N�1;t. We will show that M is a lin MCM over R.The �rst thing we need is aLemma 3.3.5. (X; Y; Z)t�1St�1 is contained in the image of A.Proof: It is easy to see that It�1(A), the ideal of S generated by the (t � 1)-sizedminors of A, is equal to (X; Y; Z)t�1. The lemma now follows from quite generalresults on matrices. 2Back to proof of Proposition: It follows from the lemma that0!M ! S(t+1)�2;t A! S(t�1)�1;t ! 0 (3.1)is a short exact sequence of R-modules, from which it follows that M is MCM.Moreover, since rankRSi;t = 1 for any i, we know that rankRM = 2, and hence themultiplicity of M is 2eR = 2t2.Finally, we know that, for any l,dimKSl = �l + 2l � = (l + 1)(l + 2)2 :



55Thus, we have thatdimK(M0 = Nt�1) = (t+ 1)�t2�� (t� 1)�t + 12 � = 0:There are now two ways of seeing that M is linear. In the �rst place, we may notethat, by the preceding remark, M is generated by forms of degree at least 2t� 2 inS. So mRM = mtM is generated by forms of degree at least 3t � 2, all of whichmust be contained in (X t; Y t; Zt)S(t+1)�2;t (by a simple application of the pigeon-holeprinciple). But since (3.1) is a short exact sequence of MCM modules, and X t; Y t; Ztis a system of parameters of R, it follows that mRM = (X t; Y t; Zt)M . M is thusseen to be linear.Alternatively, one may simply calculate thatdimKM1 = dimK(N2t�1) = (t+ 1) � �2t2�� (t� 1) � �2t+ 12 � = 2t2;whence �(M) � e(M), and M is linear. 2As in the case of Segre products, the above proof can be adapted to rings whichare not themselves regular, but do possess lin MCMs, which have Hilbert functionsequal to those of free modules over a regular ring. The proof is essentially the same,so I will omit the details.Theorem 3.3.6. Let (S; n) be a 3-dimensional N-graded domain over a �eld K,generated as a K-algebra by its 1-forms. If S possesses a linear maximal Cohen-Macaulay module M , then any Veronese subring of S also possesses a lin MCM.Proof: First, we may replace M by grnM , which is a graded lin MCM over S,with all generators in degree 0. Now proceed as before, replacing the ring by M : ifR = S(t) de�ne N by the short exact sequence0! N !M (t+1)�2;t A!M (t�1)�1;t ! 0;



56where A is the matrix de�ned in the proposition (but here X; Y; Z represent a systemof parameters of 1-forms in S).As before, we can calculate that rankRN = 2�rankSM , whence eR(N) = 2t2eS(M).Moreover, as before, N vanishes in degree 0, whereasdimK(N1) = �S(M) � �(t+ 1)�2t2�� (t� 1)�2t + 12 �� = 2t2 � �S(M):(By choice of M , one has dimKMl = �(M) � �l+22 �). The Cohen-Macaulayness andlinearity of N over R now obviously follow from the same properties of M over S. 2The kind of classi�cation we have been carrying out for graded MCMs overVeronese rings might theoretically be extended to all dimensions, but it quicklybecomes complicated and unrevealing. Thus, I will just make a few observationsabout the case of dimension 4.As before, if R is the tth Veronese subring of S = K[W;X; Y; Z], and M is agraded MCM over R, we let Q = (S 
R M�)��. Q then has projective dimension atmost 2 over S, so we get exact sequences:O! W ! Sc ! Q! 0 (3.2)O! Sa ! Sb !W ! 0 (3.3)Applying the functor Hom(�; S(�4)), this gives new exact sequences:O! Q� ! Sc !W � ! N1 ! 0 (3.4)O! W � ! Sb ! Sa ! N2 ! 0 (3.5)where N1 = Ext1(Q; !S) and N2 = Ext1(W;!S) = Ext2(Q; !S) must vanish indegrees divisible by t, since Q0;t = M� is MCM. These facts, along with M = Q�0;t,characterize the graded MCMs over R.



57The situation is a little more transparent in the special case that t = 2. In thatcase, both N1 and N2 must just be �nite K-vector spaces killed by the maximal ideal(W;X; Y; Z). It follows from (3.5) that W � = S(m) � (Syz2K)(n) for some m andn. Then (3.4) implies that Q� is a �rst module of syzygies of U for some modulemSW � � U � W �. The following lemma characterizes the submodules U of W withthis property.Lemma 3.3.7. Let (R;m;K) be a local (or N-graded) ring containing K, and Ma �nitely generated (graded) R-module. Suppose that one has an R-module U andn � 0 such that (mR)(n) �mM � U � R(n) �M:Then U �= R(k) � (mR)(n�k) �M 0 for some k � n and some submodule M 0 of Mwith mM � M 0.Proof: Let M 0 = M \ U . Since mM � M 0, we know that U=(mR(n) +M 0) is aK-vector space of dimension k � n. Moreover, by applying aK-linear automorphismof R(n), we may assume that a basis of U=(mR(n) +M 0) is given by the images ofelements fei + wi : 1 � i � kg in U , where we think of R(n) as Re1 + � � � + Ren,and where wi 2 M for each i. If we let V be the submodule of U generated byfei + wi : 1 � i � kg, then it is apparent that V is free of rank n. What we wish toshow is that U = V �m(Rek+1 + � � �+Ren)�M 0:First we note that the sum on the right is direct. For a relation would take theform (v1 + u1) + v2 + u2 = 0, where v1 2 Re1 + : : : Rek, v2 2 Rek+1 + : : : Ren,u1; u2 2M , and u1 6= 0 only if v1 6= 0. It is then apparent that the relation must betrivial.



58Denote the module on the right hand side by U 0. Clearly U 0 � U . Note thatmM � M 0 � U 0; and thus for i � k, we have m � Rei � U 0 + m � wi = U 0.Hence m(R(n) �M) � U 0. Finally, it follows from the choices of M 0 and V thatU=m(R(n) +M) = U 0=m(R(n) +M). Thus U = U 0, which proves the lemma. 2Combining the lemma with the preceding discussion gives the following classi�-cation of MCM modules over the second Veronese subring of a polynomial ring ofdimension four.Corollary 3.3.8. Let M be a graded MCM over R = S(2), where S = K[W;X; Y; Z].Then M �= Q0;2 for some S-moduleQ �= S(m1) � (Syz2SK)(m2) � Syz1S(U 0);wherem1, m2, and n are nonnegative integers, andmS�(Syz2K)(n) � U 0 � (Syz2K)(n).To a large extent, we already know about the \even" parts of S and Syz2SK, and itis a computation to show that in dimension 4 none of these modules are linear. Thus,in looking for a lin MCM, we might as well restrict our attention to the \new" moduleswhich are the even-degree parts of Syz1(U 0) for (Syz2K)(n) � U 0 � (Syz2K)(n), wherethe latter is a proper inclusion. As the following proposition shows, it is possible toconstruct a lin MCM over R = (K[X; Y; Z;W ])(2) in this way:Proposition 3.3.9. R = S(2) has a linear MCM module, where S = K[X; Y; Z;W ]is the polynomial ring in four variables over a �eld K.



59Proof: We know that N = Syz2SK is generated as an S-module by the six vectors2666666664
Y�X00

3777777775 ;
2666666664

Z0�X0
3777777775 ;

2666666664
W00�X

3777777775 ;
2666666664

0Z�Y0
3777777775 ;

2666666664
0W0�Y
3777777775 ;

2666666664
00W�Z
3777777775in S(4) (which we will denote by e1; e2; : : : ; e6, ordered as above). Let U be thesubmodule generated by e1; e2; e3 + e4; e5; e6. SinceXe4 = �Ze1 + Y e2; We4 = Ze5 � Y e6Y e3 = We1 +Xe5; and Ze3 = We2 +Xe6;we see that mSN � U .Now, if Q = Syz1U , we get a short exact sequence:O! Q! S(�3)(5) ! U ! 0:I am thinking of generators of N as being in degree 3, since I assume that N is thesecond module of syzygies of a copy of K in degree 1. The important thing is thatthe generators of N lie in odd degree.If M = Q0;2, we then see that, since U0;2 = N0;2 and rank(N) = 3, we haverankRM = 5� 3 = 2. Hence e(M) = 2 � eR = 16. Moreover, we know thatdimKQ4 = 5 � �(mS)� �(mSN) = 0dimKQ6 = 5 � �(m3)� �(m3N) = 100� 84 = 16:(The Hilbert function of N can be directly calculated from the exact sequence0! N ! S(�2)(4) ! S(�1)! K ! 0



60and the Hilbert function of S.) It follows that M needs at least 16 generators, andso M must be linear. 2In the usual spirit of things, I am able to generalize the above result in thefollowing manner:Proposition 3.3.10. Let R be a 4-dimensional graded K-algebra generated by 1-forms, and assume that R possesses a linear MCM module M . Then the secondVeronese subring of R also has a lin MCM.Proof: As usual, we may replace M by grnM , and assume that M is graded withall generators in degree 0. We then mimic the proof given above. Assume that M isgenerated in degree 0, and let W;X; Y; Z be a system of parameters of 1-forms forR. De�ne the R-module U by the short exact sequence:0! U !M(�1)(4) [W;X;Y;Z]! mRM ! 0:Since M is linear MCM over R, we see that Uodd, the R(2)-summand of U generatedin odd degrees, is MCM over R(2), and that in fact U is none other than the moduleSyzA2K 
A M , where A = K[W;X; Y; Z].Now just let U 0 = V 
A M , where V � SyzA2K is the 5-generator submoduleused in the proof of Proposition 3.3.9. Since mRM = mAM , we again have thatmRU � U 0, whence U 0odd = Uodd is MCM over R(2). Now de�ne an R-module Q bythe exact sequence: O! Q!M (5) ! U 0 ! 0where the surjection of M (5) onto U 0 is the obvious one.Since U 0odd is MCM over R(2), we see that Qodd is also MCM over R(2). But,as before, Qodd is generated by forms in M (5) of degree at least 3; and we know,



