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CHAPTER I

Introduction

The general theme of this dissertation will be to prove certain statements about
local or positively graded Noetherian rings by passing to a suitably chosen module
over the ring, which may in some way have nicer properties than the ring itself.
The problem may then in general be broken into two parts. The first, which is to
determine what sorts of modules can be shown to exist over a certain class of rings,
will be the subject of chapters 2 and 3. The results presented there are of interest
in their own right, and provide some partial answers to questions in the literature.
But the existence of such modules also has implications for questions regarding the
structure of the ring and its algebra extensions. The second part of our endeavour,
which is to explore these implications, is taken up in the latter part of the dissertation.

A commutative ring R is Noetherian if every ideal I of R is finitely generated,
which is to say that every element of I can be written as an R-linear combination
of finitely many elements f;,..., f, in I. This property holds for the integers Z
and for any field K. Moreover, if R is Noetherian, then so are polynomial rings
R[X1,...,Xn] over R and homomorphic images R/I, where I is an ideal of R.
This already provides a wealth of examples, including the coordinate rings of affine

varieties or the homogeneous coordinate rings of projective varieties over a field K,



which take the form

K[X,. .. X,
R = [ 1, J ]’
(fla"' 7fn)
where fi, ..., f, are elements of the polynomial ring K[X7,..., X,,].

If R is the homogeneous coordinate ring of a projective variety, then the polyno-
mials f; may be assumed to be homogeneous, which is to say that each f; is a K-linear
combination of monomials of the same degree. Such rings serve as the prototype for

the more general notion of an N-graded ring, a ring R with a decomposition
R = ®enR;

into additive groups, and with the property that if + € R, and y € Ry, then zy €
R, ;. It follows from these conditions that Ry must itself be a ring, that RT = &;5(R;
is an ideal of R, and that any maximal ideal of R generated by homogeneous elements
must contain RT. In fact, we will always assume that Ry is a local ring (see below),
so that R has a unique homogeneous maximal ideal.

We will also wish to consider local rings, and even complete local rings. A local
ring, which possesses a unique maximal ideal, may be obtained from any Noetherian
commutative ring by inverting all elements outside of some prime ideal. If R is the
coordinate ring of an affine variety, then the local ring R, obtained by localizing
at a maximal ideal m is just the ring of rational functions defined at the point cor-
responding to m. The completion of R,, with respect to its maximal ideal is then
the R,,-algebra containing all formal power series in the generators of m. Localiza-
tions and completions of Noetherian rings retain the Noetherian property. In fact,
if R is any complete local ring which contains a field, then one may express R as a
homomorphic image of a power series ring:

K[[ Xy, ..., X,]]

R==G 5




where K is a field and one of course needs to kill only finitely many power series f;.
An open question which has inspired much of the research contained in this

dissertation is the following conjecture, which first appeared in [12].

Conjecture 1.0.1 (Lech). Let (R, m) C (S,n) be a flat local extension of Noetherian
local rings. Then the multiplicity of S is greater than or equal to the multiplicity of

R.

The multiplicity ex of R is defined as follows: let (R, m) be a local ring of Krull
dimension d. Associated to R is the Hilbert function Hg : N — N given by H(t) =
dimg (m'/m'*"), where K = R/m is the residue class field of R. For all sufficiently
large t, Hg(t) is given by a polynomial in ¢ of dimension d — 1 (provided d > 1), and
the multiplicity eg of R is defined to be (d — 1)! times the leading coefficient of this
polynomial (when d = 0, H(t) is eventually 0, and we define ey to be the length of
the ring R). So the multiplicity gives, in a certain sense, an asymptotic measure of
the rate of growth of the ring R.

The simplest example of the multiplicity is given by the so-called “fat” points
of the affine line: if one considers the algebraic subset of the complex line (which
has ring of functions C[X]) defined by the equation X™ = 0, the subset so defined
is the point {0} for every n > 0. But one wishes to keep track of the fact that
the defining function vanishes to degee n at this point, and that the coordinate ring
R = C[X]/(X™) varies with n. In this simple case, n is precisely the multiplicity of
the ring.

If the extension ring S in Lech’s conjecture is actually a finitely-generated R-
module, then requiring the extension to be flat is equivalent to saying that S is a
free R-module. When we say that the extension is local, we mean that the maximal

ideal m of R embeds into the maximal ideal n of S. So in the case of a module-



finite extension, Lech’s conjecture is equivalent to the following statement: let S be
a finitely generated free R-module, and suppose that S is given a local ring structure
compatible with that of the submodule R (think of the ring R as being the first free
summand of S). Then the rate of growth of the ring S, with respect to its maximal
ideal n, is at least as great as the rate of growth of R. Stated in this way, the
conjecture seems very natural and plausible.

Lech’s conjecture has now stood for almost forty years, and remains open in
almost all cases, with the best partial results still those proved in Lech’s original two
papers [12] and [13]. There he proved the conjecture in the case that the rings have
dimension 2, in the case that the fibre S/mS is a complete intersection, and also in
the case that the embedding dimension of S does not exceed that of R by more than
one.

The conjecture remains open in dimensions 3 and higher, even in the case that
R and S are graded, and S is a module-finite (free) extension of R. However, the
method of passing to modules with special properties has shown promise in attacking
this problem. In particular, it is highly advantageous to consider R-modules which
are mazimal Cohen-Macaulay (abbreviated MCM).

If R is a complete local ring containing a field or a finitely generated graded
algebra over a field K, then R can be realized as a module-finite extension of a
power series ring A = K{[z1,...,x4]] (in the complete local case) or of a polynomial
ring A = Klzy,...,24] (in the graded case). Any finitely generated (graded) R-
module M is then also an A-module by restriction of scalars, and in this case M
is MCM if and only if it is a free A-module (a general definition is given in section
1.5). In particular, the ring R is Cohen-Macaulay if and only if it is a flat extension

of the subring A. Hochster proved the existence of big (i.e. not finitely generated)



MCM modules for local rings containing a field, and used the existence of such
modules in order to prove many important homological conjectures (see [8, 7]). But
his conjecture that a complete local ring must possess a finitely generated (or small)
MCM module remains open for rings of dimension greater than 2 (see Theorem 1.5.3
and section 6.2 for some partial results).

We may extend the notion of the multiplicity to any finitely generated module
M over a local or graded ring R (for example, this may be done with the same
sort of Hilbert function as for the ring). Then, if M is MCM, and if the subring
A= K|[[x1,...,24)] (or K[z1,...,z4]) is chosen appropriately, the multiplicity of M

is simply the vector-space dimension of the module

M
(l‘l,... ,J}d)M,

which is also equal to the free rank of M as an A-module.

This makes the multiplicity of a MCM module relatively easy to compute, or
at least approximate. And, as we will see, the multiplicity of the ring can often
be recovered from that of the module. But we will need to simplify the process
of computing multiplicities even further. For this, let m be the maximal ideal
of the ring R. Since the multiplicity of M is just the vector-space dimension of
M/(z1,... ,x4)M, we can make the calculation easier by assuming that m' multi-
plies M into (xy,...,x4)M for some small value of ¢. As an extreme example, we
might even hope that mM = (xy,...,x4)M, in which case the multiplicity of M is
equal its minimal number of generators as an R-module. This condition will reappear
in the definition of a linear maximal Cohen-Macaulay module (see section 1.1).

Over a Cohen-Macaulay ring R of prime characteristic p > 0, we show the exis-
tence of MCM modules which satisfy strong conditions of this kind. This has allowed

approximations of multiplicities which have allowed proofs of certain cases of Lech’s



conjecture. In what follows, we will denote the embedding dimension of the ring R
by edim(R). If R is the local ring at the origin of an affine variety X over a field
K, then the embedding dimension is, quite appropriately, equal to the minimum
dimension of an affine space A% into which a neighborhood of the origin in X can

be embedded.

Theorem 1.0.2. Let R be a positively graded algebra, generated by its 1-forms, over
a perfect field K of characteristic p > 0; let m denote the homogeneous mazximal ideal

of R. Suppose that R possesses a graded MCM module M, with all generators in the

holds for any flat local extension (R, m) C (S,n). If dim(R) = 5, then the conjecture
holds provided that once we reduce to the case dim(S) = 5, we have either m — n?

or edim(S) > edim(R) + 6.

Note that if R is graded rather than local, we call the extension (R, m) C (S, n)
flat local if m < n and R,, — S,, is flat local.

This is already a significant improvement over the previously known results, and
solves the problem for a large class of graded Cohen-Macaulay rings of low dimen-
sions. In fact, if R is a positively graded K-algebra of dimension 3, where K is a
perfect field of characteristic p, then a graded MCM module is known to exist (see
Theorem 1.5.3), and so the conjecture holds even without any Cohen-Macaulayness
assumption.

In the case that the base ring R is local rather than graded, the methods do not
yield quite as much. Nevertheless, I have made significant progress in the case that

the base ring has Krull dimension 3.

Proposition 1.0.3. Let (R, m) be a 3-dimensional local ring of positive prime char-



acteristic p, with perfect residue field, and assume that R has a MCM module of
positive rank. If (R,m) C (S,n) is a flat local extension of 3-dimensional local rings,

and if either edim(S) > edim(R) + 3 or if m < n?, then er < es.

It is a theorem of Lech that, in the situation above, edim(S) is at least as great
as edim(R) (see [13]); moreover, Lech has proved the conjecture in the case that the
difference in embedding dimensions is 0 or 1.

The proofs of these statements rely upon prime characteristic p methods in order
to produce interesting MCM modules which would not otherwise be readily available.

Nonetheless, suppose we are presented instead with the coordinate ring

KXy, ..., X,
R = [ 1 ) ]
(fla SRR ft)
of a variety defined by the polynomials fi, ..., f;, where K is a field of characteristic

0. If it turns out that the coefficients of the f; are integers (which would no doubt
be the case in any example which the reader might casually write down), then one
may view the variety X as the set of solutions to certain polynomials over Z in the
field K. In fact, points of X correspond precisely to homomorphisms from the ring

ZX1,. .., X,]

Bo==00 )

into K.

But a great deal of insight into the solutions of polynomials over Z may be gained
by looking at the solutions in the finite fields Z/pZ, where p is any prime number.
And these solutions are described by the rings

(Z/pZ)[Xla--- ,Xn]
(froeeesfo)

which have positive prime characteristic p. This indicates that the case of rings of

R =

positive prime characteristic is more central than might at first be apparent. In fact,



it is often possible to deduce statements about rings containing a field of characteristic
0 from the corresponding statements about rings of prime characteristic. This process
of reduction to characteristic p can be quite technical, depending upon the statement
in question, but the above discussion gives a good idea of the motivation behind the
technique. In section 4.4, we outline a reduction to characteristic p argument for
Theorem 1.0.2 and Proposition 1.0.3.

Some related issues will be considered in the course of the dissertation. Although
some of the results are independent of the main line of argument, all revolve around
the two major themes of special conditions on maximal Cohen-Macaulay modules

and conjectures on the multiplicities of local or graded Noetherian rings.

1.1 Maximal Cohen-Macaulay modules with special properties

In chapter 2 we define and characterize certain properties of a maximal Cohen-
Macaulay module M over a local or positively graded ring R. All of the conditions
which are considered are generalizations of the condition of linearity, introduced
by B. Ulrich in [20]. We may define a linear maximal Cohen-Macaulay module

(abbreviated lin MCM) as follows:

Definition 1.1.1. Let (R, m) be a Noetherian local ring with a finitely generated
maximal Cohen-Macaulay module M. Then M is said to be a linear maximal Cohen-
Macaulay module (or lin MCM) if ex(M) = v(M), where ep(M) is the multiplicity
of the module M, and v(M) is the minimum number of generators of M as an

R-module.

Perhaps the greatest interest in linear MCM modules has stemmed from the fact

that the associated graded module gr,, (M) of a lin MCM M remains MCM (see e.g.



[1]). This provides important information, as the associated graded ring gr,, R often
falls far short of Cohen-Macaulayness, even when R is Cohen-Macaulay. However,
it turns out that the existence of linear MCM modules is far easier to characterize
in the graded case, and most of the existence results are for graded rings. What will
concern us more here is the numerical properties of such a module.

Seen from this point of view, the linearity condition expresses a best-possible
characteristic of the module M. For if we assume that the residue field R/m of R
is infinite, then we may choose a minimal reduction I = (xy,... ,x4) of m, and the
definition implies that M is linear if and only if mM = I M (see section 1.5 for theory
of reduction ideals). This makes the Hilbert function, as well as the multiplicity, of
a linear MCM module especially easy to compute.

Given this characterization of linearity, we may quite naturally introduce the
following generalization: we say that the reduction degree of a finitely generated
MCM module M is the least integer n such that m"M C (xq,...,x4)M for some
minimal reduction (xy, ... ,x4) of m. M is of course linear if and only if its reduction
degree is one.

The existence of modules with low reduction degree will be shown to imply some
new cases of Lech’s conjecture. In fact, it turns out that a sequence of modules
asymptotically approaching a certain reduction degree condition usually provides
just as much information as a single module actually satisfying the condition. The
point is that even though a module has reduction degree ¢, it may be the case, for
some s < t, that the length of (m® + I)M/IM is insignificant in comparison with
I(M/IM) = e(M). Then we may treat M as if its reduction degree were s. Our

most general definition is:

Definition 1.1.2. A sequence of MCM R-modules { M, };> is said to have reduction
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degrees approaching ¢ if for some minimal reduction I of m,

I((m! + I)M;/1M;)
[(M;/1M;)

as 1 — 00.