61since M is linear, that m5RM = m5AM � (W 2; X2; Y 2; Z2)M . Hence m2RQodd �(W 2; X2; Y 2; Z2)Qodd, and we see that Qodd is a lin MCM over R(2) (note that(W 2; X2; Y 2; Z2) is a system of parameters for R(2)). 2Corollary 3.3.11. Let S = K[W;X; Y; Z], the polynomial ring in four variablesover a �eld. Then S(2n) has a lin MCM for any n � 0.3.4 Approximation results for graded ringsSo far, I have been unable to resolve the question of existence of linear maximalCohen-Macaulay modules over Veronese rings in any further cases. But the methodsused to prove the existence of linear MCMs over Veronese rings of dimension 3 canbe adapted in order to produce vastly more general results. Below we give the mostgeneral theorem for graded rings. Although the proof is quite technical, the mainideas may be shortly summarized.First, by employing a matrix similar to that used in dimension 3, one may showthat any Veronese subring of a polynomial ring of dimension d possesses a gradedMCM of reduction degree d � 2 (I omit the proof, since it is easy to derive fromthe proof of the 3-dimensional case and the arguments of this section). Secondly,by using a system of parameters of 1-forms, one may produce similar modules overthe Veronese subrings of any graded K-algebra R. Little can be said about theactual reduction degrees of these modules, but their behaviour should in some senseapproach that of the modules constructed when R is regular. Finally, by employingthe Frobenius endomorphism, one may view modules over certain Veronese subringsof R as R-modules via restriction of scalars.Applications of the theorem will be given in the chapter on Lech's Conjecture.



62But the argument is also quite interesting in itself, in that it provides a compellingexample of how a property of Veronese subrings of regular rings may be generalizedin order to prove the existence of an \approximate" property over a much broaderclass of positively graded rings.Theorem 3.4.1. Suppose that (R;m) is a positively graded K-algebra of dimensiond � 3, generated by its 1-forms, where K is a perfect �eld of characteristic p > 0.Suppose moreover that R possesses a �nitely generated graded MCM module M ,with generators all in the same degree. Then R possesses a sequence fMig of MCMmodules with reduction degrees approaching d� 2.Proof: Without loss of generality, we may assume that M is generated in degree 0.We begin by �xing some notation: �rst, let the Hilbert polynomial of M be given byPM(t) = (e=(d� 1)!)td�1 + ktd�2 + : : : = dimK(Mt);where the latter equality holds for t su�ciently large, and e = eR(M). Next we �xa minimal reduction I of m genterated by a system of parameters of 1-forms, and apositive integer c such that mn+c = In �mc for all n � 0.For each q = pi great enough so that q > c and HM(t) = PM(t) for t � q � 2, wede�ne the module Wi as follows: letNi = Ker(M(�1)q�c+d�2 A!M q�c�1);where I = (X1; : : : ; Xd) and A is the (q � c� 1)� (q � c+ d� 2) sized matrix:



63266666666666666664
X1 X2 � � � Xd 0 � � � 0 0 00 X1 � � � Xd�1 Xd � � � 0 0 0� � �� � �0 0 0 � � � X1 X2 � � � Xd 00 0 0 � � � 0 X1 � � � Xd�1 Xd

377777777777777775Now set Wi = (Ni)�1;q.The R(q)-moduleWi becomes an R-module via F i, the ith power of the Frobeniusendomorphism. Moreover, since Iq�c�1M q�c�1 is in the image of A, and sincemq�1 =Iq�c�1mc, we see that there is an exact sequence:O!Wi !M (q�c+d�2)�2;q !M (q�c�1)�1;q ! 0induced by A (recall that q must be su�ciently large). In particular, since the lattertwo modules are MCM over R via F i, we know that the module Wi is a MCMR-module.It remains to show that the modulesWi satisfy the stipulated numerical condition.First, since eR(Mf;q) = qd�1e for any q and any 0 � f < q, we see from the shortexact sequence above that eR(Wi) = e(d� 1)qd�1.Now, if Wi;0 = (Ni)q�1 is the �rst (potentially) nonzero graded piece of Wi (and



64i is su�ciently large), we may use the short exact sequence to compute:dimK(Wi;0) = (q � c+ d� 2) � PM(q � 2)� (q � c� 1) � PM(q � 1)= (q � c+ d� 2)[(e=(d� 1)!)(q � 2)d�1 + k(q � 2)d�2 + : : : ]�(q � c� 1)[(e=(d� 1)!)(q � 1)d�1 + k(q � 1)d�2 + : : : ]= qd�1[(e=(d� 1)!)(�c+ d� 2) + (d� 1)(e=(d� 1)!)(�2) + k�(e=(d� 1)!)(�c� 1)� (d� 1)(e=(d� 1)!)(�1)� k] + : : : :This shows that dimK(Wi;0) is given by a polynomial P0(q) in q = pi of degree nogreater than d � 2. It is easy to see from the above calculation that the degree dterm vanishes. Moreover, all contributions to the degree d� 1 term come from theterms of PM which are explicitly shown, and it is a simple calculation to show thatthe the resulting coe�cient in degree d� 1 is equal to 0.Also, one should note that, for any q su�ciently large, we have(md�1)q �mq�2 �mc = mdq+c�2 � Idq�2 � I [q]:Thus, (md�1)[q] �mq�2 �M � I [q]M :M mc. Moreover, note that for any q = pi,l�I [q]M :M mcI [q]M � � r(M) � l(R=mc);where r(M) is the type of the module M .We may conclude that the length of md�1 � (M (q�c+d�2)�2;q =IM (q�c+d�2)�2;q ) is boundedby � � (q � c + d� 2) for all q, where � = r(M) � l(R=mc) is constant. Note that asimilar, but easier, argument shows that md �M�2;q � IM�2;q for q � c.Hence, considering the short exact sequenceO! Wi=IWi !M (q�c+d�2)�2;q =IM (q�c+d�2)�2;q !M (q�c+�1)�1;q =IM (q�c�1)�1;q ! 0;



65we see thatl�(md�2 + I)WiIWi � � �(md�2) � dimK(Wi;0) + � � (q � c+ d� 2);a polynomial in q of degree at most d� 2. Since the multiplicity of Mi is given by apolynomial of degree d� 1 in q, this clearly gives the desired result. 2I believe it is worth stating the result in the case dim(R) = 3 separately, in thatreduction degree one is equivalent to linearity, and we began with the search forlinear MCMs.Corollary 3.4.2. Suppose that (R;m) is a 3-dimensional positively gradedK-algebra,generated by its 1-forms, where K is a perfect �eld of characteristic p > 0. Then Rpossesses a sequence of MCM modules Mi with the property that as i!1,e(Mi)�(Mi) ! 1:Proof: If P is a homogeneous minimal prime of R with dim(R=P ) = 3, then itclearly su�ces to produce such a sequence of modules over R=P . But the theo-rem 1.5.3 of Hartshorne-Peskine-Szpiro implies that R=P possesses a graded MCMof positive rank. We may now simply apply the theorem with d = 3. 2
Note 3.4.3. Although the modules Wi constructed in the proof of Theorem 3.4.1possess a natural grading over the ring (R;m), it is not generally the case thatWi �= grmWi. However, we may use the exact sequenceO!Wi !M (q�c+d�2)�2;q !M (q�c�1)�1;q ! 0



66in order to calculate the dimension of the second graded piece of Wi, as follows:dimK(Wi;1) = (q � c+ d� 2) � PM(2q � 2)� (q � c� 1) � PM(2q � 1)= (q � c+ d� 2)[(e=(d� 1)!)(2q � 2)d�1 + k(2q � 2)d�2 + : : : ]�(q � c� 1)[(e=(d� 1)!)(2q � 1)d�1 + k(2q � 1)d�2 + : : : ]= qd�1 � 2d�2 � (e=(d� 2)!) + : : :(i.e. dimK(Wi;1) is polynomial in q = pi of degree d � 1, with leading coe�cient2d�2 � (e=(d� 2)!)). Note that the degree d term of the polynomial is easily seen tovanish, and that the terms shown are the only ones involved in the calculation of thedegree d� 1 coe�cient. The actual value of this coe�cient is now given by a simplecalculation.If I is a system of parameters of one-forms for R, then the length of(I +m2)Wi=m2Wimust be asymptotic in q = pi to at least d times this dimension (though not neces-sarily as great as d � �(Wi)). This fact will be used in chapter 4.