It is not surprising that the existence of linear maximal Cohen-Macaulay modules
has proved very difficult to establish, considering the strength of the linearity con-
dition. Such modules are known to exist for one-dimensional rings, two-dimensional
graded Cohen-Macaulay domains, rings of minimal multiplicity, strict complete in-
tersections, and certain rings of determinantal varieties (see [2] and [1]). We will
show in chapter 3 that Segre products of graded rings with lin MCMs possess lin
MCMs; and that in dimension 3, any Veronese subring of a ring possessing a graded
lin MCM still admits a lin MCM.

The difficulty involved in showing the existence of linear MCM modules for even
the Veronese subrings of a polynomial ring of dimension 3 is surprising, if lin MCMs
are to exist in any generality. But just as surprising is the fact that the algorithm for
producing these modules, with delicate modification, produces sequences of MCMs
approaching linearity over a much broader class of rings of dimension 3. In particular,

we achieve the following:

Proposition 1.1.3. Suppose that R is a 3-dimensional positively graded K -algebra,
generated by its 1-forms, where K is a perfect field of characteristic p > 0. Suppose
moreover that R is a Cohen-Macaulay domain. Then R possesses a sequence of MCM

modules M; with the property that e(M;)/v(M;) — 1 as i — oo.

In other words, such a ring R possesses a sequence of MCM modules which

“approach” linearity in the numerical sense. In fact, by setting aside the more
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stringent condition of linearity, and considering instead the more general definitions

of chapter 2, we may prove the following much richer existence result:

Theorem 1.1.4. Suppose that R is a positively graded K-algebra of dimension d >
3, generated by its 1-forms, where K is a perfect field of characteristic p > 0. Suppose
moreover that R is a Cohen-Macaulay domain. Then R possesses a sequence of MCM

modules M; with reduction degrees approaching d — 2.

As indicated earlier, this result will be extremely useful in the approximation
of multiplicities. In the local (non-graded) case, one cannot achieve quite as much
with the same methods, but we can still prove a much stronger result in positive
prime characteristic than is available in characteristic 0. By utilizing the Frobenius
endomorphism, we are able to show (Proposition 2.3.4) that any Cohen-Macaulay
local ring R of characteristic p possesses a sequence of MCM modules with reduction

degrees approaching the dimension of R.

1.2 Applications to multiplicities

In chapter 4 we will show how the existence of maximal Cohen-Macaulay modules
of low reduction degree can be used in order to prove certain cases of Lech’s conjec-
ture. One result which has been known for some time, and which was first shown
to me by M. Hochster, is that the existence of a sequence of MCMs approaching
linearity over the base ring R implies Lech’s conjecture for any flat local extension
(R,m) C (S,n). Combining this with Proposition 1.1.3 suffices to prove the conjec-
ture in the case that the base ring R is graded of dimension 3 over a perfect field K
of characteristic p > 0 (Proposition 4.1.5).

In order to apply the existence of MCMs with higher reduction degrees, we will
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require the following generalization of another theorem of Lech, which states that
the embedding dimension of a flat local extension of R, of the same dimension, is
always greater than or equal to that of R (see [13]). The result presented here allows

us to replace R by a finitely generated module M in the conclusion.

Proposition 1.2.1. Let (R, m) C (S,n) be a flat local extension of rings of the same

dimension, M a finitely generated R-module, and set M' = S ®p M. Then
vs(nM'") > vg(mM) + (v(n) — v(m)) - v(M).

Here vg(N) represents the minimal number of generators of any R-module N;
in particular, v(m), the minimal number of generators of the maximal ideal, is the
embedding dimension of the ring R. This inequality on the ‘embedding dimensions’
of the modules M and M’ allows a corresponding inequality eg(M) < eg(M') on the
multiplicities, provided that M is chosen to be a MCM module with sufficiently small

reduction degree. This yields our first major result on Lech’s conjecture (section 4.3).

Theorem 1.2.2. Let (R, m) be a local or N-graded domain, and let (S,n) be a flat
local extension of R of the same dimension. Suppose that R possesses a MCM module
M with red(M) = 3, or even a sequence of MCM modules {M;} with reduction
degrees approaching 3. If m < n?, or if edim(S) — edim(R) + depth(gr, M;) >

dim(R) + 1 for each M;, then er < eg.

Combining this with existence results of chapter 3 then allows a proof of Theo-
rem 1.0.2.

In the remainder of section 4.3 , we attempt to prove similar results for rings of
equal characteristic 0 (i.e. local or graded rings which contain a field K of charac-
teristic 0). In particular, we note that since Theorem 1.2.2 requires no hypothesis on

the characteristic, we may apply this theorem in any cases in which suitable MCM
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modules can be shown to exist. The most general technique of applying the Frobe-
nius is not available, but we note certain cases in which MCMs of low reduction

degree can nonetheless be shown to exist.

1.3 Hilbert-Kunz multiplicities and ordinary multiplicities

If a commutative ring R has positive prime characteristic p, then one has the
equality (z + y)? = 2P + y? for any elements x and y of R. It follows that the map
F : R — R which sends each element z to 2 is actually a ring endomorphism, called
the Frobenius endomorphism. By composition, one then obtains, for any e > 0, the
endomorphism F¢: R — R which takes each element to its p® power. Similarly, for
any ideal I = (zy,...,7;) C R and any power ¢ = p°, the ideal /!9 generated by all

¢"" powers of elements of I is given by
I =z 29,

Given an m-primary ideal I, this allows us to define a new Hilbert-type function
associated to R by setting

HE,(t) = I(R/I"").

Monsky has shown [16] that this function is asymptotic in ¢ = p' to ¢;¢? for some
positive real number ¢; (see section 1.3), and we may naturally regard ¢; as a new
multiplicity on the ring R (called the Hilbert-Kunz multiplicity with respect to I).
Remarkably, it is not known whether ¢; must be rational.

In particular, we denote ¢, by cg, and in section 5.1 we show how a direct appeal
to this invariant yields partial results for Lech’s conjecture in all dimensions. For
the ordinary and Hilbert-Kunz multiplicities are strongly related: in general, one

has the inequalities egr > cg > eg/d!, where d is the Krull dimension of the ring R.
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Since we can use the Frobenius endomorphism in order to produce modules whose
minimal number of generators of is asymptotic to crq?, our methods allow us to
make estimates of eg in terms of ¢, where (R, m) C (S, n) is a flat local extension.
Although the following propositions do not give a complete proof of the conjecture
in any dimension, notice that they place some significant bounds upon the class of

possible counterexamples:

Proposition 1.3.1. Let (R, m) C (S,n) be a flat local extension of Cohen-Macaulay
rings of positive prime characteristic p and dimension d, with R/m perfect, and let
J be a minimal reduction of n. If [(S/(mS + J)) > d!, then eg < es. In particular,

if edim(S) — edim(R) > d!' +d — 1, then eg < eg.

Proposition 1.3.2. If (R,m) C (S,n) is a flat local extension of Cohen-Macaulay
rings of prime characteristic p > 0 and dimension d, with R/m perfect, and if m

embeds into n®, then ep < eg.

In section 5.2, we consider the Hilbert-Kunz multiplicity explicitly. We are able
to show that the whole enterprise of proving inequalities on multiplicities under flat
local extensions and localizations can be successfully carried out if one considers
the Hilbert-Kunz multiplicity instead of the ordinary Hilbert-Samuel multiplicity.
In fact, the results are not even restricted to inequalities on the Hilbert-Kunz mul-
tiplicities, but actually give strong inequalities on the corresponding Hilbert-Kunz

functions. The main results are the following:

Theorem 1.3.3. Let (R,m) C (S,n) be a flat local extension of rings of positive

prime characteristic. Then cg < cg; moreover, for any q = p°, it is in fact the case

that q' - I(R/ml9) < 1(S/n[), where t = dim(S) — dim(R).

Theorem 1.3.4. Let (R, m) be a Noetherian local ring of characteristic p > 0, and
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let P be a prime ideal of R such that height(P)+dim(P) = dim(S). Then cg, < cg.

In fact, if t = dim(R/P), then [(R/ml9) > ¢' - 1(Rp/PYRp) for every q = p°.

The Hilbert-Kunz multiplicity is still very poorly understood in comparison with
the ordinary multiplicity; in particular, it has been computed for only a very small
class of rings. But the results above may contribute towards a better understanding

of the Hilbert-Kunz functions, as well as providing further motivation for their study.

1.4 Specialized MCMs via splitting results

In the final chapter, we will show how to to use splitting results and the Frobenius
endomorphism in order to prove the existence of MCM modules with other special
properties over certain graded rings of positive prime characteristic p. We recall the
notion of the a-invariant for graded rings and modules, which was first introduced
by Goto and Watanabe in [6]. This notion is closely related to that of the reduction
degree, but gives somewhat better information in the case that the homogeneous
maximal ideal is not generated by one-forms. Again, our object will be to produce
MCM modules whose a-invariant is sufficiently bounded. What we prove is the

following:

Theorem 1.4.1. Let R be a finitely generated positively graded equidimensional K-
algebra, with K o perfect field of characteristic p > 0. Suppose R has a graded module
M, of the same dimension, which is Cohen-Macaulay except possibly at the origin.

Then R has a MCM module M with a-invariant a(M) < 0.

This result is applied in section 6.2, where we solve the problem of existence of
small Cohen-Macaulay modules for certain Segre products of N-graded algebras over

a field. Our most general result is the following:
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Theorem 1.4.2. Let R = Ry ®geg o+ Queq Ry be a Segre product of positively
graded rings R; over a field K, and assume that each of the rings R; has dimension
at least 2. If, for each i, R; has a graded MCM-module M; with a(M;) < 0, then R

possesses a (small) graded MCM module.

The MCM module over the Segre product ring is just the Segre product of the
modules M;. A similar result on the Cohen-Macaulayness of Segre product rings was
proved by Goto and Watanabe in [6], and the above theorem follows quite directly
from their work.

Combining the theorem with the results of section 5.1 then implies the follow-
ing corollary, which gives a partial result to the conjecture on existence of finitely

generated MCM modules.

Corollary 1.4.3. Let Ry, ..., R, be finitely generated N-graded algebras over a per-
fect field K of characteristic p > 0, with (R;)o = K for each i. If each ring R; has
a finitely generated graded maximal Cohen-Macaulay module, then the Segre product
Ry Rgeqg Ry Rgeq .. Qgeq Iy also has a finitely generated graded mazimal Cohen-

Macaulay module.

In the final part of chapter 6 we attempt some similar results without the as-
sumptions that the ring in question be graded or have positive prime characteristic.
In particular, in the characteristic 0 graded case we exploit Theorem 1.4.2, which

contains no reference to the characteristic of the field.

1.5 Background for the dissertation

For the general theory of local rings, the reader is referred to the text [15] of H.

Matsumura. Material more specific to this thesis is presented in the book [3] of W.
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Bruns and J. Herzog. Nevertheless, I will attempt here to summarize those facts
which are to be used repeatedly throughout the dissertation.

If (R, m) is a local or positively graded ring of Krull dimension d, then one can
always choose a system of parameters, a sequence of d elements x1,... , x4 in R
with the property that the unique maximal (or homogeneous maximal) ideal m is
a minimal prime of the ideal I = (xy,...,24). This is equivalent to saying that
the homomorphic image R/I is an Artinian ring. Moreover, if the ring is graded,
these elements may be chosen to be homogeneous. One defines a regular sequence
on an R-module M to be a sequence of elements zy,...,z; in R with the property
that the image of 2z;11 in R/(z1,...,2;) is a nonzerodivisor on M/(z1,... ,z)M for
0 <i<s—1 (in other words, if z; ju € (21,...,2)M for some u € M, we require

that w € (z1,...,2;)M). This gives an invariant of the module M as follows:

Definition 1.5.1. The depth of the module M is the maximum integer s such that
R contains a regular sequence on M of length s. M is called a Cohen-Macaulay
module if depth(M) = dim(M), and is called a maximal Cohen-Macaulay module

(abbreviated MCM) if depth(M) = dim(R).

It is easy to show that the depth of a module M must always be less than or
equal to its dimension, and that a regular sequence on a module M must form part
of a system of parameters for the ring R. In fact, one can show that M is maximal
Cohen-Macaulay if and only if every system of parameters of R is a regular sequence
on M.

We will need to keep track of various invariants of a finitely generated (graded)
module M over the local (or graded) ring (R, m). The minimal number of generators
v(M) is equal to dimy (M /mM), and is the least n for which there exists a surjection

R™ — M — 0. If R is an integral domain with fraction field L, then we define the
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torsion-free rank (or just the rank) of M to be the L-dimension of L&y M. The rank
of M is also equal to the largest s for which there exists an injection R®) — M. If
R is not a domain, then we will say that M has well-defined rank s if Mp = Rgf) for
every associated prime ideal P of R. This condition is equivalent to the existence of

a short exact sequence

O—=R® - M-—C—0,

where 2C = 0 for some element z which is a nonzerodivisor in R.

An extension I C J of ideals of R is integral if there exists some positive integer k
such that J"** = J" . J* for all n > 0. In this case, we also say that I is a reduction
of J. If K = R/m is infinite and .J is an ideal primary to the maximal ideal m of R,
it is a theorem of Northcott and Rees (see [17]) that J has a minimal reduction J'
(i.e. J'is minimal with respect to inclusion among the reductions of .J), and that .J'
must be generated by a system of parameters.

The Hilbert function Hy @ Z — N of a finitely generated graded module M over
a Noetherian positively graded ring (R, m) with Ry Artinian is defined by Hy,(t) =
Ir(M,), the length of a composition series for M;. It is an important fact that if R
is generated over Ry by forms of degree one, then for all ¢ sufficiently large, one has
Hy(t) = Py(t), where Py (t) is a polynomial in ¢ of degree d — 1 = dim(M) — 1.
We define the multiplicity of M to be (d — 1)! times the leading coefficient of Py(?).
If (R, m) is local (or graded) with m-primary ideal I (i.e. m' C I for some t > 0),
and M is a finitely generated R-module, then we define the multiplicity e(7; M) of
M with respect to I to be the multiplicity of the associated graded module gr; M.