CHAPTER IVLech's Conjecture
4.1 Linear MCM modules and Lech's conjectureIn his paper [12], Christer Lech made the following conjecture on 
at extensionsof local rings. We say that the homomorphism (R;m) ,! (S; n) is 
at if S is a 
atR-module, and local if the image of m is contained in n.Conjecture 4.1.1 (Lech). Let (R;m) � (S; n) be a 
at local extension of Noetherianlocal rings. Then the multiplicity of S is greater than or equal to the multiplicity ofR. The proof of the conjecture may be reduced to the case that R and S are complete.Note that, if we then localize S at a prime Q lying over m, we get a new 
at localextension (R;m) � (SQ; QSQ), where the rings R and SQ have the same dimension.The following version of a theorem of [13] then allows us to reduce the originalconjecture to the case that R and S have the same dimension. The condition ofexcellence is quite technical, but holds for most of the rings which we consider. Inparticular, complete local rings are excellent.Theorem 4.1.2 (Lech). Let (R;m) be an excellent local Noetherian ring, and letP be a prime ideal with the property that height(P ) + dim(R=P ) = dim(R). Thene(RP ) � e(R). 67



68In fact, if (R;m) is a d-dimensional local ring, and if we can show that Lech'sconjecture holds for any 
at local extension (R;m) � (S; n) with dim(S) = d, thenwe can show Lech's conjecture for all 
at local extensions (R;m) � (S; n). For futurerefererence, we state this formally as:Lemma 4.1.3. Let (R;m) be a d-dimensional local ring, and suppose that eR � eSfor any 
at local extension (R;m) � (S; n) with dim(S) = d. Then eR � eS for any
at local extension (R;m) � (S; n), regardless of the dimension of S.Proof: Let (R;m) � (S; n) be a 
at local extension. The completion Ŝ of S has thesame multiplicity as S, and is still a 
at extension of R. Thus, we may assume thatS is complete (and therefore excellent). Since dim(S) = dim(R) + dim(S=mS) (seee.g. [15], section 15), we may choose a minimal prime P of mS with height(P ) +dim(S=P ) = dim(S). Now (R;m) � (SP ; PSP ) is a 
at local extension of rings ofthe same dimension d, and we know by Theorem 4.1.2 that eSP � eS. This completesthe proof of the lemma. 2As mentioned in the introduction, the most signi�cant cases of the conjecturewhich have been proved are those in which the base ring R has dimension 2 or whenthe �bre S=mS is isomorphic to a complete intersection [12, 13].What we will show in this chapter is that the existence of specialized MCMmodules of positive rank for the base ring R sometimes allows a proof of Lech'sConjecture. In particular, the existence of a lin MCM of positive rank over R alwaysproves the conjecture. For if M is a linear MCM module of positive rank for R (infact, one may reduce to the case that R and S are domains, and then any module



69has �nite rank), we know thate(R) = eR(M)=rankR(M) = �R(M)=rankR(M):Likewise, e(S) = eS(S 
M)=rankS(S 
M) � �S(S 
M)=rankS(S 
M)(see the section on background in the introduction). Thus, since minimal numbersof generators and ranks of modules do not change upon tensoring with a 
at localextension, we see that e(S) � e(R).Note 4.1.4. For example, the result of Backelin, Herzog, and Ulrich in [1] thusimplies that Lech's conjecture holds for any 
at local extension R � S in which thebase ring R is a strict complete intersection. (A local ring (R;m) is a strict completeintersection if both R and grmR are complete intersections.)Of course, even in the case that M is not linear, the above argument shows thate(S) � �(M)=rank(M) = e(R) � �(M)eR(M) :So to prove Lech's Conjecture, it su�ces to �nd a MCM module M such that theratio of �(M) to e(M) is su�ciently close to 1. Combining this with Corollary 3.4.2immediately yields the following result.Proposition 4.1.5. Let (R;m) be a positively graded 3-dimensional algebra over aperfect �eld K of characteristic p > 0, generated by 1-forms. Then eR � eS for any
at local extension (R;m) � (S; n).Note 4.1.6. If (R;m) is graded with homogeneous maximal ideal m (and (S; n) iseither graded or local), we call the extension 
at local if m ,! n and Rm ,! Sn is
at.



70In fact, since eR and eS are both integers, the conjecture is equivalent to eS >eR � 1. This is of course completely trivial, but notice that it allows us to put aweaker requirement on the module M . The above formula shows that eS > eR� 1 ifthere exists an MCM M of positive rank with�(M)e(M) > 1� 1eR :In particular, if (R;m) is a d-dimensional F -�nite local Cohen-Macaulay domainof characteristic p > 0, with perfect residue �eld K, then we may consider the MCMseR for e > 0. Denote the Hilbert-Kunz multiplicity of R by cR. Then e(eR) = eRqdfor all e > 0, while �(eR) is asymptotic in q to cRqd. Hence,�(eR)e(eR) ! cReRas e!1. Comparing this with the previous paragraph, we get the following:Corollary 4.1.7. Let (R;m) be a d-dimensional F-�nite local Cohen-Macaulay do-main of characteristic p > 0, with perfect residue �eld K. If cR > eR�1, then Lech'sconjecture holds for any 
at local extension (R;m) � (S; n).Unfortunately, very little is known about Hilbert-Kunz multiplicities in general.The only case in which the above obviously holds is if eR = 2 (it is a theorem thatcR = 1 if and only if R is regular; see [16]). So let us record the following:Question 4.1.8. For which Cohen-Macaulay rings of characteristic p > 0 is cR >e(R)� 1, where cR is the Hilbert-Kunz multiplicity of R?4.2 On `embedding dimensions' of modulesThe following results were proved by Lech in his paper [13]. Although interestingin its own right, the theorem may also be seen as a �rst step towards proving the



71various Lech-Hironaka type inequalities, since the embedding dimension of a ring Ris equal to H(0)R (1), the second value taken by the Hilbert function of R. The mainpurpose of this section is to generalize the theorem to modules. Although the proofis straightforward, the result given here is a key element in the arguments of the nextsection, where certain new cases of Lech's conjecture are established.Theorem 4.2.1 (Lech). Let (Q,m) be a local ring with m-primary ideal q. SupposeQ=q is equicharacteristic, and that q=q2 is a free Q=q module. Then the minimumnumber of generators of q is no greater than the minimum number of generators ofm.Corollary 4.2.2 (Lech). Let (R;m) � (S; n) be a 
at couple of d-dimensional localrings. Then edim(R) � edim(S).Proof: Since S is 
at over R, the ideal mS of S requires the same number of gen-erators as m; thus we may consider m as an ideal of S. But, since m=m2 is a freeR=m-module, it follows from the 
atness of R! S that mS=m2S is free over S=mS.Finally, mS is n-primary, and since R=m ,! S=mS, S=mS must be equicharacteris-tic. Thus applying the theorem to S and mS proves the corollary. 2We now wish to prove a similar result, but with R replaced by any �nitely gen-erated R-module M and S replaced by S 
R M . For now, this will yield a resulton linear MCM modules (corollary 4.2.4) and also allow us to deduce some casesof Lech's Conjecture from the existence of MCMs of reduction degree 2 (corollary4.2.5).Proposition 4.2.3. Let (R;m) � (S; n) be a 
at local extension of rings of thesame dimension, let M be a �nitely generated R-module, and set M 0 = S 
R M .



72Then �(nM 0) � �(mM) + (�(n)� �(m)) � �(M):Proof: This is obviously true forM = Rn free, given Lech's result that �(n) � �(m);so it su�ces, proceeding inductively, to prove the statement for N = M=Ry; y 2mM , assuming that it is true for M.By 
atness, N 0 = S
RN =M 0=Sy, where the image of y inM 0 is inmM 0 � nM 0:If y 2 m2M , then �(mN) = �(mM), and since the image of y is inm2M 0 � n2M 0, wealso have �(nM 0) = �(nN 0). Hence the proposition holds for N (of course �(M) =�(N) so the last term in the inequality does not change).If y 2 mM n m2M , then �(mN) = �(mM) � 1, and since the image of y is inmM 0 � nM 0, �(nN 0) � �(nM 0) � 1: Since �(N) = �(M), the remaining term doesnot change, and we see that the inequality continues to hold for N . 2Corollary 4.2.4. Let (R;m) � (S; n) be a 
at local extension of d-dimensionallocal rings, and let M be a �nitely generated R-module with the property that grmMis MCM. If S 
R M is a linear MCM-module, then M is also a lin MCM, andedim(R) = edim(S).Proof: Suppose M 0 = S 
 M is linear MCM. By a result of [2], it follows thatgrn(M 0) is MCM. Moreover, since minimal numbers of generators and multiplicitiesare not changed by extending the residue �eld, we may assume, without loss ofgenerality, that R and S have in�nite residue �elds.Now, if M 0 is linear, we have nM 0 = (y)M 0 for some system of parametersy1; : : : ; yd of S, and we see that �(nM 0) � d�(M 0) = d�(M) (in fact, since grn(M 0)is MCM, we must have equality). So by Proposition 4.2.3, �(mM) � d�(M), wherethe inequality is strict unless �(m) = �(n).But since grmM is MCM, �(mM) � d � �(M) (if (x1; : : : ; xd) is a minimal re-



73duction of m, then the xi 2 mnm2, and their leading forms have only the Koszulrelations on M). Thus �(mM) = d�(M) and mM = (x)M . We conclude that M islinear, and also that edim(R) = edim(S). 2Corollary 4.2.5. Let (R;m) � (S; n) be a 
at couple of local rings. Suppose R hasa MCM module M of positive rank, with reduction degree 2 with respect to a minimalreduction I = (x1; : : : ; xd) of the maximal ideal. Moreover, assume that grm(M) hasdepth at least d� 2. Then eR � eS:Proof: By Lemma 4.1.3, we may reduce to the case in which R and S have the samedimension, and then M 0 = S 
M is MCM. Since eR = e(M)=rankRM and eS =e(M 0)=rankSM 0, and since rankRM = rankSM 0, it su�ces to show that eR(M) �eS(M 0): But because of the assumptions on M , we have:e(M) = l� MIM� � �(M) + �(mM)� (d� 2)�(M);where d = dim(R) (we may choose the minimal reduction I = (x1; : : : ; xd) in sucha way that the leading forms of x1; : : : ; xd�2 form a regular sequence on grmM).Similarly, e(M 0) � �(M 0) + �(nM 0)� d�(M 0):Since the result is already known in the case that �(n) � �(m) + 1 (see [12, 13]),we may assume that the di�erence of embedding dimesions is at least 2. Then wemay apply the proposition to see thate(M 0) � �(M) + �(mM)� (d� 2)�(M);and the result now follows from a comparison of the two inequalities. 2