There are two facts about multiplicities which we will use repeatedly through-
out the thesis. First, if I C .J is an integral extension of m-primary ideals, then

e(I; M) = e(J; M) for any finitely generated R-module M (see [17]). Secondly, if
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M is a maximal Cohen-Macaulay module, and if [ is generated by a system of pa-
rameters, it follows from the results of Serre (see [19]) that e([; M) = [(M/IM).
Putting these statements together, we see that if M is a MCM module over a local
ring (R, m), and I is a minimal reduction of m, then ex(M) = e(m; M) = (M /IM).

Finally, we need to develop some notation for modules over local rings (R, m) of
positive prime characteristic p. If M is any module over the ring R, and e > 0, then
we obtain a new module ¢M over R via restriction of scalars for F¢. In other words,
*M = M as a group, but has a new R-module structure given by rom = r%m, where
re€ R, mée M, and ¢ = p°. In order to know that the modules *M associated to
a finitely generated module M remain finitely generated, it is necessary to assume
that R is F-finite; i.e. that F': R — R gives R as a module-finite ring extension of
itself. If R is a complete local ring with residue field K, or if R is a finitely generated
algebra over the field K, then R will be F-finite so long as K is assumed to be perfect
(this ensures that F' : K — K is an isomorphism). In particular, since we assume
that all rings are Noetherian, an N-graded ring R with Ry = K a perfect field will
be finitely generated over K, hence F-finite. In this case, one can show that for
any e > 0 and ¢ = p°, one has ex(°M) = qer(M); if M has well-defined rank, one
also obtains rank(°M) = ¢? - rankz(M). Notice that if I is any ideal of R, then
I(°M) = IWM, where I is the ideal of R generated by all ¢"" powers of elements
of I.

We will also be interested in knowing the minimal numbers of generators of the
modules M. Although this cannot usually be calculated precisely, much information

is provided by the following theorem of [16]:

Theorem 1.5.2 (Monsky). Let (R, m) be a local ring of positive prime character-

wstic p, let M be a finitely generated R-module of dimension d, and let I be any
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m-primary ideal. Then the function HK; : N — N defined by HK; y(e) =
l(M/I[”S}M) 15 asymptotic in q = p° to ci,qu for large e, where cr ar s some positive

real number.

The real number c; 5 is called the Hilbert-Kunz multiplicity of M with respect to
I, and the function H K ), is called the Hilbert-Kunz function of M with respect to
I. Since we will usually be interested in the case that I = m, we denote ¢, ps by cy

and simply refer to this as the Hilbert-Kunz multiplicity of M. Notice that, since
v(¢M) = 1(*M/m - ¢M) = (M /ml9 M)

in the case that R is F-finite and R/m is perfect, this gives us at least an asymptotic
approximation of the numbers of generators of the modules *M. We remark that if
M has well-defined positive rank over R, then ¢y = rankg(M) - cg.

We define the local cohomology of a finitely generated module as follows: for any

n > 0, the natural surjection R/m"*™" — R/m" induces maps
Ext’(R/m", M) — Extl(R/m™*", M)
for all 2+ > 0. We define the local cohomology modules of M by
H' (M) = lim Ext’(R/m", M).

The local cohomology modules are Artinian, but are not finitely generated in general.
They are related to the depth of an R-module in the following way: if M is an R-
module of depth ¢ and dimension d, then H% (M) # 0, H! (M) # 0, and H! (M) =0

for any 2 < t or © > d. Thus, we see that

depth(M) = min{i : H. (M) # 0}.
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If (R,m) local or positively graded (with R, Artinian) is Cohen-Macaulay of
dimension d, then the canonical module wg of R is the unique (up to non-unique

isomorphism) R-module satisfying
wj = Hom(w, F(K)) = HL(R),

where Fr(K) is then injective hull of the residue field K over R. The local duality

theorem then implies that for any ¢« > 0,
H;, (M) = Hom(H, (M), Er(K)) = Extis (M, wp)

for any finitely generated R-module M, and hence Ext%(M,wg) = 0 if and only
if i > dim(R) — depth(M). If R is module-finite over a regular ring A (e.g. if R
is positively graded with Ry = K a field, or if R is complete local), then wp =
Homu (R, A) (actually Hom (R, A(—dim(A))) in the graded case). If the local ring
R is a homomorphic image of a regular ring S with dim(S) — dim(R) = ¢, then
wr 2 Exty(R, S).

If wp is a canonical module for R, then M* = Hom(M,wg) gives a dualizing

functor on on the class of MCM R-modules. In particular, M* is MCM and (M*)* =

M for any MCM module M. Moreover, if
O—-M — M, — M;—0
is a short exact sequence of MCM modules, then
O— M; —- M, — My —0

is also a short exact sequence of MCM modules. In fact, if R is module-finite
over a regular ring A, or a homomorphic image of a regular ring S (but not nec-

essarily Cohen-Macaulay), then one may still obtain a dualizing functor with the
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same properties on the set of MCM modules by setting M* = Homu(M, A) or
M* = Extly(M, S), where t = dim(S) — dim(R), as appropriate. One can show that
any of these definitions give the same operation (—)* in the case that more than one
of them is defined. Finally, if N is a module over (R, m), we define the socle of N by
Soc¢(N) = Annym, the largest submodule of N which is killed by m. Then, if M is

a MCM R-module and I is a parameter ideal of R, we define the type (M) of M by
r(M) = dimgSoc(M/IM).

It can be shown that the type is independent of the choice of the parameter ideal
I. Moreover, if we have a dualizing operation (—)* on MCM modules, then r(M) =
v(M*) for any MCM module M. This fact will be used repeatedly in the arguments
of chapter 4.

I end the introduction with a theorem which will be used repeatedly throughout
the dissertation, and whose proof will serve as something of a paradigm for much
of the work which follows. The theorem was proved independently by Hartshorne
and by Peskine and Szpiro [18], but remained unpublished until it was rediscovered
by Hochster, who gave a proof in [7]. It implies the existence of finitely generated
MCM modules for a 3-dimensional graded ring over a perfect field of positive prime
characteristic, the only significant case in which the question of existence of small
MCM modules has been answered in dimension 3. Its proof uses the general fact that
if M is a graded module over a positively graded ring R of characteristic p > 0, then
¢M mnaturally splits into ¢ = p® summands as an R-module. One gets such splitting
for the simple reason that qth powers of elements of R raise degrees by a multiple of
g when applied to M. Thus, the action of R on M preserves the submodules “M (7)
generated by forms of M of degree + mod ¢, which are therefore direct summands.

(Some of the summands may be 0, but for any D > 0, at least D summands will be
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nonzero for all e sufficiently large.)

Theorem 1.5.3 (Hartshorne-Peskine-Szpiro). Let R be a finitely generated N-
graded equidimensional K -algebra with Ry = K a perfect field of characteristic p > 0,
and let m be the homogeneous mazximal ideal. Suppose R has a finitely generated
graded equidimensional module M with dim(M) = dim(R), and that Mp is mazimal
Cohen-Macaulay over Rp for any prime P # m. Then R has a finitely generated

MCM-module.

Proof: Since K is perfect, M is a finitely generated module for each e. Moreover,
‘M = @o<jpe M (i), where *M (i) = @j=imodp- M;. We will show that, for sufficiently
large e, at least one of the summands ¢M (i) is MCM.

By hypothesis, the local cohomology modules H? (M) are finite-length for j <
dim(R). Moreover, it follows from the definition that HY (*M) = ¢(HJ (M)) for all
j and any e > 0. Hence, we may conclude that for all e greater than or equal to
some fixed ey, each HJ (M), j < dim(R), is a K-vector space of fixed dimension v;,
and that the Frobenius map induces an isomorphism H/ (*M) = HJ (“T1M).

Thus, if we choose e large enough so that A/ has at least ) v; nonzero di-
rect summands, then since @;<qim(r)H7,(°M) has dimension ) ~;, we must have

B j<dim(r)Hi,(*M (7)) = 0 for some some nonzero summand “M(i). It follows that

©M (i) is a finitely generated maximal Cohen-Macaulay module for R. O



CHAPTER II

Maximal Cohen-Macaulay modules satisfying special
conditions

2.1 Definitions and background

The following definition was first introduced by Ulrich in [20]. In that paper,
Ulrich was able to give a simple characterization of the Gorenstein property for a
Cohen-Macaulay local ring in the presence of a MCM module which is sufficiently
close to being linear, as defined below. Ulrich’s theorem, and some further develop-

ments along the same lines, will be presented in section 4.

Definition 2.1.1. Let (R, m) be a Noetherian local ring with a finitely generated
maximal Cohen-Macaulay module M. Then M is said to be linear (or a maximally

generated maximal Cohen-Macaulay module) if e(M) = v(M).

The first existence results for linear MCMs were set out by J. Brennan, J. Her-
zog, and B. Ulrich in [2]. There they showed the existence of lin MCMs for one-
dimensional rings, two-dimensional graded Cohen-Macaulay domains, rings of min-
imal multiplicity, and certain rings of determinantal varieties. The most significant
existence result to appear subsequently is that of Backelin, Herzog, and Ulrich in
[1]. There the existence of lin MCMs was proved for local rings which are strict

complete intersections (i.e. both the ring and its associated graded ring are complete

24
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intersections).

A question posed in Ulrich’s original paper [20] was whether every local Cohen-
Macaulay ring posesses a linear MCM module. There is as yet no known coun-
terexample, although the condition is so strong as to make a positive answer seem
unlikely in general. Moreover, the existence of lin MCMs in any particular case has
very strong consequences, as will be seen below. In this chapter and the next, we
will give a positive answer to the question for some new classes of rings, as well as
many existence results for related but somewhat less restrictive notions.

If we assume that the residue field of R is infinite, then we may choose a minimal
reduction I = (z1,...,74) of m. Now we know that e(M) =I(M/IM) and v(M) =
[(M/mM). It is then obvious that e(M) > v(M) (the general case of this inequality
can be deduced by extending the residue field) and that M is linear if and only if
mM = I M. It is this characterization of linearity which is to be stressed in much of
the work presented here.

A further approach to formulating the question of existence of lin MCMs is as
follows: assume that R either is complete local and contains an infinite field, or else is
positively graded over an infinite field K. Then we may choose a minimal reduction
(21, ..., zq) of the maximal ideal m and express R as a module-finite extension of the
power series ring A = K{[z1,...,x4]] (or of the polynomial ring A = K[z, ..., z4]).
Now a MCM module M over R must also be MCM, hence free, over the regular ring
A. Thus, a MCM module over R is simply a free A-module with the added structure

of an R-module.

Question 2.1.2. Let R be a complete local ring containing an infinite field, and let
(%1, ..., z4) be a minimal reduction of the maximal ideal m. Set A = K{[z;...z4]] C R.

Can you define, for some n, an A-algebra homomorphism R — M, (A)? Given
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such a homomorphism, can you define another one (for possibly greater value of n),
such that all elements of m map to matrices with all entries in the maximal ideal

(xla "'de)?

Of course, giving an A-algebra map R — M, (A) is equivalent to defining an R-
module structure on A™ which extends the usual A-module structure. If the module
M defined in this way is linear, then we know that mM = (x)M, which is to say
that elements of m act upon A™ by matrices with entries in (z).

Both of the above correspond to solving polynomial equations with coefficients in
A in some matrix ring M, (A); namely, the same equations satisfied by the generators
of R as an A-algebra. They may also be considered as solving in A certain polynomial
equations on the entries of the matrices, simply by considering a matrix equation as
a system of n? equations on the entries of the matrices.

In the graded case, the problem of mapping to a matrix ring over a regular subring

can be translated into even more familiar terms:

Lemma 2.1.3. If R is a positively graded K-algebra, generated by its 1-forms, and
if R possesses a lin MCM (i.e. there is a map R — M, (A), as above, with no entries
with nonzero constant coefficient), then there is a solution in which the entries of the

matrices are linear forms in the elements xq,... x4 of A= Klx1,... x4

Proof: As noted above, constructing such a mapping is equivalent to finding solu-

tions {Z; = F; € A} of finitely many polynomial equations
Gj(ZEl, e gy Ly ,Z,n) S A[Zl, .. ,Z,n],

where the Z; correspond to the entries of matrices in M,,(A) to which the generators
of R are to be mapped. Since R is graded, the GG; are homogeneous elements of the

ideal (z1,...,24,21,...,2Z;).
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Thus, since the polynomials F; have zero constant term, it is easy to see that
the lowest degree (potentially nonzero) component of G;(z1,... 24, Fy,... , F;) in
A is given by G;(z1,... %4, f1,..., fr), where f; is the linear term of Fj; whence

{Z; = f;} must also give a solution. O

Thus, finding a lin MCM M over R which has free rank n over A is equivalent
to solving the polynomial equations Gj(x1,... , x4, fi1,..., f;) with linear forms f; =
a177 + ...+ a,xry. But these identities hold if and only if the coefficients of all the
monomials in the expansion are 0, and these coefficients are given by polynomials in
the coefficients a over K. So the existence of such a module M is equivalent to the
statement that a certain affine variety contained in A‘%"? is nonempty. Note that it
is not at all clear that one can give a similar characterization of the existence of a
(not necessarily linear) MCM module, since there is no way of bounding the degrees
of the polynomials which occur as entries in a potential matrix solution. What we

have really used above is a version of the following result on linear MCM modules
(see [2]):
Proposition 2.1.4 (Brennan, Herzog, and Ulrich). If M is a linear MCM mod-

ule over a local ring (R, m), then the the associated graded module gr,,(M) is MCM

over gr,(R).

This result is interesting in light of the fact that no such statement can be made
with regard to a general MCM module over R.

The following definitions give weakenings of the linearity property which will be of
use in later sections. Note that given a Cohen-Macaulay local (or positively graded)
ring (R, m) and a minimal reduction I of m, there certainly exists some n > 0

such that m™ C I. So another approach to the problem of lin MCMs is to consider
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the question: what is the minimum integer n such that for some MCM R-module
M, m"M C IM? And, in particular, is n = 17 This leads one to the following

generalization:

Definition 2.1.5. Let M be a finitely generated MCM-module over a local ring
(R,m). Then we define the reduction degree of the module M (denoted red(M)) to
be the least integer n such that m"M C (xq,...,x4)M for some minimal reduction

(z1,...,mq) of m.

Of course, reduction degree one is just linearity. And if M = R, then the reduction
degree corresponds to the reduction number of the maximal ideal m.

In future sections it will also be necessary to allow the following somewhat less
rigid definition. Although more complex, this notion will prove just as worthwhile

in applications to Lech’s conjecture, and it allows for far stronger existence results.

Definition 2.1.6. A sequence of MCM R-modules {M; };> is said to have reduction

degrees approaching t if for some minimal reduction I of m,

I((m" + I)M;/IM;)

oL Y

as 1 — 00.

2.2 Properties

In this section we will show how the modules defined in section 1 behave with
respect to certain standard operations on maximal Cohen-Macaulay modules. First,
suppose that (R, m) is a Cohen-Macaulay local ring with canonical module wg (for
a treatment of canonical modules see [3]). It is known that the class of MCM R-

modules is preserved under the operation of dualizing into wg (see section 1.5). The
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following theorem shows that the class of linear MCM modules is also preserved
under this operation. Moreover, if the dual module is linear, its structure can be

given somewhat more specifically.

Theorem 2.2.1. Let (R, m) be a Cohen-Macaulay local ring with infinite residue
field K, and suppose R has canonical module wg. Let M be a MCM R-module. Then
M s linear if and only if the module M* = Hompg(M,wg) is linear. Moreover, in

this case one has v(M) = v(M™).

Proof: Since M = Hompg(M*, wg), it suffices to prove the only if implication.

It is a well-known fact that if M is MCM, then so is M* (see e.g. [3], Theorem
3.3.10). So suppose that M is linear; i.e. that mM = I M for some parameter ideal
I = (xy,...,2q). To see that M* is also linear, it suffices to show that M*/IM* is

killed by the maximal ideal m. Note that
M*/]M* == HOHIR(M,LUR) KRR R/[ = I’IOI’I]R/[(]\4/[]\47 C()R/]CUR)

(see [3]). Since M is linear, M/IM is a K-vector space of dimension v(M), and is
killed by m; and since [ is a parameter ideal in the Cohen-Macaulay ring R, it follows
that wr/Iwp = wr/r = Eg/r(K), the injective hull of the residue field. Finally, since
Homp/ (K, Eg/(K)) = K, it follows that M*/IM* is isomorphic to a K-vector

space of dimension v(M), which shows that M* is linear with v(M) generators. O

So now suppose that (R, m) is Cohen-Macaulay with canonical module wg, and

has a non-free linear MCM module M. Then we may write down a presentation
O—-U—-R"—->M-—0

where n = v(M) and U is (necessarily) MCM. Applying the operation Hompg(—, wg),
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we get a new exact sequence of MCM modules
O—=M =wp,—=>U"—=0

where M* is linear and v(M*) = v(M) = n. Hence, if I is a parameter ideal such
that mM = IM, we get an injection K" = M/IM — w"/Iw™, the image of which
must equal to the n-dimensional socle of w™/Iw™. These considerations immediately

yield the following:

Corollary 2.2.2. Let (R, m) be a Cohen-Macaulay local ring with canonical module
wg, and let I be a minimal reduction of the maximal ideal m. Let « represent a
lifting to w of a generator of the socle of w/Iw. Then R has a linear MCM module if
and only if there exist, for some n > 0, elements u;; of Iwg such that the submodule

N of wh spanned by the n elements

(a+u11,u12,... ;Uln); (Ugl,Oé—FUQQ,UQg,... ,Ugn),... ,(unl,... ,unn,l,a—l—unn)
has the property that w4 /N is MCM.

We will need to know later on that the more general properties of reduction degree
are also preserved by this sort of dualizing. Since it is not necessary to assume that
the ring R is Cohen-Macaulay, I do not wish to assume the existence of a canonical
module over R. Nevertheless, one may often define a functor (—)* with many of the

same properties, as was seen in section 1.5.

Proposition 2.2.3. Let R be a local or positively graded algebra containing a field,
and assume that R admits a dualizing functor (=)* on MCM modules (of the kind
defined in section 1.5). Then for any MCM module M over R, one has red(M) =
red(M*). Likewise, if {M;} is a sequence of MCMs over R, then this sequence has

reduction degrees approaching t if and only if the same is true of the sequence {M}}.
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Proof: We first note that completion at the maximal ideal commutes with dualizing;
i.e. that (M)* = (M*)" for any R-module M. This follows from the flatness of
R — R and from the fact that the maximal ideal of R extends to that of R (see
[3], section 3.3). Moreover, since the definitions of reduction degree and sequences
approaching a certain reduction degree refer only to finite length quotients of modules
over I, these properties are preserved under the operation of completion at the
maximal ideal. Similarly, if R is a complete local ring with coefficient field K, all of
the relevant properties and operations are preserved when we extend K to a larger
field L.

It follows that we may reduce to the case that R is a complete local ring with
infinite coefficient field K. If I = (z1,...,74) is a minimal reduction of mpg, let
A = K[[x1,... ,24)]] € R. We may now assume that the operation (—)* on MCM
R-modules is defined by M* = Hom4 (M, A) (see section 1.5).

First note that M*/IM* =~ Homg (M /IM, K). It immediately follows that if m’
kills the module M/IM, then it also kills the module M*/IM*. This shows that
red(M*) < red(M), and since M =2 (M*)*, we see that red(M) = red(M*).

Secondly, note that for any M, we have [(M/IM) = [(M*/IM*). Thus, to prove

the second statement, it suffices to give a uniform bound for

(m" + )M~
_ (T
“ ( M

in terms of

g (e,

But since M*/IM* = (M/IM)Y = Homy(M/IM, K), we have from the following
lemma that o < v(m') - 3, where of course v(m') is a constant independent of the

module M. Thus, if the modules {M;} have reduction degrees approaching ¢, the
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same must be true of their duals {M;}. O

Lemma 2.2.4. Let M be a finitely generated module over an Artinian K-algebra A,

and let J be an ideal of A. Then [(JMY) < wv(J)-I1(JM).

Proof: Since MYY = M, it is equivalent to show that for any M, I(JM) < v(J) -

[(JMY). First, we wish to see that
I(JMY)=1(M) — I(AnnyJ) = [(M/Anny J).
For this, set J = (z1,...,2,), and consider the exact sequence
0— AnnyJ — M — M®™,

where the last map is given by the n x 1-column matrix with the z’s as its entries.

Since applying the functor ¥ is exact, this induces the short exact sequence
O— JMY — MY — (Anny J)Y — 0,

from which the conclusion follows (note that dimxg MY = dimgM for any finitely
generated module M).
But now we need only note that the vector space JM is spanned by elements of

the form xm, where z is a generator of J and m € M \ Anny,J. Thus
I(JM) <v(J)-I(M/Anny J) = v(J) - 1(JMY),
as required. O

Finally, if (R, m) is a local ring of dimension d which admits a minimal reduction

I = (x1,...,24), then the condition of linearity on a MCM module M, namely

mM = IM, corresponds to the regularity condition in the case that M = R is
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the ring itself. It is known that regularity is maintained under the operation of
localization. Moreover, if M is MCM over R, and P is a prime ideal, then the
localized module Mp = M ® Rp remains MCM over Rp. So a natural question is
whether the localization Mp at a prime ideal of a linear MCM module over R is still

linear. Unfortunately, the answer is negative:

Example 2.2.5. There exist linear MCM modules which do not remain linear upon
localizing. In particular, if R is a homogeneous 2-dimensional Cohen-Macaulay do-
main with infinite residue field, and R is not normal, then R has a lin MCM M and

a height one prime P such that Mp is not linear.

Proof: If R is a homogeneous 2-dimensional Cohen-Macaulay domain with infinite

residue class field, then R admits a linear MCM module M and an exact sequence
O—-N-—>M-—1-—0,

where N is MCM and 7 is an height 2 homogeneous ideal of R (this was proved by
Brennan, Herzog, and Ulrich in [2]).

Thus, if P is a prime ideal of R of height one, we see that
O— Np— Mp— Rp—0

remains exact, from which it follows that if Mp is linear, then Rp is also linear, i.e.

regular. Thus Mp cannot be linear for any non-regular height one prime P of R. O

2.3 Existence of MCMs with low reduction degree

For a Cohen-Macaulay local ring R, one can always find a MCM module with re-
duction degree less than that of the ring itself, or a module whose ratio of multiplicity

to number of generators is smaller than that of the ring.



34

Proposition 2.3.1. Let (R,m) be a local Cohen-Macaulay ring with reduction num-
ber n (i.e. m"™ = Im"" ! for some minimal reduction I of m), and assume that R is

not reqular. Then:
1. R has a MCM-module M with reduction degree less than n.
2. R has a MCM-module M with e(M) < <& -v(M).

Proof: Let U; be the ith syzygy module of K = R/m. Then for sufficiently large d,
Uy and Uyyq are MCM. Moreover if (z1,...,x,) is a minimal reduction of m, then
the exact sequence

O—->Us1 >R —-U; —0

of MCM modules with U, mapping into mR® yeilds the exact sequence
O = Uppr/(2)Uspy = B [(z)R* — Us/(2)Us — 0
Now, it is clear that the image of m" Uy, after going mod (z) maps to
m"(R*/(z)R*) = 0

in the second exact sequence; and hence m" 'Uyyy C (2)Ugyi. Thus, the MCM
module U1 has reduction degree less than or equal to n — 1.

Moreover, since the projective dimension of K is infinite, we must be able to
choose d as above so that Uy and Uy are MCM, and v(Ugyq) > s = v(Uy). Since
multiplicities are additive on short exact sequences, we know that e(Uy) + e(Ugyq) =

s - eg. It follows that for at least one of U, and Uy, one must have
€Rr
e(U;) < (s/2)-er < 5 v(U;). O

Of course, one would like to generalize the above argument in order to show how

to proceed from a MCM module M with reduction degree n to one with reduction
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degree (n — 1). But it is not clear that we can construct short exact sequences in
the same way as above for a general M. Nevertheless, it is worthwhile to pose the

question in its strongest form:

Question 2.3.2. Let M be a MCM-module over (R, m) which is not linear. Then

is there a short exact sequence of MCM-modules
0—-U—M —-N—=0

such that U maps into mM?*? (Equivalently, does there exist some s > 0 and some
submodule U € mM?* such that M/U is a MCM R-module?). A positive answer
would imply, by an inductive argument, not only the existence of lin MCMs, but
also that the Grothendieck group of MCM modules over R is generated by the linear

MCM modules.

Since the maximal ideal of a local ring (R, m) of fixed dimension d may have
arbitrarily high reduction number, the above results are still not very satisfying.
But, at least for rings of prime characteristic p > 0, one can give an existence result
dependent only upon the dimension of the ring. In the case that the reduction

number ¢ of mpg is high, these results are much better than those achieved above.

Lemma 2.3.3. Let (R, m) be any d-dimensional local ring of characteristic p > 0.
If I = (z1,...,24) is a minimal reduction of m, then for sufficiently large ¢ = p©,

(md+1)[q} C 1ld.

Proof: There exists t > 0 such that m™ = I" " 'm! for all n > t. But then, as long

as g > t, it is clear that

(md+1)[tﬂ C mdate C lata—t ¢ rda c gld o
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Proposition 2.3.4. Let (R, m) be a d-dimensional F-finite ring of characteristic
p > 0, with perfect residue field K. If R possesses a MCM module M, then the
modules *M are MCM modules of reduction degree less than or equal to d + 1 for
sufficiently large e. Moreover, the sequence of modules {*M }.>o has reduction degrees

approaching d.

Proof: The first statement immediately follows from the lemma, since
md+1 . (eM) — (md+1)[q}M_
For the second note that, by the same argument as above, we have
m!(m®)d C mdatt C rda C [l

for all sufficiently large ¢. Thus, for e >> 0, the module

(m?+I)(°M)
I(¢M)

is killed by m! (via the usual module structure). Since such a module, seen as
an R-module via the usual module structure, clearly needs at most v(m?) - v(M)

generators, we thus see that

! (%) < I(R/m") - v(m®) - v(M),

independently of e.
Since the ranks and multiplicities of the modules *M approach infinity (except
in the case d = 0, which is trivial), this shows that their reduction degrees must

approach d. O

Proposition 2.3.5 (Graded case). If (R, m) is a finitely generated positively graded
algebra over a perfect field K of characteristicp > 0, with Ry = K, and if R s Cohen-

Macaulay except at the origin (i.e. Rp is Cohen-Macaulay for any prime P not equal
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to the irrelevant ideal m), then R has a MCM-module M with mM C IM. If R
15 generated over K by one-forms, then one also obtains a sequence of MCMs with

reduction degrees approaching d — 1.

Proof: As before, if m" = I""'m! for all n > ¢, then it is clear that, for sufficiently
large ¢, (m4)ld [t C 1%~ C [lal. Thus, the length of m?(°R)/I(°R) is bounded by
v(m?) times the length of R/I' for all large e.

By theorem 1.5.3, we know that for some ¢ > 0 and all sufficiently large e, the
module ¢R will have at least v(m?) - [(R/I*) + 1 (nonzero) MCM direct summands.
It follows that at least one such summand must be MCM with reduction degree less
than or equal to d.