74Of course, having shown that the embedding dimension of (R;m) must be lessthan or equal to that of (S; n), one would like to proceed to show that the squareof the maximal ideal of R needs no more generators than the square of the maximalideal of S; or at least that �(m)+�(m2) � �(n)+�(n2). In proving such an assertion,one may as well assume that m3 = 0. Then it su�ces to provide a positive answerto one of the following questions, as before.Question 4.2.6. Let J be an ideal of a local ring (S;m) with J3 = 0, and J=J2 andJ2 both free S=J-modules. Also assume S=J to be equicharacteristic. Then can youshow that �(J2) � �(m2), or at least that �(J) + �(J2) � �(m) + �(m2)?4.3 Applications to Lech's conjectureIn this section we will see how the above results can be combined with the exis-tence results of the previous chapter in order to prove some cases of Lech's conjecture.We already know that if R has MCM-modules approaching linearity, then Lech's con-jecture holds for any 
at extension with base ring R, and that existence of a MCMmodule with reduction degree 2 also often implies the conjecture. Here we wish toextend these results, obtaining more substantial new results on the conjecture. Themain result is the following:Theorem 4.3.1. Let (R;m) be a local or N-graded domain, with in�nite residue�eld, and let (S; n) be a 
at local extension of R of the same dimension. Supposethat R possesses a MCM module M with red(M) = 3, or even a sequence of MCMmodules fMig with reduction degrees approaching 3. If m ,! n2, or if edim(S) �edim(R) + depth(grmMi) � dim(R) + 1 for each Mi, then eR � eS.Proof: Let I and J be minimal reductions of m and n, respectively. In the case



75that R is local, we may reduce to the case that R and S are complete.For now, just assume that M is a MCM module with reduction degree 3. Recallthat, if we let M� = Hom(M;A), where A is a regular subring of R over which Ris module-�nite, then M� is MCM if and only if M is, and has the same reductiondegree as M . Moreover, we know that �(M) = r(M�) and �(M�) = r(M). Inparticular, by replacing M by M�, if necessary, we may assume that the minimalnumber of generators of M is at least as great as its type.We know thatm3M � IM , whencem2M � IM :M m. Thus l((m2+I)M=IM) �r(M) � �(M). Moreover, if we set b = depth(grmM), then it follows from thegenericity of minimal reductions that we may choose I = (x1; : : : ; xd) in such a waythat the initial forms of x1; : : : ; xb form a regular sequence on grmM . Thusl(mM=(I +m2)M) � �(mM) � b � �(M);and it follows thateR(M) = l(M=IM) � 2�(M) + �(mM) � (depth(grmM)) � �(M):On the other hand, we have by Proposition 4.2.3 that if M 0 = S 
R M , then�(nM 0) � �(mM) + (�(n)� �(m))�(M). Hence, just looking at the �rst two piecesof grnM 0, we already get the estimate:eS(M 0) � (1� d)�(M) + �(nM 0) � (1� d+ �(n)� �(m))�(M) + �(mM):But it follows from our assumptions that�(n)� �(m) + 1� d � 2� depth(grm(M)):Thus, a comparison of the two estimates shows that eR(M) � eS(M 0).



76Finally, if m ,! n2, note that M 0=n2M 0 is free over S=n2S, whenceeS(M 0) = l(M 0=JM 0) � (1 + �(n)� d) � �(M);whereas we have as above thateR(M) � 2�(M) + l(mM=(m2 + I)M) � (2 + �(m)� d)�(M):Since we are free to assume that �(n) � �(m) � 1, this again shows that eR(M) �eS(M 0); and since rankRM = rankSM 0, we may divide by the rank in any of thecases in order to see that eR � eS, as claimed.Now suppose instead that we have only a sequence of MCMs fMig with reductiondegrees approaching 3. By Proposition 2.2.3, the sequence of modules fM�i g also hasreduction degrees approaching 3. And since Mi has the same rank and multiplicityas M�i , it follows that any sequence fNig, where each Ni is either Mi or M�i , willhave reduction degrees approaching 3. Hence, we are free to replace each Mi by itsdual, if necessary, so as to obtain a new sequence of MCMs approaching reductiondegree 3, but with the further property that �(Mi) � r(Mi) for each i. We shallhenceforward assume that the original sequence fMig has this property.We may again assume that �(n) � �(m) � 2, and then the same argument asgiven above shows that for each i,l� Mi(m2 + I)Mi� + r(Mi) � eS(M 0i):Because the Mi have reduction degrees approaching 3, we know that�i = l(m3 � (Mi=IMi))becomes insigni�cant compared to the rank of Mi as i increases.Finally, from the exact sequence0! Soc(Mi=IMi)!Mi=IMi ! (Mi=IMi)(�(m));



77where the map on the right is given by a vector whose entries are the generators ofthe maximal ideal, we see thatl(m2 � (Mi=IMi)) � r(Mi) + �(m) � �i:Thus eR(Mi) = l(Mi=IMi) � eS(M 0i) + �(m) � �i: Dividing through by rank(Mi) andtaking the limit then shows that eR � eS, as above. 2Note that if (R;m) is an N-graded algebra over a �eldK, and if the MCMmodulesMi are actually graded by powers of m (i.e. Mi �= grmMi), then we may dispensewith the extra hypothesis on embedding dimensions or on the embedding of m intothe square of the maximal ideal of S (since Lech has proved the conjecture in thecase that �(n) � �(m) � 1, we are free to assume that the di�erence of embeddingdimensions is at least 2). Moreover, it is then reasonable to state the conclusion forall 
at local extensions of R, since we may use Lemma 4.1.3 in order to reduce to thecase of a 
at local extension of rings of the same dimension. This gives the following:Corollary 4.3.2. Let (R;m) be an N-graded domain, and let (S; n) be a 
at localextension of R. Suppose R possesses a MCM module M with red(M) = 3, or even asequence of MCM modules fMig with reduction degrees approaching 3, and that allof the modules Mi are graded by powers of m. Then eR � eS.Moreover, using the existence results of chapter 3, we may obtain substantialnew results concerning Lech's conjecture in the case that R is positively graded ofcharacteristic p.Corollary 4.3.3. Let R be a positively graded algebra, generated by its 1-forms,over a perfect �eld K of characteristic p > 0. Suppose that R possesses a gradedMCM module M of positive rank, with all generators in the same degree, and that



78the dimension of R does not exceed 4. Then Lech's conjecture holds for any 
at localextension (R;m) � (S; n). If the dimension of R is 5, and if we have reduced to thecase that dim(S) = 5 (as in Lemma 4.1.3), then we still obtain eR � eS, providedthat either m ,! n2 or edim(S)� edim(R) � 6.Proof: By Theorem 3.4.1, R has, at worst, a sequence of MCMs with reductiondegrees approaching dim(R) � 2. Moreover, it follows from Lemma 4.1.3 that wemay reduce to the case in which dim(S) = dim(R). The conclusion is the same asthat of Proposition 4.1.5 in the case that dim(R) = 3, and follows from Theorem4.3.1 in the case that dim(R) = 5.If the dimension of R is 4, we can do somewhat better than is indicated byTheorem 4.3.1. For this, note that the modules fWig constructed in the proof ofTheorem 3.4.1 have reduction degrees approaching 2. Moreover, it follows from Note3.4.3 that l(I +m2)Wi=m2Wi is asymptotic in q = pi to at least4 � (1=2)eR(Wi) � q4 � 2�(Wi) � q4:Thus, eR(Wi) � �(mWi)��(Wi) (asymptotically in q). Since we may assume �(n)��(m) � 2, we get eS(W 0i ) � �(mWi)� �(Wi);for each i, as in the proof of Theorem 4.3.1. This completes the proof of the corollary.2 In the case that R and S are 3-dimensional rings of prime characteristic p, wemay still often obtain MCM modules with reduction degrees approaching 3. Anargument similar to that of Theorem 4.3.1 provides some new results on Lech'sconjecture in this case, as well (although we obtain slightly better results). Recall



79that the conjecture was proved by Lech in the case that edim(S)� edim(R) � 1.Proposition 4.3.4. Let (R;m) be a local ring of dimension 3 and prime characteris-tic p > 0, with perfect residue �eld, and suppose that R possesses a �nitely generatedMCM module N of positive rank. If (R;m) � (S; n) is a 
at local extension of ringsof dimension 3, and if either edim(S) � edim(R)+3 or else m ,! n2, then eR � eS.Proof: We may �rst reduce to the case in which both R and S are complete. Inparticular, this implies that R is F -�nite.Since dim(R) = 3, we know that the MCM modules eR have reduction degreesapproaching 3 (Proposition 2.3.4). As before, one may replace this sequence by onein which the number of generators is always as great as the type.If �(n) � �(m) + 3, then we know by the result of the previous section that forany MCM module M over R, and M 0 = S 
R M , thateS(M 0) � �(M) + �(mM):Note that if M = eN , then�(M) + �(mM) = l(N=(m2)[q]N) � l(N=m2qN);and the latter is asyptotic in q to (4=3)eR(N) � q3. On the other hand, eR(M) isasymptotic to eR(N) � q3. We have thus shown that, in fact, eS � (4=3) � eR.In the case that m ,! n2, note that for any MCM module M over R, we haveM 0=n2M 0 �= (S=n2)�(M):It follows that eS(M 0) � (1 + �(n)� 3) � �(M);whereas l(mM=(I +m2)M) � (�(m)� 3) � �(M):