For the second part, note that there exists some a > 0 such that for ¢ >> 0,
there exists ¢ —a < b < ¢ such that M, , (the summand of R generated by forms of
degree b mod ¢) is MCM. But then m!**(m?1)l4 multiplies the summand M, , into
19 and we may argue as above to show that there is a sequence of MCM summands

of the modules °R which have reduction degrees approaching d — 1. O

2.4 A theorem of Ulrich in characteristic p > 0

In this section I wish to give an application of the prime-characteristic techniques
to a theorem of Ulrich which appeared in the original paper [20]. We start by
showing the existence of linear MCM modules for a certain class of local rings of
positive prime characteristic p. The conditions placed upon these rings are rather
restrictive, as their maximal ideal m is already required to be very close to equaling
a parameter ideal I, in the sense that m = I'", the Frobenius closure of I. However,

we can show that any local Cohen-Macaulay ring of characteristic p has a multitude
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of nice extension algebras which have this property.

Definition 2.4.1. Let R be a ring of positive prime characteristic p, and let / be an
ideal of R. Then the Frobenius closure I” of I in R is the set of elements z € R such
that for some e > 0 (equivalently, for every e >> 0), 27 € I'". The tight closure
I* of I is the set of elements z € R with the property that ¢z?° € IP°! for all e > 0,

where ¢ is some nonzerodivisor in R.

Both I™ and I* are ideals, and it is not difficult to show that both are contained

in the integral closure of I.

Lemma 2.4.2. Let (R,m) be an F-finite Cohen-Macaulay local ring of characteristic

p > 0. If m = I for some parameter ideal I = (x1,...,74), then R has a linear
MCM module.
Proof: Since m is finitely generated, we may choose e > 0 such that m!9d = [l

where ¢ = p°. Now, if we just let “R stand for R viewed as a module over itself
via the eth power of the Frobenius endomorphism, it is easy to see that m(°R) =
miR =J9R = I(°R). Moreover, as R is Cohen-Macaulay, z7,...,z% is a regular
sequence on R; whence xy,... x4 is a regular sequence on *R. Thus °R is a linear

MCM module for R. O

Proposition 2.4.3. Let (R,m) be an F-finite Cohen-Macaulay local ring of char-
acteristic p > 0. Then there exists a flat local module-finite extension of R which
possesses a linear MCM module. In fact, for any system of parameters x1,... ,xq of
R, and for any sufficiently large ¢ = p° (dependent upon the system of parameters

(z)), the free extension
R[Zla SR sz]

(2] —x1,... 28 — x4)

S:

has a linear MCM module.
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Proof: Let I = (z) be an ideal generated by a system of parameters of R. Then
clearly, for sufficiently large ¢ = p®, we have ml? C I. But the elements z1,... , z4

obviously form a system of parameters of

R[Zla cee ,Zd]

(2 — a1, 20— x4q)

S =

and since the maximal ideal n of S is generated by m and the z’s, we see that
nld = mlaS + (29)S = (27)S. Hence n is the Frobenius closure of a parameter ideal,

and the result now follows from the preceding lemma. O

Note that this shows that any property which is preserved by contraction from
a faithfully flat extension, and which is implied by the existence of a linear MCM
module, will hold for all Cohen-Macaulay local rings with positive prime character-
istic p and perfect residue field. In particular, it raises the question of whether the

existence of a linear MCM is such a property.

Question 2.4.4. If R C S is a flat local extension of local Cohen-Macaulay rings of

the same dimension, and if S has a linear MCM module, must R have one?

Finally we may deduce the following consequence from the existence of linear
MCM modules over the free extensions described above. According to Lemma 2.4.2,
¢S is a linear MCM module for the extension ring S in Proposition 2.4.3. But note
that F°(S) C R C S, and the same reasoning as before shows that this makes R a
linear MCM module over S, since ml4R + (z)R = (29)R.

The following theorem was proved by Ulrich in [20].

Theorem 2.4.5 (Ulrich). Let R be a local Cohen-Macaulay ring, and suppose M

15 a finitely generated MCM R-module of positive rank such that
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1. 2v(M) > eg - rank(M).
2. Bxth,(M,R) =0 for 1 <i < dim(R).
Then R is Gorenstein.

In general, R is Gorenstein if and only if the second condition holds for every
MCM module M. The theorem says that if a certain module M has sufficiently nice
numerical properties, then it suffices to check condition 2 for this particular module.
In particular, if M is a linear MCM module of positive rank for R, the theorem
implies that R is Gorenstein if and only if Ext% (M, R) = 0 for 1 <i < dim(R) (the
only if direction follows from the fact that R is its own canonical module). Moreover,
if R is a local ring of characteristic p > 0, and S is the free extension of R defined

above, then it is clear that:
1. S is Cohen-Macaulay if and only if R is, by faithful flatness.
2. S/(z) = R/(z), whence these residues also must have isomorphic socles.

Hence R is Gorenstein if and only if S is; and if R is Cohen-Macaulay and F'-finite,
S may be chosen so that it has R as a linear MCM module, when viewed as an
S-module via a suitable power of the Frobenius endomorphism. From this we obtain

the following:

Corollary 2.4.6. Let (R, m) be an F-finite Cohen-Macaulay local domain of char-

acteristic p > 0, and let ¢ = p° be chosen so that

R[Zla cee ,Zd]

(2 — a1, .., 20— xaq)

S =

has R (viewed as an S-module via F¢(S) C R) as a linear MCM module. Then R is

Gorenstein if and only if Ext%(R,S) =0 for all i > 1.
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Proof: The corollary of course follows from the theorem and subsequent discussion,
provided we show that the MCM-module used in the corollary has positive rank. If
the extension ring S is a domain, then this is necessarily the case. And it is easy to
see that if R is a domain, then the nilpotent ideal of S is prime: for if ab is nilpotent
for elements a and b of S, then a%b? is also nilpotent, where a? and b7 are nonzero
elements of R, which implies that either a? = 0 or b9 = (0. Hence S will be a domain
if and only if it is reduced.

So assume that s = ) . 7;2% is a nilpotent element of S, where the sum is taken
over monomials in z with 0 < a; < g for each 1 < j <d, and r; € R for all 2. Taking
qth powers, we get that s = " rlz% = 0, since it is at least a nilpotent element of
R. This says that the monomials {z{' ---2%? : 1 < a; < ¢} have a nontrivial relation
over R4, Such a relation would continue to hold in the completion R, which is
module finite over the power series ring A = K{[zy, ... ,z,4|]. But this is contradicted
by the fact that there is no such relation over A% and the fact that RY = R is

Cohen-Macaulay, hence flat over Al4l. O



CHAPTER III

Existence results for specialized maximal Cohen-Macaulay
modules

3.1 Linear MCM modules over monomial rings

In trying to find some new classes of Cohen-Macaulay rings for which linear
MCM modules can be shown to exist, a good place to look is among the classes of
monomial rings and determinantal rings, where combinatorial arguments may allow
actual computations of such numerical invariants as the multiplicity. At least one

result in this direction has already been attained, and appears in the article [2]:

Proposition 3.1.1 (Brennan, Herzog, Ulrich). Let s > r > 0 be positive inte-
gers, A = Klxq,...,x,] a polynomial ring over the field K, and C an r X s ma-
triz whose entries are linear forms in A. Assume, moreover, that grade(l,(C)) =
height(1,(C)), where I.(C) is the ideal of A generated by the r x r minors of C.

Then R = A/I.(C) admits a linear MCM module M.

I will not reproduce the proof, except to say that the result stated here may be
deduced from the case of the ring of generic r x r minors, where n = r - s and C' is
just the matrix which has the variables as its entries. The generic ring is known to
be Cohen-Macaulay by a result of Eagon and Northcott (see [5]). In the statement

above the condition on the grade of I,(C') is necessary in order to ensure that R is

42
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Cohen-Macaulay.

This result of course invites the following more general:

Question 3.1.2. Let A = K[z;; : 1 <i<m, 1 <j <n] be a polynomial ring over
the field K, where we assume that m < n. Let X be the m x n matrix whose 77
entry is z;j, and set R,(X) = A/I,(X) for 1 < r < m. For which choices of m, n,

and r does R,(X) admit a linear MCM module?

The results of Eagon and Hochster in [4] show that all of the rings R, (X) are
Cohen-Macaulay. The proposition stated above gives a positive answer to the ques-
tion in the case that r is maximal; namely » = m. Here I will give a proof in the

case that r is minimal (excepting the trivial case r = 1): namely r = 2.

Proposition 3.1.3. For any m and n, and any field K, the ring of generic 2 x 2

minors Ry(X) admits a linear MCM module.

Proof: The first thing we need to note is that Ry(X) is isomorphic to the K-
subalgebra R of the polynomial ring K[X;,...,X,,, Y7, ... ,Y,] generated by the

monomials

a1 am v b1 bn
Xo . Xy Lyt

with Y a; = > b; (i.e. Risthe Segre product of the polynomial rings K[ X7, ..., X,,]
and K[Y7,...,Y,]). Indeed, it is clear that we may map Ry(X) onto R by sending
x;; to X;Yj, since the relations on the z;; in Ry(X) are generated by those of the
form @;;x — xyak;. Since both rings are known to be domains of the same dimension
m+mn—1 (see e.g. [3]), this map must be an isomorphism.

We will henceforward work with the ring R. Note that, for any integer ¢t > 0,
there exists a ring homomorphism f; : R — R which is the identity on K and sends

X;Y; to X[V} for all i and j. Moreover, R viewed as an R-module in this way splits
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into direct summands M(¢q, ... ,¢m,dy, ... ,d,) generated over K by the monomials
X ...ngmnbl ann

with a; = ¢; and b; = d; mod ¢, and ) a; = ) b;.
Since R is Cohen-Macaulay, R viewed as an R module via f; will be a MCM
module, and hence any summand must also be MCM. I claim that, for any t > m,

the module

W = M,(-1,-1,...,-1,0,0,...,0, —m)

is linear (here the first m entries are -1).
First we wish to show that the rank of W as an R-module is 1. But this
is clear from the fact that we may obtain any monomial in W from the element

Xt xi=tytm=m ¢ |/ by successively multiplying by elements of the form

v Xy

tyt
XY, or ?nt_XfYnt’

" powers of elements of the fraction field of R.

all of which are
Thus e¢(W) = e(R), which can be calculated as follows. Since the d* power of
the maximal ideal of R is generated by all products of monomials of degree d in a

polynomial ring of dimension m with monomials of degree d in a polynomial ring of

dimension n, the leading term of the Hilbert polynomial for R must be:

It follows that

. m-+n—2)! m+n—2
dim(R) =m+n—1 and e(R):(n(L—l)!(n—)l)!:< I )

All that remains to show is that W needs at least e(R) generators as an R-

module. But since R acts on W by #" powers, this follows if we can find e(R)
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distinct monomials in W in which the exponents of the X's are all less than ¢. This
requirement is easily seen to be satisfied by the monomials:
) n
X XYy Y here Y iy =m— 1,
j=1
since the number of such elements is equal to the number of monomials of degree
m — 1 in n variables, namely ("!"#). Thus v(W) > e(R), which completes the

proof that W is a linear MCM module over R. O

Note 3.1.4. Many other choices for the residues of the exponents and for the degree
of the map from R to itself will yield linear MCM modules. In particular, the same

proof as the one given above shows that

Mt(_.jla s J_jmJOJ s 707 _Zyk)

is linear as long as ¢ > > )" | j.

The problem of existence of linear MCM modules for generic rings of minors has
thus been solved in the cases of 2 X 2 minors and maximal minors. So it is reasonable
to hope that one can give a positive answer for all of the rings R, (X) of generic r x r
minors. For future reference, we record the following (see [11]): for any m,n,r > 0,

if we set A = K[Xj]1<i<m,1<j<n, then we have dim(A/l, (X)) = (m+n—r)-r and

n—r—1

e(A/ITH(X)):det[<m+"—i—j>]i7]‘_1wr: Il ; (1 + i)\

m— i r+i)l(m—r+1i)!

Although we started out studying determinantal rings, the proof of the proposi-
tion used the structure of the ring as a toric subring of a polynomial ring, i.e. as
a normal subring generated by monomials. This leads us to ask whether the same
methods might allow us to show the existence of linear MCM modules for all toric

rings. In particular, for such a ring R, one always has maps f; : R — R as above, and
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R viewed as a module in this way splits into MCM direct summands M (iq, ... ,iy),
as before. One may ask whether some such module is always linear. The following

example shows that this is not always the case.

Example 3.1.5. Let S be the monomial subring of

KIXi,.... X, Yi,... Yo 24, 2]

generated by all monomials which have the same total degree in each of the three
sets of variables X, Y, and Z (where we assume that r,s,t > 1). Let f,: S — S be
the map defined by multiplying all exponents of monomials by ¢, as above. Then for

no choice of residues 0 < a;, b;, ¢; < ¢ is the module

M,(ay, ... a;,b1, ... bs 1y )

(nonzero and) linear MCM.