80But by the same argument as for the graded case, it su�ces to show thateS(M 0) � 2�(M) + l(mM=(I +m2)Mfor any such M . This clearly follows from the two given estimates, provided that�(n)� �(m) � 1, and the remaining case was proved by Lech. 24.4 The reduction to characteristic p > 0In this section I would merely like to note that the results of section 4.3 shouldbe amenable to the process of reduction to characteristic p. Such arguments aregenerally quite detailed, and the proofs remain to be given. Nevertheless, it appearsthat the process can be carried out, resulting in the following more general results:Conjecture 4.4.1. Let R be a positively graded algebra, generated by its 1-formsover a �eld K (of any characteristic). Suppose that R possesses a graded MCMmodule M of positive rank, and that the dimension of R does not exceed 5. ThenLech's conjecture holds for any 
at local extension (R;m) � (S; n).Conjecture 4.4.2. Let (R;m) be a an equicharacteristic local ring of dimension 3,and suppose that R possesses a �nitely generated MCM module N of positive rank.If (R;m) � (S; n) is a 
at local extension, and if either edim(S) � edim(R) + 3 orelse m ,! n2, then eR � eS.These results are to be proved by showing that if there were a counterexam-ple in which the rings had equal characteristic 0, then a counterexample could beconstructed over a �eld of characteristic p > 0.In the case that (R;m) � (S; n) is a 
at local extension of �nitely generatedgraded algebras over a �eld K of characteristic 0, the reduction should not present



81great di�culties. We should be able to replace the �eld K by a �nitely generated Z-algebra A � K, and R, S, and a MCM R-moduleM by �nitely generated A-algebrasRA and SA and a �nitely generated RA-module MA in such a way that:� RA, MA, and SA are all A-free; and K 
A RA �= R, K 
A SA �= S, andK 
A MA �= M .� SA is free over RA, and MA is free over A[x1; : : : ; xd], where x1; : : : ; xd is ahomogeneous system of parameters of R with coe�cients in A.� For any residue �eld � of A,M� = �
AMA has the same rank over R� = �
ARas M has over R.� For any such �, R� and S� have the same multiplicities as R and S, respectively.Given a counterexample to conjecture 1, this would produce a new counterex-ample in which the �eld K is �nite, hence perfect of positive characteristic. Sincewe have already proved the theorem in this case, we would thus have a proof incharacteristic 0, as well.In the case that either or both of the rings R and S fails to be a�ne over K, itwill be necessary to �rst apply the theory of approximation rings in order to reduceto the case of a�ne algebras. We may reduce to the case that R and S are complete,and then R is module-�nite over a power series ring T . Expressing all of the rele-vant properties by equations over T , we may hope to descend the counterexample toone in which the rings R and S are module-�nite over a regular a�ne subring of T .Then we may proceed as above to produce a counterexample over a �eld of positivecharacteristic p.



CHAPTER VHilbert-Kunz multiplicities and Lech's Conjecture
5.1 Basic Applications of the Hilbert-Kunz multiplicityIn the paper [12], Christer Lech proved the following result, which gives an ap-proximation to his conjecture on the multiplicities of rings under a 
at local homo-morphism.Proposition 5.1.1. Let (R;m) � (S; n) be a 
at local extension of rings of dimen-sion d. Then eR � d! � eS, where eR and eS stand for the ordinary multiplicities ofthe respective rings.What I would like to note is that if the rings have prime characteristic p > 0, andif we adopt some more recent terminology, then the proof may essentially be brokeninto two pieces. First, what Lech shows is that eS � cR, the Hilbert-Kunz multiplicityof R. Secondly, it is easy to show that for any R, we have cR � eR � d! � cR. It thenfollows that eR � d! � eS.Now, if R is an F -�nite Cohen-Macaulay local domain with perfect residue �eld,we may give a short proof of the inequality eS � cR. To do this, simply considerthe MCM modules eR over R, which for large e have rank equal to qd, and whosenumbers of generators is asymptotic in q to cRqd (where q = pe). Clearly noweSqd = e(S 
 eR) � �(eR) � cRqd;82



83and dividing through by the rank gives the result.Before moving on to prove some results on Hilbert-Kunz multiplicities in the nextsection, I would like to give a further application of this line of reasoning. First weneed to formally state the following:Lemma 5.1.2. Let (R;m) � (S; n) be a 
at couple of local rings of the same di-mension. Let J be a parameter ideal of S, let M be a MCM module over R, andset M 0 = S 
R M . Then e(J ;M 0) � l(S=(mS + J)) � �(M): In particular, if J is aminimal reduction of n, then we have e(M 0) � l(S=(mS + J)) � �(M):Proof: Clearly e(J ;M 0) = l(M 0=JM 0) � l(M 0=(m + J)M 0). But since M 0 is ten-sored up from R, we know thatM 0=mM 0 �= (S=mS)(�(M)). Thus l(M 0=(m+J)M 0) =l(S=(mS + J)) � �(M), and the lemma is proved. 2In particular, suppose that (R;m) is a d-dimensional F -�nite ring of positiveprime characteristic p, with perfect residue �eld. If M is a MCM module of positiverank, then we may apply the lemma to the modules eM , which have rankR(eM) =qd � rankR(M) and �(eM) � cRqd � rank(M). This gives the stronger result thateS � l(S=(mS + J)) � cR for any 
at local extension S of dimension d, which impliesthat eS � l(S=(mS + J))d! � eR:This obviously gives some new cases of Lech's conjecture:Proposition 5.1.3. Let (R;m) � (S; n) be a 
at local extension of local rings ofpositive prime characteristic p and Krull dimension d, with R=m perfect, and assumethat R possesses a MCM module M of positive rank. If l(S=(mS+J)) � d! for someminimal reduction J of n, then eS � eR. In particular, if edim(S) � edim(R) �



84d! + d� 1, then eS � eR.The proof follows immediately from Lemma 5.1.2 and a reduction to the casethat R is complete and has perfect residue �eld. Of course, it is trivial that, giventhe ring R, there exists some number a such that any 
at local extension S withl(S=(mS + J)) � a will have multiplicity greater than or equal to that of R (forexample, one might just choose a = eR). What is interesting about the propositionis that it gives a uniform constant for all rings of a given dimension.In a similar vein, we would like to say that if the maximal ideal of R embeds intoa high power of the maximal ideal of S, then the multiplicity of S must be greaterthan or equal to that of R. Some such statement is made possible by the following:Lemma 5.1.4. Let (R;m) � (S; n) be a 
at local extension of Cohen-Macaulayrings, and assume that R is not regular. Then mS is not contained in any parameterideal of S.Proof: Let J be a parameter ideal of S, and choose a non-free MCM moduleM overR of positive rank (a su�ciently high syzygy module of the residue �eld will do).Since S is Cohen-Macaulay and 
at over R, we know that M 0 = S
RM is MCM ofpositive rank (see e.g. [15], section 23), and is not free over S. As above, we see thatM 0=mM 0 is free of rank �(M) over S=mS. Hence e(J ;M 0) � l(S=(mS + J)) � �(M).Now, because M is not free, we know that e(J ;M 0) < e(J ;S) � �(M). Thus, if itwere the case that mS � J , we would havee(J ;M 0) � l(S=JS) � �(M) > e(J ;M 0);a contradiction. 2



85In the case that R is Cohen-Macaulay, the lemma is yet another generalizationof the statement that R is regular if any 
at local extension is regular. Moreover,we now have the sort of result we were looking for with regard to Lech's conjecture(although the estimate is very rough), namely:Proposition 5.1.5. If (R;m) � (S; n) is a 
at couple of d-dimensional Cohen-Macaulay local rings of prime characteristic p > 0, with R=m perfect, and if membeds into nd!, then eR � eS.Proof: By Proposition 5.1.3, we need only show that l(S=(mS+J)) � d!, where J isa minimal reduction of n. But by Lemma 5.1.4, we have that mS is not contained inJ (we may certainly concentrate on the case where R is not regular), which impliesthat nd! is not contained in J . Thus l(S=(mS + J)) � d! (a very crude estimateindeed!), and we see that eS � d! � cR � eR: 2
5.2 Inequalities on Hilbert-Kunz multiplicitiesWe now know, for a 
at local extension R � S of rings of characteristic p > 0,that eS � cS, eR � cR, and eS � cR. Moreover, it is conjectured that eS � eR.So the only question left to ask about the ordering of the four invariants is whethercS � cR. In other words, can we prove the Lech-type conjecture with ordinarymultiplicity replaced by Hilbert-Kunz multiplicity?The answer turns out to be positive; in fact, one may more or less follow Lech'sprogram for proving the same results about ordinary multiplicities, developed in [12]and [13]. The step which proved intractable before was to prove the inequality on



86multiplicities for a 
at local extension of rings of the same dimension. But if we workwith Hilbert-Kunz multiplicities instead, this statement may be proved as follows.Proposition 5.2.1. Let (R;m) � (S; n) be a 
at local extension of rings of thesame dimension d, and assume that the rings have prime characteristic p > 0. ThencR � cS. In fact, for any q = pe, we have l(R=m[q]) � l(S=n[q]).Proof: Set a = lS(S=mS), which is �nite since R and S have the same dimen-sion. For any ideal I of R, we then know that l(S=IS) = a � l(R=I); in particular,l(S=m[q]S) = a � l(R=m[q]) for any q = pe.Now consider a composition seriesmS = I0 � I1 � : : : � Ia�1 = n � Ia = S(where Ij+1=Ij �= S=n for each j). When we apply the Frobenius functor to thisseries, we get the new seriesm[q]S = I [q]0 � I [q]1 � : : : � I [q]a�1 = n[q] � S:All we now need to note is that each quotient I [q]j+1=I [q]j still needs only one generatoras an S-module, and is killed by n[q]. Thus l(S=m[q]S) � a � l(S=n[q]).Putting together the conclusions of the previous two paragraphs, we see thatl(R=m[q]) � l(S=n[q])for any q = pe, as claimed. 2Now suppose that the 
at extension ring S has dimension greater than that ofR. If we choose a prime P of S which is minimal over mS, then we get a new
at extension (R;m) � (SP ; PSP ) of rings of the same dimension, and we may