Proof: As in the preceding proposition, one can see that the modules M,(i) have

rank 1, and that the multiplicity of the ring S is

(r+s+t—3)! (rt+s+t—3 s+t—2
(r— (s — D!t —1) r—1 s—1 )
So suppose we have chosen the residues, and assume, without loss of generality,

that
SRS SUED o1t
1 1 1
The module W = M,(a, b, ¢) will then be generated as an S-module by those mono-
mials in S whose exponents have the appropriate residues mod ¢, and which have the

property that all the exponents occuring in at least one of the three sets of variables

are less than ¢q. Because of the way we ordered the sums of the residues, this implies
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that W is generated by monomials in which all the exponents on the Z’s are less

than ¢; i.e. by monomials
. . e b 4
X{l1+z1qX;lz+22q L X;LTJrquY'l 1+]1QY'2 2+j2q | Y'sb5+ySqZ101 L Ztct

with 327 ix = (1/) (X1 = Xja) < tand Yofjk = (1/¢) (X1 e — Xo1bs) <t As

before, it follows that the number of such monomials is less than or equal to

r+t—2 s+t—2 B r+t—2 s+t—2
t—1 t—1 o\ r—1 s—1 )

And this number is clearly less than the multiplicity of S. O

3.2 Segre products of rings with lin MCMs

In this section I wish to prove a very general theorem on the existence of linear
MCM modules over Segre product rings. Embedded within the proof can be found
an alternative argument for Proposition 3.1.3. But the theorem also implies the
existence of lin MCMs for the rings considered in Example 3.1.5, as well as for many
others. A central idea of the proof, which will appear again later on, is to use the
fact that the Hilbert function of a lin MCM is equal to the Hilbert function of a free
module over a polynomial ring. This often allows one to generalize constructions for
polynomial rings to any graded ring which possesses a lin MCM M, by working with
the module M instead of the ring.

First we give the formal definition of the Segre product ring, then our result on

linear MCM modules.

Definition 3.2.1. Let R and S be positively graded algebras over a a field K, with
Ry = Sp = K. Then the Segre product ring R ®,., S is the positively graded

K-subalgebra of R ® S with graded pieces (R ®k S); = R; ® S; for all ¢t > 0.
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Proposition 3.2.2. Let (R, m) and (S, n) be positively graded K-algebras generated
by their 1-forms, where K is an infinite field and m and n represent irrelevant ideals;
and suppose that R and S are integral domains. If R and S each possess a linear
MCM module, then their Segre product ring R ®geq S also possesses a linear MCM

module.

Proof: If R and S have linear MCM modules M and N, respectively, then the
associated graded modules gr,, (M) and gr,(N) are linear MCMs with all generators
in degree 0 (see Proposition 2.1.4). From here on we assume that M and N have
these properties.

We may use graded Noether normalization to choose 1-forms Xi,..., X, in R
and Yy, ..., Y, in S such that R and S are graded module-finite extensions of the
polynomial rings A = K[X;,...,X,] and B = K[Y,... Y], respectively. Since
M is a graded lin MCM over R, we know that M is free of rank ¢ = eg(M) as an
A-module; moreover, mM = (X)M, which is to say that every 1-form of R acts
on M =, A° by a matrix of linear forms in the X’s. Similarly, N =5 B? where
d = eg(N), and 1-forms of S act on N via matrices of linear forms in the Y’s.

Note that we have a module-finite extension A ® B C R ®g, S, and that
A®yey B is isomorphic to the subring of the polynomial ring K[ X;,..., X,,Y;,... Y]]
generated over K by all monomials which have the same total degree in the X's as
in the Y’s. The polynomial ring KX, Y] then splits over A ®,., B into submodules
U, generated by all monomials p with the property that degypu — degypu = o, and
it follows from a result of Goto and Watanabe that U, is MCM over A ®,., B for
s> a > —r (see [6]).

Although the polynomial ring K[X4, ..., X,,Y],..., Y] is generally not a module

over R Qgeq S, the free K[Xy,..., X,, Yy, ..., Y] - module M ®x N of rank cd is
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an R ®,ey S - module with induced module structure. Moreover, since 1-forms of R
(respectively S) act on M = A¢ (respectively N = B?) by matrices of 1-forms of
K[X] (resp. K[Y]), we see that M ®x N still splits as an R ®,., S - module into
the direct summands (M ®x N), = (K[X,Y]), = the submodule of M ®x N

generated by the vectors
{(v1,...,veq) : each v; € Uy}

Let us denote (M ®x N)o by M ®geg N and (M ®x N),_1 by W. It follows
from Goto and Watanabe’s result that both M ®,., N and W are MCM modules
over A ®;.4 B; hence they are also MCM over R ®,., S. Moreover, if we denote the
irrelevant ideals of A ®,., B and R ®,., S by I and J, respectively, then we know
that I(M Qgeq N) = J(M ®gey N) and IW = JW.

It follows, in the first place, that

—9
e(J; M @40y N) = e(I; M @4y N) = cd.- <T+Sl )
S_

since M ®geq N is free of rank cd over A ®,., B, which has multiplicity equal to

(r+572

i1 ) Likewise,

VR@segS(W) = Z/A®segB(W) = Cd ’ VA@segB(Usfl)'

And since Us_; is minimally generated over A ®,., B by monomials in the X’s of

r+s—2

i ) Thus, we have shown that the minimal

degree s—1, we have vag,,, 5(Us—_1) = (
number of generators of W over R®s., S is equal to the multiplicity of of the module
M ®geq N.

Now, since R®j,,S is a domain, it will follow that W is a linear MCM for R®,.,.5,
provided that we can show that W and M ®,., IV have the same rank as R ®., S-

modules. Note that there is certainly an inclusion

M ®geg N — W
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given by multiplication by X; ! (we could of course also use any other form of degree

s — 1 in the X’s). Moreover, a typical element of W has the form

Zflz ﬂlz;-- chdz ﬁcdz ( [X;Z])(Cd)a

with each ;; € A ®,, B and each f a form of degree s — 1. Rewriting, we see that

w = Z f]l(i)uﬂa where Hji = ﬂji “ej € M ®seg N.

Thus, it suffices to notice that for any form f of degree s — 1 in K[X], and for
any p € M ®geq N, one has

FOY?

s—1 s—1
Yoy X=X

fX)-p=

where « is in the fraction field L of R ®,, S. This implies that the injection of

M ®geq N into W given above induces an isomorphism
LR (M ®sgN) SLOW

of L- vector spaces; and we have shown that rank(M ®,., V) = rank(W), as required.

O

3.3 Linear MCM modules over Veronese rings

Another class of monomial rings for which we might naturally hope to answer
the question of the existence of linear MCMs is the class of Veronese subrings of
polynomial rings. In dimensions 2 and 3, the question of existence of lin MCMs is
positively answered for these rings. Moreover, in the same way as for Segre products,
the proofs can be adapted to the case of Veronese subrings of a ring R which possesses
a linear MCM. Finally, the proofs of existence entail a classification of graded MCMs

over Veronese subrings which may be of interest in its own right.
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The methods for constructing linear MCMs over Veronese rings of dimension 3
turn out to yield far-reaching generalizations, as we will see in subsequent sections.
Results to be presented there should indicate that the class of Veronese subrings of
regular rings is more representative of the class of graded K-algebras than might at
first be apparent.

We first need to introduce some notation. If S is any Noetherian Z-graded ring
with graded pieces S;, and t is any positive integer, then the t"* Veronese subring of
S is the subring

S = @;ez. S

Note that S is a finitely generated graded S)-module, and that S splits into a direct
sum

S - 69;;(1)52',1“7

of SW-modules, where S;; = BuczSiar-
Likewise, if M is a graded S-module, then M becomes an S®-module via restric-

tion of scalars, and one has an S®-module splitting

M = @tf(l)Mi,t;

i=

where the modules M;; are defined in the analogous way.

Note that if M is MCM over S, then the module-finiteness of S over S® implies
that M is MCM over S, Tt follows that all of the direct summands M;,; must
be MCM, as well. In particular, this shows that all Veronese subrings of a Cohen-
Macaulay ring are Cohen-Macaulay. Finally, it is easy to see that if S is a domain
generated by 1-forms over a field K, then the torsion-free rank over S of any of

the modules S;; is one, whence the torsion-free rank of S over S® s t.
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Although the existence of lin MCMs over Veronese rings of dimension 2 is known

(see [2]), the method used here gives a very satisfactory answer in this case:

Proposition 3.3.1. Let R = S, the t'" Veronese subring of the polynomial ring
S = K[X,Y] in 2 variables over the field K. Then any MCM module over R is

isomorphic to a direct sum of modules of the form S; ;.

Proof: If M is a graded MCM module over R, let Q@ = (S ®p M)V, the reflex-
ivization of the expanded module. Then @ is Cohen-Macaulay (see [3]), hence free
over S. But we may also note that, since M is already reflexive over R, we have

M = @)y The conclusion is now apparent. O

Let S = K[X,Y], as above. Since the multiplicity of the Veronese subring R =
S® is ¢, it follows that the multiplicity of each of the R-modules Siy is also . But
for each 0 < ¢ <t the module S;; is generated by the ¢ +1 monomials of degree ¢ in

X and Y. We thus obtain:

Corollary 3.3.2. If S = K[X,Y], then S_,; is the unique indecomposable linear

MCM module over S® for every t.

The situation becomes more interesting in dimension 3, where we actually obtain
new results. I will first give the classification of MCMs over the Veronese subrings,
then the results on lin MCMs. As above, S = K[X,Y, Z] will be a polynomial ring
in 3 variables over a field. Note that the graded canonical module of S is S(—3),

whence the canonical module of S® is Sy, (see [6]).

Proposition 3.3.3. Let R be the t'* Veronese subring of S = K[X,Y,Z]. Then

every finitely generated graded MCM module over R is equal to Wy, where W is a
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second syzyqy over S of a finitely generated graded module N with the property that

Ny = 0 for any integer i (in particular, N is killed by ml ).

Proof: As before, let M be a graded MCM module over R, and let M* = Hom(M, wg).
Now let @ = (S ®r M*)*™; since @ has depth at least 2 over S, pdg@ < 1. That is,

we have an exact sequence:
08— 8= Q—0.
Applying the functor Hom(—, S(—3)) to this sequence, we get a new exact sequence:
0—-Q =S-S5 N—=0

where N = Extg(Q, ws).

Now there are just two things to note. First of all, we know since M is reflexive
that Qo; = M", and it can then easily be seen that 5, = M. Q" is obviously a
second syzygy of N, so the second thing is to show that /N has the required proper-

ties. It follows from general results on the Hom and Ext functors that N is graded.

Moreover, since Ny, = Extp(M*, wg) and M* is MCM, it follows that Ny, = 0. O

Note that the conclusion of the proposition does include the case of the modules
S;, since free S-modules are of course second syzygies of the zero module.

In the special case where R = S this leaves us with only R, Sio, and W =
(Syz*(K))2 as indecomposable MCM modules. In dimension 3, the first two are
easily seen not to be linear; but it turns out that the last is. In a similar fashion,

one may show the existence of lin MCMs over all Veronese subrings in dimension 3:

Proposition 3.3.4. Let R = S® be the t"" Veronese subring of the polynomial ring

S = KI[X,Y,Z| of dimension 3. Then R has a linear MCM module of rank 2.
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Proof: Let N be the kernel of the free S-module map
S(_l)H-l i Stfl

defined by the matrix

—X Y 0 0 0 0_

0 A 0 0 0
A=

o 0 0 -~ X Y Z 0

o o0 o0 -~ 0 XY Z

Now set M = N_; ;. We will show that M is a lin MCM over R.

The first thing we need is a
Lemma 3.3.5. (X,Y, Z)""'S""! is contained in the image of A.

Proof: It is easy to see that I, {(A), the ideal of S generated by the (¢t — 1)-sized
minors of A, is equal to (X,Y,Z)""!. The lemma now follows from quite general

results on matrices. O

Back to proof of Proposition: It follows from the lemma that

A

0— M-S 554D 50 (3.1)

is a short exact sequence of R-modules, from which it follows that M is MCM.
Moreover, since rankzS;, = 1 for any ¢, we know that rankpM = 2, and hence the
multiplicity of M is 2ep = 2t2.

Finally, we know that, for any [,

dimy S, = (l * 2) _+ni+2?)

l 2
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Thus, we have that

dime(My = Ny_1) = (£ +1) @ 1) (t : 1) ~0.

There are now two ways of seeing that M is linear. In the first place, we may note
that, by the preceding remark, M is generated by forms of degree at least 2¢ — 2 in
S. So mrpM = m!M is generated by forms of degree at least 3t — 2, all of which
must be contained in (X* Y7, Zt)Sg;’;) (by a simple application of the pigeon-hole
principle). But since (3.1) is a short exact sequence of MCM modules, and X*, Y 7
is a system of parameters of R, it follows that mzpM = (X', Y Z"YM. M is thus
seen to be linear.

Alternatively, one may simply calculate that

2t 2t+1

whence v(M) > e(M), and M is linear. O

As in the case of Segre products, the above proof can be adapted to rings which
are not themselves regular, but do possess lin MCMs, which have Hilbert functions
equal to those of free modules over a regular ring. The proof is essentially the same,

so I will omit the details.

Theorem 3.3.6. Let (S,n) be a 3-dimensional N-graded domain over a field K,
generated as a K-algebra by its 1-forms. If S possesses a linear mazimal Cohen-

Macaulay module M, then any Veronese subring of S also possesses a lin MCM.

Proof: First, we may replace M by gr, M, which is a graded lin MCM over S,
with all generators in degree 0. Now proceed as before, replacing the ring by M: if
R = S® define N by the short exact sequence

0— N —MFD A MY o,
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where A is the matrix defined in the proposition (but here XY, Z represent a system
of parameters of 1-forms in 5).
As before, we can calculate that rank gz N = 2-rankg M, whence ex(N) = 2t?eg(M).

Moreover, as before, N vanishes in degree 0, whereas

2t 2t +1
dimg (Ny) = vg(M) - [(t—i— 1)<2> —(t— 1)< ; ﬂ =217 - vg(M).
(By choice of M, one has dimxM; = v(M) - ("1?)). The Cohen-Macaulayness and

linearity of NV over R now obviously follow from the same properties of M over S. O

The kind of classification we have been carrying out for graded MCMs over
Veronese rings might theoretically be extended to all dimensions, but it quickly
becomes complicated and unrevealing. Thus, I will just make a few observations

about the case of dimension 4.

As before, if R is the #" Veronese subring of S = K[W, X,Y,Z], and M is a
graded MCM over R, we let QQ = (S ®x M*)**. @ then has projective dimension at

most 2 over S, so we get exact sequences:

O—-W-—=>5—=>0Q—0 (3.2)

O—8"—S5" W =0 (3.3)
Applying the functor Hom(—, S(—4)), this gives new exact sequences:

O—=-Q*—= S ->W"=N; =0 (3.4)

O—W*— 8"~ 55Ny —0 (3.5)

where N, = Ext'(Q,ws) and Ny = Ext'(W,ws) = Ext’(Q,ws) must vanish in
degrees divisible by ¢, since o, = M* is MCM. These facts, along with M = Qg ,,

characterize the graded MCMs over R.
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The situation is a little more transparent in the special case that ¢ = 2. In that
case, both N; and N, must just be finite K-vector spaces killed by the maximal ideal
(W, X,Y,Z). Tt follows from (3.5) that W* = S @ (Syz°K)™ for some m and
n. Then (3.4) implies that Q* is a first module of syzygies of U for some module
msW* C U C W¥*. The following lemma characterizes the submodules U of W with

this property.

Lemma 3.3.7. Let (R,m,K) be a local (or N-graded) ring containing K, and M
a finitely generated (graded) R-module. Suppose that one has an R-module U and
n > 0 such that

(mR)™ @ mM C U C R™ @ M.

Then U = R®) @ (mR)"% @ M’ for some k < n and some submodule M' of M

with mM C M'.

Proof: Let M' = M NU. Since mM C M', we know that U/(mR™ + M') is a
K-vector space of dimension k£ < n. Moreover, by applying a K-linear automorphism
of R™, we may assume that a basis of U/(mR™ 4 M') is given by the images of
elements {e; + w; : 1 <4 < k} in U, where we think of R™ as Re; + --- + Re,,
and where w; € M for each i. If we let V be the submodule of U generated by
{e; + w; : 1 < i < k}, then it is apparent that V is free of rank n. What we wish to
show is that

U=V ®&m(Reys1+ -+ Re,) ® M.

First we note that the sum on the right is direct. For a relation would take the
form (v; + uy) + vy + uy = 0, where v; € Re; + ... Reg, vy € Regyq1 + ... Rey,
uy,us € M, and u; # 0 only if v; # 0. It is then apparent that the relation must be

trivial.
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Denote the module on the right hand side by U’. Clearly U’ C U. Note that
mM C M' C U’; and thus for i < k, we have m - Re; C U' +m - w; = U'".
Hence m(R™ @ M) C U'. Finally, it follows from the choices of M’ and V that

U/m(R™ + M) =U"/m(R™ + M). Thus U = U’, which proves the lemma. O

Combining the lemma with the preceding discussion gives the following classifi-
cation of MCM modules over the second Veronese subring of a polynomial ring of

dimension four.

Corollary 3.3.8. Let M be a graded MCM over R = S, where S = K[W, X,Y, Z].

Then M = Q4 for some S-module
Q= 5" @ (SyzsK) ™) @ Syzg(U'),
where my, my, and n are nonnegative integers, and mg-(Syz> K)™ C U’ C (Syz°K)™.

To a large extent, we already know about the “even” parts of S and Syz% K, and it
is a computation to show that in dimension 4 none of these modules are linear. Thus,
in looking for a lin MCM, we might as well restrict our attention to the “new” modules
which are the even-degree parts of Syz' (U’) for (Syz*K)™ C U’ C (Syz*>K)™, where
the latter is a proper inclusion. As the following proposition shows, it is possible to

construct a lin MCM over R = (K[X,Y, Z, W])® in this way:

Proposition 3.3.9. R = S@ has a linear MCM module, where S = K[X,Y, Z, W]

15 the polynomial ring in four variables over a field K.
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Proof: We know that N = Syz%K is generated as an S-module by the six vectors

-Y- -Z- -W- -0- -0- -0-
X 0 0 Z 44 0
0 | -X | 0 | -Y | 0 | w

0] 0] | X | 0 Y | —Z |

in @ (which we will denote by ej,es,... €5, ordered as above). Let U be the

submodule generated by ey, e, e3+ ey, €5, €. Since
Xeys=—Zeg+Yey, Wey=Zes — Yeg

Yes; =We + Xes, and Zez = Wey + Xeg,

we see that mg/N C U.

Now, if Q = Syz'U, we get a short exact sequence:
O—-Q—S(-3)® U0

[ am thinking of generators of N as being in degree 3, since I assume that N is the
second module of syzygies of a copy of K in degree 1. The important thing is that
the generators of N lie in odd degree.

If M = @2, we then see that, since Ups = Nyo and rank(N) = 3, we have

rankpM =5 — 3 = 2. Hence ¢(M) =2 - ep = 16. Moreover, we know that
dimg@Q4 =5-v(mg) —v(msN) =0

dimgQs =5 v(m?) — v(m*N) = 100 — 84 = 16.

(The Hilbert function of N can be directly calculated from the exact sequence

0= N—S(-2) 5 8(-1) =K =0
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and the Hilbert function of S.) It follows that M needs at least 16 generators, and

so M must be linear. O

In the usual spirit of things, I am able to generalize the above result in the

following manner:

Proposition 3.3.10. Let R be a 4-dimensional graded K -algebra generated by 1-
forms, and assume that R possesses a linear MCM module M. Then the second

Veronese subring of R also has a lin MCM.

Proof: As usual, we may replace M by gr, M, and assume that M is graded with
all generators in degree 0. We then mimic the proof given above. Assume that M is
generated in degree 0, and let W, XY, Z be a system of parameters of 1-forms for
R. Define the R-module U by the short exact sequence:

0 U — M(—1)® 570 0,

Since M is linear MCM over R, we see that Uy, the R®®-summand of U generated
in odd degrees, is MCM over R, and that in fact U is none other than the module
Syzy K @4 M, where A = K[W, XY, Z].

Now just let U = V ®4 M, where V C SyzQAK is the 5-generator submodule
used in the proof of Proposition 3.3.9. Since mzpM = m M, we again have that
mpU C U', whence U!,; = U,gq is MCM over R?). Now define an R-module Q) by
the exact sequence:

O—=Q—M® U =0

where the surjection of M®) onto U’ is the obvious one.
Since U’,, is MCM over R®?) we see that Quq is also MCM over R?). But,

as before, Q,qq is generated by forms in M®) of degree at least 3; and we know,
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since M is linear, that m%M = m5M C (W? X2 Y2 Z*)M. Hence m%Q.aa C
(W2, X2 Y? Z?)Qoqq, and we see that Qugq is a lin MCM over R® (note that

(W2, X2 Y? 7?) is a system of parameters for R?)). O

Corollary 3.3.11. Let S = K[W,X,Y, 7], the polynomial ring in four variables

over a field. Then S®) has a lin MCM for any n > 0.

3.4 Approximation results for graded rings

So far, I have been unable to resolve the question of existence of linear maximal
Cohen-Macaulay modules over Veronese rings in any further cases. But the methods
used to prove the existence of linear MCMs over Veronese rings of dimension 3 can
be adapted in order to produce vastly more general results. Below we give the most
general theorem for graded rings. Although the proof is quite technical, the main
ideas may be shortly summarized.

First, by employing a matrix similar to that used in dimension 3, one may show
that any Veronese subring of a polynomial ring of dimension d possesses a graded
MCM of reduction degree d — 2 (I omit the proof, since it is easy to derive from
the proof of the 3-dimensional case and the arguments of this section). Secondly,
by using a system of parameters of 1-forms, one may produce similar modules over
the Veronese subrings of any graded K-algebra R. Little can be said about the
actual reduction degrees of these modules, but their behaviour should in some sense
approach that of the modules constructed when R is regular. Finally, by employing
the Frobenius endomorphism, one may view modules over certain Veronese subrings
of R as R-modules via restriction of scalars.

Applications of the theorem will be given in the chapter on Lech’s Conjecture.
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But the argument is also quite interesting in itself, in that it provides a compelling
example of how a property of Veronese subrings of regular rings may be generalized
in order to prove the existence of an “approximate” property over a much broader

class of positively graded rings.

Theorem 3.4.1. Suppose that (R, m) is a positively graded K -algebra of dimension
d > 3, generated by its 1-forms, where K 1is a perfect field of characteristic p > 0.
Suppose moreover that R possesses a finitely generated graded MCM module M,
with generators all in the same degree. Then R possesses a sequence {M;} of MCM

modules with reduction degrees approaching d — 2.

Proof: Without loss of generality, we may assume that M is generated in degree 0.

We begin by fixing some notation: first, let the Hilbert polynomial of M be given by
Py(t) = (e/(d — D))t + k2 + . = dimg (M),

where the latter equality holds for ¢ sufficiently large, and e = egx(M). Next we fix
a minimal reduction I of m genterated by a system of parameters of 1-forms, and a
positive integer ¢ such that m™*¢ = 1" - m¢ for all n > 0.

For each ¢ = p’ great enough so that ¢ > ¢ and Hy(t) = Py(t) for t > q — 2, we

define the module W; as follows: let
N; = Ker(M(—1)1¢+4-2 4 oty

where I = (X;,...,Xy) and Ais the (¢ —c— 1) x (¢ — ¢+ d — 2) sized matrix:
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Xy Xy -0 Xy o --- 0 0 0
0o Xy --- Xy Xg -+ O 0 0
o o o - Xy Xy .-+ Xg O
o o0 0 .- 0 Xy -+ Xy Xy

Now set W; = (N;)_1 4
The R@-module W; becomes an R-module via F?, the i power of the Frobenius
endomorphism. Moreover, since 17 ¢ "M% ¢! is in the image of A, and since m? ' =

179" Im°, we see that there is an exact sequence:
—ctd—2 —c—1
O — Wi — MY H2 5 M) 50

induced by A (recall that ¢ must be sufficiently large). In particular, since the latter
two modules are MCM over R via F', we know that the module W; is a MCM
R-module.

It remains to show that the modules W; satisfy the stipulated numerical condition.
First, since ep(M;,) = ¢* 'e for any ¢ and any 0 < f < ¢, we see from the short
exact sequence above that er(W;) = e(d — 1)g% 1.

Now, if W,y = (N;)4—1 is the first (potentially) nonzero graded piece of W; (and
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i is sufficiently large), we may use the short exact sequence to compute:

dimg (Wip) = (¢—c+d—2)-Pulg—2)—(¢—c—1)- Pulqg—1)
= (g—c+d=2)[(e/(d=1))(g—2)""+ k(g —2)"*+...]
—(g—c=Dle/(d=DY(g D" +k(g-1)""+...]
= ¢ (e/(d—DY(-c+d—2)+(d—1)(e/(d~1)})(~2) +k
—(e/(d=1))(=c—1) = (d = 1)(e/(d = 1)) (1) — k] +

This shows that dimg (W, ) is given by a polynomial Py(¢) in ¢ = p" of degree no
greater than d — 2. It is easy to see from the above calculation that the degree d
term vanishes. Moreover, all contributions to the degree d — 1 term come from the
terms of Py, which are explicitly shown, and it is a simple calculation to show that
the the resulting coefficient in degree d — 1 is equal to 0.

Also, one should note that, for any ¢ sufficiently large, we have
(mdfl)q . mq72 .mt = mdq+072 C qu72 C I[q}

Thus, (m4 1)l . ma=2. M C I19M :); m®. Moreover, note that for any ¢ = p',

TNy me .
(P ™) < ) ),

where r(M) is the type of the module M.

We may conclude that the length of m4~1. (M(q ctd=2) /IM kY C+d )) is bounded
by B-(q — ¢+ d—2) for all ¢, where 8 = r(M) - I[(R/m°) is constant. Note that a
similar, but easier, argument shows that m¢? - M_9, CIM_ 5, for g > c.

Hence, considering the short exact sequence

O — Wi/ IW; — MG 2 i 42 o e i e o,
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we see that

] ((md2 + I)WZ

W ) < v(m??). dimg(Wio) + 8- (¢ —c+d—2),

a polynomial in ¢ of degree at most d — 2. Since the multiplicity of M; is given by a

polynomial of degree d — 1 in ¢, this clearly gives the desired result. O

I believe it is worth stating the result in the case dim(R) = 3 separately, in that
reduction degree one is equivalent to linearity, and we began with the search for

linear MCMs.

Corollary 3.4.2. Suppose that (R, m) is a 3-dimensional positively graded K -algebra,
generated by its 1-forms, where K is a perfect field of characteristic p > 0. Then R

possesses a sequence of MCM modules M; with the property that as i — oo,

e(M;)
v(M;)

Proof: If P is a homogeneous minimal prime of R with dim(R/P) = 3, then it
clearly suffices to produce such a sequence of modules over R/P. But the theo-
rem 1.5.3 of Hartshorne-Peskine-Szpiro implies that R/P possesses a graded MCM

of positive rank. We may now simply apply the theorem with d = 3. O

Note 3.4.3. Although the modules W; constructed in the proof of Theorem 3.4.1
possess a natural grading over the ring (R, m), it is not generally the case that

W, = gr, W;. However, we may use the exact sequence

O —= Wi — MY T2 5 p e
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in order to calculate the dimension of the second graded piece of W;, as follows:

dimg(Wii) = (g—c+d—2)-Py(2¢—2)—(¢q—c—1) - Py(2¢g—1)
= (q—c+d—2)(e/(d=1)N)(2¢—2)" "+ k(2¢ —2)" 2 +...]
—(g—c—=D[(e/(d=1)N(2¢ — 1) +Ek(2¢—1)"2+ .. ]

= 2 (/- 2)) +

(i.e. dimg(W;;) is polynomial in ¢ = p’ of degree d — 1, with leading coefficient
2972 . (e/(d — 2)!)). Note that the degree d term of the polynomial is easily seen to
vanish, and that the terms shown are the only ones involved in the calculation of the
degree d — 1 coefficient. The actual value of this coefficient is now given by a simple
calculation.