87conclude that cR � cSP . Moreover, we may choose P in such a way that height(P )+dim(R=P ) = dim(S) (see e.g. [15], section 15). So in order to prove that cR � cS, itwould su�ce to prove that for a prime P of S with height(P )+dim(R=P ) = dim(S),we have cSP � cS. Lech was able to prove the corresponding theorem for ordinarymultiplicies, with only mild restrictions on the ring, and we may deduce the resultfor Hilbert-Kunz multiplicities by a similar sequence of arguments (but in our casewe achieve full generality!).Theorem 5.2.2. Let (R;m) be a Noetherian local ring of characteristic p > 0, andlet P be a prime ideal of R such that height(P ) + dim(R=P ) = dim(R). ThencRP � cR. In fact, if t = dim(R=P ), then l(R=m[q]) � qt � l(RP=P [q]RP ) for everyq = pe.It is clear that the theorem follows by induction, if we prove it in the case whereheight(P ) = dim(R) � 1, so from now on we will assume this to be the case. Infollowing Lech's program, we will begin with the following simple, but fundamentalcase. In fact, this is where the proof of the theorem on localization most di�ers fromthe one given for ordinary multiplicities.Lemma 5.2.3. Let R and P be as in the theorem, and assume in addition thatm = P + (f) for some f 2 R. Then cRP � cR. In fact, for any q = pe, we havel(R=m[q]) � q � l(RP=P [q]RP ).Proof: To begin with, let us set P fqg = P [q]RP \ R. Since m[q] = P [q] + (f q), andsince P [q] � P fqg, we have l(R=m[q]) � l(R=(P fqg + f q)). Moreover, since f is anonzerodivisor mod P fqg, it is clear that l(R=(P fqg+f q)) = q � l(R=(P fqg+f)). Thusit is su�cient to show that l(R=(P fqg + f)) � l(RP=P [q]RP ).In showing this, we may without loss of generatlity pass to the ring S = R=P fqg.



88Now the claim is that l(S=fS) � l(SP ). But since f is a nonzerodivisor in S, andsince P is the unique minimal prime of S, we have thatl(S=fS) � eS = e(S=PS) � l(SP )by the additivity formula for multiplicities. All that remains is to note that, byhypothesis, S=P = R=P is a DVR, and so e(S=PS) = 1. This completes the proofof the lemma. 2The condition that R=P be a DVR is equivalent to the condition that R=P isnormal. This is not true in general, but we will adapt Lech's reduction to this case byusing the module-�niteness of the integral closure (R=P )0 over R=P . The di�erencehere is that, since we already have the proposition on 
at local extensions of thesame dimension, this need not be stated as an assumption.Lemma 5.2.4. The proof of the theorem may be reduced to the case in which theintegral closure (R=P )0 of R=P is module-�nite over R=P .Proof: Let R̂ denote the completion of R, and let P � be a minimal prime of PR̂with dim(R̂=P �) = dim(R̂=P R̂). It is clear that R and R̂ have the same Hilbert-Kunz functions; and since RP � R̂P � is a 
at local extension of rings of the samedimension, we have by the proposition thatl(R̂P �=(P �)[q]) � l(RP=P [q]RP )for every q = pe. Thus it su�ces to prove the theorem for R̂ and P �, and we mayassume the R is complete local.But then it is a well-known fact that any homomorphic image domain of R hasintegral closure which is �nitely generated as a module. Hence we may reduce to



89this case. 2As in the proof for ordinary multiplicities, we also need the following preliminarylemma:Lemma 5.2.5. Let R be a Noetherian ring of characteristic p, and let M and m beprime ideals of the polynomial extension R[z] and R, respectively, such that M \R =m. Then for any q = pe, we havel� R[z]MM [q]R[z]M � = l� Rmm[q]Rm�if M = mR[z]; and otherwisel� R[z]MM [q]R[z]M � = q � l� Rmm[q]Rm� :Proof: We may as well assume from the beginning that (R;m) is local; let us alsoset (S; n) = (R[z]M ;MR[z]M ). In the case that M = mR[z], R � S is a 
at localextension with n = mS. Hence, for any q, we havel(S=n[q]) = l(S=m[q]S) = l(S=mS) � l(R=m[q]) = l(R=m[q]):So now assume M 6= mR[z]. Then we must have M = mR[z] + (f) for somemonic polynomial f 2 R[z].Now, R[f ] is also isomorphic to a polynomial ring over R, and the length of(m + f)[q] in R[f ] is q � l(R=m[q]). Moreover, R[z] is still 
at over R[f ], and M =(m+ f)R[z]; so it follows as in the �rst case thatl� Sn[q]� = l� R[f ](m + f)[q]� = q � l� Rm[q]� ;as desired. 2



90Proof of Theorem 5.2.2:Recall that we are now assuming dim(R=P ) = 1, and that the normalization(R=P )0 of R=P is module-�nite over R=P . Set (R=P )0 = (R=P )[c1; : : : ; cj], andconsider the composition of surjective homomorphismsR[z1; : : : ; zj]! (R=P )[z1; : : : ; zj]! (R=P )0:If we let P � and M� denote the inverse images in R[z1; : : : ; zj] of the (0) ideal andan arbitrary maximal idealM in (R=P )0, then we immediately see thatM�\R = m,P � \ R = P , and R[z1; : : : ; zj]M�=P �R[z1; : : : ; zj]M� is a DVR.Now we know the result for P �, M�, and R[z1; : : : ; zj]; and by Lemma 5.2.5,we have that cR = c(R[z1; : : : ; zj]M�) and cRP = c(R[z1; : : : ; zj]P �). Thus we havecompleted the proof that cRP � cR.In fact, applying the lemma inductively shows that there exist positive integerss and t such that for any q = pe,qs � l(R=m[q]) = l(R[z]=(M�)[q]) � q � l(R[z]P �=(P �)[q]) = qt+1 � l(RP=P [q]RP );where s and t are each at most j. A consideration of the dimensions of the ringsinvolved implies that s � t, so to complete the proof it su�ces to show that t = j.But note that, for every 1 � i � j, there are nonzero elements ai and bi in R=Psuch that aici = bi. Hence, there exist elements xi and yi in R, with xi not in P ,such that xizi � yi 2 P �. It follows that P � \ R[z1; : : : ; zi] is for no i generated byP � \ R[z1; : : : ; zi�1]. Thus, it follows from Lemma 5.2.5 that t = j, and we maydivide by qj above to see thatl(S=m[q]) � q � l(RP =P [q]RP )for every q. 2



91Of course, this completes the proof of the theorem on 
at extensions, as well. Wemay now record the theorem in its full generality:Theorem 5.2.6. Let (R;m) � (S; n) be a 
at local extension of rings of positiveprime characteristic, where dim(S)� dim(R) = t. Then cR � cS; moreover, for anyq = pe, it is in fact the case that qt � l(R=m[q]) � l(S=n[q]):This result is not only more easily proved than Lech's conjecture, but also has asigni�cantly stronger conclusion. It should serve as a poignant example of the powerof characteristic p techniques.



CHAPTER VISplitting Results and existence of small Cohen-Macaulaymodules
6.1 More special conditions on MCM modules in characteristic p > 0In this section we will show how to use splitting arguments over a ring of posi-tive prime characteristic p in order to generate MCM modules with certain specialproperties. The proofs given here do rely heavily upon characteristic p methods, butsome consideration will be given at the end of the chapter to what can be done inequal characteristic 0, or in the non-graded case.Recall the theorem 1.5.3 Hartshorne-Peskine-Szpiro, which produced MCM mod-ules over certain graded rings of characteristic p > 0. The crux of the argument wasthat lower local cohomology modules H im(eM) had bounded lengths for all e. Hence,for large enough e, one of the direct summands of eM must have vanishing ith localcohomology. The same sort of argument will be applied here in order to producemodules with other nice properties.First, even for a �nitely generated graded maximal Cohen-Macaulay module Mover R, it is not true that Hdm(M) has �nite length for d = dim(R). But it is true,since the module Hdm(M) is Artinian, that the part of this module in nonnegativedegrees must have �nite length. Thus, we may introduce the concept of the a-invariant of a �nitely generated graded R-module M . The de�nition given here92



93generalizes the notion of the a-invariant of the ring R.Note 6.1.1. Let R be a �nitely generated positively graded K-algebra, where R0 =K and dim(R) = d. Recall that the a-invariant of R is given by a(R) = supfa :[Hdm(R)]a 6= 0g (see [6]). Also, if R is Cohen-Macaulay, x1; : : : ; xn is a homogeneoussystem of parameters, and I = (x1; : : : ; xn); then a(R) = deg(G)�P deg(xi); whereG is a form of largest degree in R n IR (see e.g. [9]).De�nition 6.1.2. For R as above, and M a �nitely generated graded R-module,the a-invariant of M is given by a(M) = supfa : [Hdm(M)]a 6= 0g � �(M), where�(M) = minfb : M(b) 6= 0g.As for the ring R, one can show that if M is maximal Cohen-Macaulay andI = (x1; : : : ; xd) is a parameter ideal, then a(M) + �(M) = deg(G) �P deg(xi),where G is a homogeneous element of M n IM of largest degree. Also note that ifwe replace M by a twist so that its generator of least degree is in degree 0, then thea-invariant of M is just the maximal degree in which Hdm(M) fails to vanish.If the ring R is generated over a �eld by 1-forms, and the moduleM is MCM withall its generators in the same degree, then the above notion is really no di�erent fromthat of the reduction degree of the moduleM . In fact, one has a(M)+d+1 = red(M),where d is the dimension of the ring. To see this, note that neither side of the equalityis changed by replacingM by a twist which is generated in degree 0. Then if I � R isgenerated by a system of parameters of 1-forms, and if G is a homogeneous elementof M n IM of maximal degree, we havea(M) + d = deg(G) = red(M)� 1:In particular, M is linear if and only if a(M) = �d. Moreover, in this case, thefollowing theorem has already been proved in chapter 1, since red(M) � d if and



94only if a(M) < 0. Nevertheless, for the present section, the notion of a-invariant willstill be the better one with which to work.Theorem 6.1.3. Let (R;m) be a �nitely generated positively graded equidimensionalK-algebra, with K a perfect �eld of characteristic p > 0. Suppose R has a gradedmodule M, of the same dimension, which is Cohen-Macaulay except possibly at theorigin (i.e. MP is MCM over RP for any prime P 6= m). Then R has a MCMmodule M with a-invariant a(M) < 0.Proof: By Theorem 1.5.3, R possesses a �nitely generated graded MCM module N .Without loss of generality, we may replace N by a suitable twist and assume thatNt = 0 for t < 0.We know that Hdm(eN) �= eHdm(N) for any e � 0, and it is easy to see that thegrading on Hdm(eN) is obtained from that on Hdm(N) by dividing all degrees by q.Thus, we must also have equality of the nonnegative part of the highest lo-cal cohomology for all e, i.e. [Hdm(eN)]t�0 = [e(Hdm(N))]t�0. If follows that thenonnegative part of the dth local cohomology of eM has �xed �nite K-dimension
 = dimK [Hdm(N)]t�0 for all e. For e large enough, eN will split into more than 
direct summands. Since the operation [Hdm( )]t�0 commutes with direct summands,we will therefore be able to �nd a MCM summand N 0 of eN with [Hdm(N 0)]t�0 = 0.Since eN is still 0 in negative degrees, the same will be true ofN 0, and thus a(N 0) < 0.2 The above theorem will be applied in section 6.2 to prove a new case of theconjecture on the existence of small Cohen-Macaulay modules. It turns out that thecondition a(M) < 0 is precisely what is needed in order to ensure that the Segreproduct of two MCM modules remains Cohen-Macaulay.



95But �rst I wish to note that the same argument can be used in some cases toproduce MCMs upon which the action of an ideal becomes indistinguishable fromthat of its tight closure. Recall that, in the case that an F -�nite Cohen-Macaulaylocal (or positively graded) ring (R;m) has its maximal ideal equal to the Frobeniusclosure of a parameter ideal, the modules eR are in fact lin MCMs for e >> 0 (Lemma2.4.2). Moreover, the same proof shows that for such a ring R and for any ideal I,one can �nd a MCM module M for R such that IM = IFM . In the graded case,if we assume a su�cient abundance of test elements, we may obtain similar resultswith regard to tight closures of ideals.Proposition 6.1.4. Let (R;m) be an F-�nite positively graded Cohen-Macaulay K-algebra, where K is a perfect �eld of characteristic p > 0. Suppose that R has anm-primary ideal of test elements I (in particular, this is the case if R has isolatednon-Gorenstein and non-F-regular locus). Then for any �nite set of ideals fJig ofR, there exists a MCM-module M over R such that J�i M = JiM for each i.Proof: Given an ideal J , set s = �(J�), the minimal number of generators of thetight closure ideal J�. For any c 2 I, we know that c(J�)[q] � J [q] for all q = pe.Thus I(J�)[q] � J [q] for any q = pe and any ideal J .Thus, for any e � 0, J�(eR)=J(eR) �= (J�)[q]=J [q] has length less than or equal tol(R=I) � s = b, since this module is killed by I and needs at most as many generatorsas J�. Now, if q = pe is chosen large enough so that eR splits into more than bdirect summands, then at least one summand will be a MCM module M such thatJ�M = JM .Clearly the same method can be used to get a MCM module on which �nitelymany ideals become equal to their tight closures: we just need to take e large enoughso that the number of direct summands of eR is larger than a sum of �nitely many



96constants bi. The details are omitted. 2Corollary 6.1.5. If R satis�es the hypotheses of the proposition, and if the homo-geneous maximal ideal m is equal to the tight closure I� of some parameter ideal I,then R has a linear MCM module.Finally, we would like to show how a weaker requirement on the ideal of testelements su�ces for rings with multi-gradings. The point is that if I is an ideal oftest elements with dim(R=I) = r, then for large q, the modules (J�)[q]=J [q] are killedby I, and hence can be thought of as R=I-modules. It follows that their lengthsshould eventually be bounded by a poynomial function of degree r in q. But if Rhas a nontrivial s-multigrading, then the modules eR will split into roughly qs directsummands. As long as s > r, we should be able to get the same conclusion as in theproposition above. We do need to be careful about the hypotheses.Proposition 6.1.6. Let R be an F-�nite Cohen-Macaulay K-algebra, where K isa perfect �eld of characteristic p > 0, and suppose that R has a nondegeneratemultigrading by s copies of the natural numbers. Moreover, suppose that R has anideal of test elements I with dim(R=I) = r < s. Then for any �nite set fJig of idealsof R with the property that Ji + I is primary to the homogeneous maximal ideal mfor each i, there exists a MCM-module M for R such that J�iM = JiM for each i.Proof: One can use the multe-grading to see that for large e, the module eR willsplit into at least aqs nonzero MCM direct summands, where a is some positiveconstant. All that really concerns us is that, for any polynomial function F of degreeless than s in q, eR will have more than F (q) direct summands for large enough e.Now let J be an ideal of R such that I + J is m-primary, and let h = �(J�).Then for any e, the module We = J�(eR)=J(eR) �= (J�)[q]=J [q] is killed by I + J [q]



97and needs at most h generators. Since dim(R=I) = r and (J + I)=I is m-primary inR=I, it follows from general results on Hilbert-Kunz functions that for e su�cientlylarge the length of We is bounded by a polynomial function of degree r in q = pe.Thus, eR eventually has a MCM summand M such that J�M = JM , and it isclear how to modify the argument in order to handle a �nite set of ideals fJig. 26.2 Small MCM modules over Segre product ringsAs alluded to in the introduction to this chapter, the existence of MCMs withnegative a-invariant will allow us to prove the existence of small Cohen-Macaulaymodules over certain Segre products of graded rings. The Segre product is de�nedas follows:De�nition 6.2.1. Let R and S be positively graded algebras over a a �eld K, withR0 = S0 = K. Then the Segre product ring R 
seg S is the positively gradedK-subalgebra of R
K S with graded pieces (R
K S)t = Rt 
K St for all t � 0.If R and S are the homogeneous coordinate rings of projective varieties X and Yover K, then R
seg S is the homogeneous coordinate ring of the Segre embedding ofthe product varietyX�Y . It is well-known that the product of Cohen-Macaulay pro-jective varieties remains Cohen-Macaulay; but even if the corresponding coordinaterings are Cohen-Macaulay, the Segre product may not be. Nevertheless, ifR1; : : : ; Rnare positively graded rings which possess small (graded) MCM modules, or are them-selves Cohen-Macaulay, we may ask whether the Segre product R1 
seg � � � 
seg Rnpossesses a small MCM module.A partial answer to this question was given by Frank Ma in [14]. His result is:Proposition 6.2.2 (Ma). Let R be the coordinate ring of C1�C2�� � ��Cn, where



98each Ci is a smooth projective curve over an algebraically closed �eld k. Then R hasa �nitely generated maximal Cohen-Macaulay module.Given �nitely generated graded modules Mi over the coordinate rings Ri, onemay form the Segre product M1
seg � � �
segMn in the analogous way, and it is easyto see that this is a �nitely generated graded module over the Segre product ringR1 
seg � � � 
seg Rn. What Ma shows is that if the Mi are chosen to be suitably niceMCM modules, then the Segre product module is MCM over the Segre product ring.In the language of this paper, the relevant property of the Mi turns out to be thatthey have a-invariant less than 0. The following result can then be easily derivedfrom the work [6], and much of Ma's proof is incorporated into the proof given here.Theorem 6.2.3. Let R = R1 
seg R2 � � � 
seg Rn be a Segre product of �nitely gen-erated positively graded rings Ri over a �eld K, and assume that each of the ringsRi has dimension at least 2. If, for each i, Ri has a graded MCM-module Mi witha(Mi) < 0, then R possesses a (small) graded MCM module.Proof: Let mi be the homogeneous maximal ideal of the corresponding ring Ri foreach i. Note that, by suitably twisting Mi, we may assume that [Mi]t<0 = 0, andthat [Hdmi(Mi)]t = 0 for t � 0. Now just let M = M1 
seg � � � 
seg Mn be the Segreproduct of the modules Mi. We will show that M is a MCM module for R.For each i, let Xi = Proj(Ri), and let ~Mi be the sheaf associated to Mi on Xi.SinceMi is MCM of depth at least 2 over Ri, we know thatMi �= �t2ZH0(Xi; ~Mi(t));and that for j � 1, Hj+1mi (Mi) = �t2ZHj(Xi; ~Mi(t)). Now set d = dim(R) =(P dim(Ri) � 1) + 1, and let m represent the homogeneous maximal ideal of R.What we need to show is that H im(M) = 0 for i < d. In order to do this, we will



99apply the Kunneth formula (which holds for any i and t):H i(X1 �X2 � : : :�Xn; ~M(t)) = Mj1+j2+:::jn=i
nr=1Hjr(Xr; ~Mr(t))To begin with, we may apply the formula with i = 0 to see thatH0(X1 �X2 � : : :�Xn; ~M(t)) = 
rH0(Xr; ~Mr(t)) = 
nr=1[Mr]t = Mt:Thus, the Serre map s : M ! �t2ZH0(X; ~M(t)) is an isomorphism, and we haveH im(M) = 0 for i = 0; 1.For 0 < j < d � 1 we have that Hj+1m (M) = �t2ZHj(X; ~M(t)):; so we need toshow that Hj(X; ~M(t)) = 0 for any integer t, where X = X1 �X2 � : : :�Xn. Butbecause of the way that the Mi were originally chosen, we see that each term of thesum on the right hand side of the relevant Kunneth formula is 0 unless either (1)jr = 0 for all r, and t � 0; or else (2) jr = dim(Xr) for all r, and t < 0. It followsthat Hj(X; ~M(t)) = 0 for any 0 < j < d� 1, which completes the proof that M is aMCM module over R. 2Of course, this theorem has been proved with the results of the previous section inmind, which tell us that if the product is taken over a perfect �eld of characteristicp > 0, any reasonable hypotheses on the rings Ri will allow us to produce MCMmodules over these rings with a-invariant less than 0. Putting the two results togetheryields the following very general result in characteristic p:Corollary 6.2.4. Let R1; : : : ; Rn be �nitely generated positively graded algebras overa perfect �eld of characteristic p > 0, with (Ri)0 = K. If each ring Ri has a gradedmaximal Cohen-Macaulay module, then the Segre product R1
segR2
seg : : :
seg Rnalso has a small (graded) maximal Cohen-Macaulay module.



100Note 6.2.5. The corollary of course follows immediately from theorems 6.1.3 and6.2.3. But if the MCM modules over the rings Ri are denoted by Mi, then theKunneth formulas used in the proof above show that the Segre product moduleM = M1 
seg � � � 
seg Mn has lower local cohomology modules of �nite length overthe Segre product ring R1 
seg R2 
seg � � � 
seg Rn, which is still a �nitely generatedgraded algebra over a perfect �eld. Thus, the existence of a MCM module over theSegre product ring also follows from Theorem 1.5.3.The methods used for showing the existence of MCM modules with a-invariantless than 0 are in general not applicable for rings of characteristic 0. Nevertheless,Theorem 6.2.3 is independent of the characteristic, so whenever it is possible toshow the existence of such modules, partial results to the Segre product problem incharacteristic 0 may be obtained. A few cases are treated below.1. If R is a positively graded Cohen-Macaulay ring, it may be the case that Ritself has a-invariant less than 0. This is true, for example, in the the case thatR is a monomial subring of a polynomial ring over a �eld.2. In fact, it is even su�cient for a(R) = 0. For one may consider an exactsequence of graded MCM modules:O!M ! Rn ! N ! 0;where M embeds into mRn. The exact sequenceO! Hdm(M)! Hdm(Rn)! Hdm(N)! 0;where the map on the left still has entries of positive degree, then clearly impliesthat a(M) < 0.



1013. If (R;m) is a positively graded K-algebra, and M is a graded linear MCM R-module, then M 0 = grmM is a lin MCM over R which has generators all in thesame degree, and it is easy to see that a(M 0) < 0. Thus it is a consequence of[1] that homogeneous complete intersections have MCMs with a-invariant lessthan 0.4. In fact, upon closer inspection of the proof given in [1], one sees that thefollowing more general conclusion may just as easily be reached:Note 6.2.6. If R is a positively graded ring which possesses a graded MCMmodule M with a(M) = s, and if x is a homogeneous form in R which is anon-zerodivisor on M , then the ring R=xR possesses a graded MCM moduleM 0 with a(M 0) � s+ 1.In particular, if R is Cohen-Macaulay with a(R) = s, and if x1; : : : ; xd is part ofa homogeneous system of parameters for R, then R=(x1; : : : ; xd)R has a gradedMCM with a(M) � s+ d.This will of course provide more rings possessing MCMs of negative a-invariant.For example, if R possesses a graded MCM M with a(M) � 2, then any hyper-surface R=f , with f homogeneous, possesses a graded MCM with a-invariantless than 0.5. Let R be a Cohen-Macaulay ring which admits, for an in�nite sequence ofpositive integers t, ring homomorphisms ft : R ! R such that the image of ftis contained in R(t), R is module-�nite over the image of ft, and the image offt contains a minimal reduction of mt. Given such maps, one may proceed asin the case of characteristic p > 0: R splits into t direct summands over the



102image of ft, and for large enough t, one of these summands will necessarily havea-invariant less than 0.Thus, any Segre product over a �eld K of rings of one of the above types willpossess a MCM module, regardless of the characteristic of K.6.3 Further approaches to characteristic 0 or non-graded ringsMany of the results of the preceding sections are obtained by methods only avail-able in the characteristic p > 0 or N-graded cases. But as in the study of Segreproducts, we wish to determine the extent to which similar results may be obtainedwithout these hypotheses. In particular, we might ask whether the problem of exis-tence of a certain kind of module for a local ring R is amenable to the methods ofreduction to characteristic p.Question 6.3.1. Can the existence of small Cohen-Macaulay modules (or linearMCM modules, or graded MCM modules with negative a-invariant) be reduced tothe case of characteristic p > 0?If the modules which occur when one passes to various prime characteristics arenot bounded in some way, then this method has little hope of success. There is noapparent way in which one may express the condition of not having such a modulein terms of �nitely many equations. But this would be possible if, for example, onecould bound the ranks of the free modules occuring in presentations of the desiredmodules in characteristic p.Another approach to the characteristic 0 case is to just try to mimic the methodsapplied in characteristic p:



103Proposition 6.3.2. Let R be a positively graded, equidimensional ring (which is ahomomorphic image of a regular ring), with R0 = K a �eld; and suppose R hasisolated non-Cohen-Macaulay singularity. Then for suitably large n, the Veronesesubring R(n) has a MCM-module (with a-invariant less than 0).Proof: For any D > 0, there exists some n0 such that R splits into at least Ddirect summands over R(n) for every n � n0. As R(n) contains a system of parame-ters for R, we know that H imR(n) (R) is isomorphic to, and hence has the same �nitelength as, H im(R) for all i < dim(R). Likewise, the length of the positive degreepart of Hdm(R) is preserved. Thus, for su�ciently large n, one of the summands ofR as an R(n)-module must be a MCM-module for R(n) with a-invariant less than 0. 2The reason that this method falls short in characteristic 0 is that there is ingeneral no natural homomorphism from R to R(n) (such endomorphisms do exist formonomial subrings of polynomial rings, but in this case the polynomial ring itselfwill be a �nitely generated MCM with a-invariant less than 0).Even if we restrict ourselves to the case of rings of characteristic p > 0, we mayhope to get similar results to the ones above for rings which are local instead ofpositively graded. In particular, we can recover similar splitting results in the casethat R has Krull dimension 1, as proved by Hochster in [7].Proposition 6.3.3 (Hochster). If R is a complete local domain of dimension 1and characteristic p > 0, with perfect residue �eld K, and if M is any torsion-freeR-module, then eM splits for e >> 0.If we could produce such splitting results in higher dimensions, we would obtainnew results on the existence of small MCM modules for many non-graded rings.



104Finally, we note the following proposition, which was essentially proved in [10]by M. Hochster and J. Roberts. The only di�erence is that Hochster and Robertsassumed the ring to be graded, whereas the argument given here shows this conditionto be unnecessary.De�nition 6.3.4. A ring homomorphism R! S is called pure if M ,! S
RM forevery R-module M . A ring R of prime characteristic p > 0 is called F-pure if theFrobenius endomorphism R F! R is pure.Proposition 6.3.5. Let R be an F-�nite local ring of characteristic p > 0, withperfect residue �eld K. Suppose R has isolated non-C-M singularity, and that Ris F-pure. Then for all e0 > e, the module M = Coker(F e0�e : eR ! e0R) is aMCM-module for R.Proof: See [10] for the details on local cohomology.Since R is F -pure, the map induced by F on the local cohomology modulesH im(eR) is injective. This implies, in the �rst place, that for a given i < dim(R)all of the modules H im(eR) are isomorphic K -vector spaces; and it follows that themaps on the local cohomology modules induced by F must be isomorphisms for alli < dim(R). Now it is apparent from the long exact sequence on local cohomologyinduced by the short exact sequence0! eR F e0�e! e0R!M ! 0that H im(M) = 0 for all i < dim(R). 2
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ABSTRACTSpecial Conditions on Maximal Cohen-Macaulay Modules, and Applications to theTheory of MultiplicitiesbyDouglas Hanes
Chair: Melvin Hochster

The dissertation explores the existence of maximal Cohen-Macaulay modules sat-isfying certain special conditions which are generalizations of the linearity property.In particular, the existence of linear maximal Cohen-Macaulay modules is proved forcertain classes of graded rings.The existence of such modules is then exploited in order to prove some new casesof Lech's conjecture on multiplicities under 
at local extensions. The conjecture isproved in many cases in which the base ring R has prime characteristic p; and iseither 3-dimensional, or else graded by 1-forms over a �eld and of dimension lessthan or equal to 5.Lech-type theorems on 
at extensions and localization are proved for the Hilbert-Kunz multiplicity. Moreover, the existence of small maximal Cohen-Macaulay mod-ules is shown for certain Segre product rings.