If I is a system of parameters of one-forms for R, then the length of
(I +m*)W;/m*W;

must be asymptotic in ¢ = p' to at least d times this dimension (though not neces-

sarily as great as d - v(W;)). This fact will be used in chapter 4.



CHAPTER IV

Lech’s Conjecture

4.1 Linear MCM modules and Lech’s conjecture

In his paper [12], Christer Lech made the following conjecture on flat extensions
of local rings. We say that the homomorphism (R, m) — (S,n) is flat if S is a flat

R-module, and local if the image of m is contained in n.

Conjecture 4.1.1 (Lech). Let (R,m) C (S,n) be a flat local extension of Noetherian
local rings. Then the multiplicity of S is greater than or equal to the multiplicity of

R.

The proof of the conjecture may be reduced to the case that R and S are complete.
Note that, if we then localize S at a prime @ lying over m, we get a new flat local
extension (R, m) C (Sg,QSg), where the rings R and Sg have the same dimension.
The following version of a theorem of [13] then allows us to reduce the original
conjecture to the case that R and S have the same dimension. The condition of
excellence is quite technical, but holds for most of the rings which we consider. In

particular, complete local rings are excellent.

Theorem 4.1.2 (Lech). Let (R,m) be an excellent local Noetherian ring, and let
P be a prime ideal with the property that height(P) + dim(R/P) = dim(R). Then

e(Rp) < e(R).

67
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In fact, if (R, m) is a d-dimensional local ring, and if we can show that Lech’s
conjecture holds for any flat local extension (R, m) C (S,n) with dim(S) = d, then
we can show Lech’s conjecture for all flat local extensions (R, m) C (S, n). For future

refererence, we state this formally as:

Lemma 4.1.3. Let (R, m) be a d-dimensional local ring, and suppose that e < eg
for any flat local extension (R, m) C (S,n) with dim(S) =d. Then er < eg for any

flat local extension (R, m) C (S,n), regardless of the dimension of S.

Proof: Let (R, m) C (S,n) be a flat local extension. The completion S of S has the
same multiplicity as S, and is still a flat extension of R. Thus, we may assume that
S is complete (and therefore excellent). Since dim(S) = dim(R) + dim(S/mS) (see
e.g. [15], section 15), we may choose a minimal prime P of mS with height(P) +
dim(S/P) = dim(S). Now (R,m) C (Sp, PSp) is a flat local extension of rings of
the same dimension d, and we know by Theorem 4.1.2 that eg, < eg. This completes

the proof of the lemma. O

As mentioned in the introduction, the most significant cases of the conjecture
which have been proved are those in which the base ring R has dimension 2 or when
the fibre S/msS is isomorphic to a complete intersection [12, 13].

What we will show in this chapter is that the existence of specialized MCM
modules of positive rank for the base ring R sometimes allows a proof of Lech’s
Conjecture. In particular, the existence of a lin MCM of positive rank over R always
proves the conjecture. For if M is a linear MCM module of positive rank for R (in

fact, one may reduce to the case that R and S are domains, and then any module
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has finite rank), we know that

Likewise,
e(S) = es(S® M)/ranks(S ® M) > vs(S ® M) /rankg(S ® M)

(see the section on background in the introduction). Thus, since minimal numbers
of generators and ranks of modules do not change upon tensoring with a flat local

extension, we see that e(S) > e(R).

Note 4.1.4. For example, the result of Backelin, Herzog, and Ulrich in [1] thus
implies that Lech’s conjecture holds for any flat local extension R C S in which the
base ring R is a strict complete intersection. (A local ring (R, m) is a strict complete

intersection if both R and gr,, R are complete intersections.)

Of course, even in the case that M is not linear, the above argument shows that

v(M)
er(M)

e(S) > v(M)/rank(M) = e(R) -

So to prove Lech’s Conjecture, it suffices to find a MCM module M such that the
ratio of v(M) to e(M) is sufficiently close to 1. Combining this with Corollary 3.4.2

immediately yields the following result.

Proposition 4.1.5. Let (R, m) be a positively graded 3-dimensional algebra over a
perfect field K of characteristic p > 0, generated by 1-forms. Then e < es for any

flat local extension (R,m) C (S,n).

Note 4.1.6. If (R, m) is graded with homogeneous maximal ideal m (and (S,n) is
either graded or local), we call the extension flat local if m < n and R,, — S, is

flat.
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In fact, since er and eg are both integers, the conjecture is equivalent to eg >
er — 1. This is of course completely trivial, but notice that it allows us to put a
weaker requirement on the module M. The above formula shows that es > ep — 1 if
there exists an MCM M of positive rank with

v(M) 1

e(M) ~ er

In particular, if (R, m) is a d-dimensional F-finite local Cohen-Macaulay domain
of characteristic p > 0, with perfect residue field K, then we may consider the MCMs
°R for e > 0. Denote the Hilbert-Kunz multiplicity of R by cg. Then e(°R) = epq®

for all e > 0, while v(°R) is asymptotic in ¢ to czq?. Hence,

v(°R)  cgr
(‘R ex

as e — 0o0. Comparing this with the previous paragraph, we get the following:

Corollary 4.1.7. Let (R, m) be a d-dimensional F-finite local Cohen-Macaulay do-
main of characteristic p > 0, with perfect residue field K. If cr > egr —1, then Lech’s

conjecture holds for any flat local extension (R,m) C (S, n).

Unfortunately, very little is known about Hilbert-Kunz multiplicities in general.
The only case in which the above obviously holds is if eg = 2 (it is a theorem that

cr = 1 if and only if R is regular; see [16]). So let us record the following:

Question 4.1.8. For which Cohen-Macaulay rings of characteristic p > 0 is cg >

e(R) — 1, where ¢y is the Hilbert-Kunz multiplicity of R?

4.2 On ‘embedding dimensions’ of modules

The following results were proved by Lech in his paper [13]. Although interesting

in its own right, the theorem may also be seen as a first step towards proving the
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various Lech-Hironaka type inequalities, since the embedding dimension of a ring R
is equal to Hg))(l), the second value taken by the Hilbert function of R. The main
purpose of this section is to generalize the theorem to modules. Although the proof
is straightforward, the result given here is a key element in the arguments of the next

section, where certain new cases of Lech’s conjecture are established.

Theorem 4.2.1 (Lech). Let (Q,m) be a local ring with m-primary ideal q. Suppose
Q/q is equicharacteristic, and that q/q* is a free Q/q module. Then the minimum
number of generators of q is no greater than the minimum number of generators of

m.

Corollary 4.2.2 (Lech). Let (R, m) C (S,n) be a flat couple of d-dimensional local

rings. Then edim(R) < edim(S).

Proof: Since S is flat over R, the ideal mS of S requires the same number of gen-
erators as m; thus we may consider m as an ideal of S. But, since m/m? is a free
R/m-module, it follows from the flatness of R — S that mS/m?2S is free over S/mS.
Finally, mS is n-primary, and since R/m < S/mS, S/mS must be equicharacteris-

tic. Thus applying the theorem to S and mS proves the corollary. O

We now wish to prove a similar result, but with R replaced by any finitely gen-
erated R-module M and S replaced by S ®g M. For now, this will yield a result
on linear MCM modules (corollary 4.2.4) and also allow us to deduce some cases
of Lech’s Conjecture from the existence of MCMs of reduction degree 2 (corollary

4.2.5).

Proposition 4.2.3. Let (R,m) C (S,n) be a flat local extension of rings of the

same dimension, let M be a finitely generated R-module, and set M' = S @r M.
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Then v(nM') > v(mM) + (v(n) — v(m)) - v(M).

Proof: This is obviously true for M = R" free, given Lech’s result that v(n) > v(m);
so it suffices, proceeding inductively, to prove the statement for N = M/Ry, y €
mM , assuming that it is true for M.

By flatness, N' = S®@r N = M'/Sy, where the image of y in M' is in mM' C nM'.
If y € m*M, then v(mN) = v(mM), and since the image of y is in m*M' C n*M', we
also have v(nM') = v(nN'). Hence the proposition holds for N (of course v(M) =
v(N) so the last term in the inequality does not change).

If y € mM \ m*M, then v(mN) = v(mM) — 1, and since the image of y is in
mM' C nM', v(nN') > v(nM') — 1. Since v(N) = v(M), the remaining term does

not change, and we see that the inequality continues to hold for N. O

Corollary 4.2.4. Let (R,m) C (S,n) be a flat local extension of d-dimensional
local rings, and let M be a finitely generated R-module with the property that gr,, M
s MCM. If S ®r M s a linear MCM-module, then M is also a lin MCM, and

edim(R) = edim(S).

Proof: Suppose M' = S ® M is linear MCM. By a result of [2], it follows that
gr, (M') is MCM. Moreover, since minimal numbers of generators and multiplicities
are not changed by extending the residue field, we may assume, without loss of
generality, that R and S have infinite residue fields.

Now, if M’ is linear, we have nM' = (y)M' for some system of parameters
Y1, ,yq of S, and we see that v(nM') < dv(M') = dv(M) (in fact, since gr, (M")
is MCM, we must have equality). So by Proposition 4.2.3, v(mM) < dv(M), where
the inequality is strict unless v(m) = v(n).

But since gr,, M is MCM, v(mM) > d - v(M) (if (z1,...,24) is a minimal re-
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duction of m, then the z; € m\m?, and their leading forms have only the Koszul
relations on M). Thus v(mM) = dv(M) and mM = (z)M. We conclude that M is

linear, and also that edim(R) = edim(S). O

Corollary 4.2.5. Let (R,m) C (S,n) be a flat couple of local rings. Suppose R has
a MCM module M of positive rank, with reduction degree 2 with respect to a minimal
reduction I = (x1,... ,xq) of the mazimal ideal. Moreover, assume that gr,,(M) has

depth at least d — 2. Then eg < eg.

Proof: By Lemma 4.1.3, we may reduce to the case in which R and S have the same
dimension, and then M' = S ® M is MCM. Since eg = e(M)/rankgpM and eg =
e(M'")/rankg M’  and since rankz M = rankgM’, it suffices to show that ep(M) <

es(M'). But because of the assumptions on M, we have:

e(M) =1 <%) <v(M)+v(mM)— (d—2)v(M),

where d = dim(R) (we may choose the minimal reduction I = (z1,...,x4) in such
a way that the leading forms of zq,...,x4 5 form a regular sequence on gr,, M).
Similarly,

e(M") > v(M") +v(nM") — dv(M'").

Since the result is already known in the case that v(n) < v(m)+1 (see [12, 13]),
we may assume that the difference of embedding dimesions is at least 2. Then we

may apply the proposition to see that

e(M") > v(M)+v(imM) — (d—2)v(M),

and the result now follows from a comparison of the two inequalities. O
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Of course, having shown that the embedding dimension of (R, m) must be less
than or equal to that of (S,n), one would like to proceed to show that the square
of the maximal ideal of R needs no more generators than the square of the maximal
ideal of S; or at least that v(m)+v(m?) < v(n)+v(n?). In proving such an assertion,
one may as well assume that m? = 0. Then it suffices to provide a positive answer

to one of the following questions, as before.

Question 4.2.6. Let J be an ideal of a local ring (S, m) with J* = 0, and .J/J? and
J? both free S/J-modules. Also assume S/.J to be equicharacteristic. Then can you

show that v(J?) < v(m?), or at least that v(J) + v(J?) < v(m) + v(m?)?

4.3 Applications to Lech’s conjecture

In this section we will see how the above results can be combined with the exis-
tence results of the previous chapter in order to prove some cases of Lech’s conjecture.
We already know that if R has MCM-modules approaching linearity, then Lech’s con-
jecture holds for any flat extension with base ring R, and that existence of a MCM
module with reduction degree 2 also often implies the conjecture. Here we wish to
extend these results, obtaining more substantial new results on the conjecture. The

main result is the following:

Theorem 4.3.1. Let (R, m) be a local or N-graded domain, with infinite residue
field, and let (S,n) be a flat local extension of R of the same dimension. Suppose
that R possesses a MCM module M with red(M) = 3, or even a sequence of MCM
modules {M;} with reduction degrees approaching 3. If m — n?, or if edim(S) —

edim(R) + depth(gr,,M;) > dim(R) + 1 for each M;, then eg < eg.

Proof: Let I and J be minimal reductions of m and n, respectively. In the case
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that R is local, we may reduce to the case that R and S are complete.

For now, just assume that M is a MCM module with reduction degree 3. Recall
that, if we let M* = Hom(M, A), where A is a regular subring of R over which R
is module-finite, then M* is MCM if and only if M is, and has the same reduction
degree as M. Moreover, we know that v(M) = r(M*) and v(M*) = r(M). In
particular, by replacing M by M?*, if necessary, we may assume that the minimal
number of generators of M is at least as great as its type.

We know that m*M C IM, whence m?>M C IM :p m. Thus I[(m*+1)M/IM) <
r(M) < v(M). Moreover, if we set b = depth(gr,,M), then it follows from the
genericity of minimal reductions that we may choose I = (z1,... ,z4) in such a way

that the initial forms of zq, ... ,z, form a regular sequence on gr,, M. Thus
[(mM/(I+m*)M) <v(mM)—b-v(M),
and it follows that
er(M)=1(M/IM) < 2v(M) + v(mM) — (depth(gr,,M)) - v(M).

On the other hand, we have by Proposition 4.2.3 that if M' = S ®p M, then
v(nM') > v(mM) + (v(n) — v(m))v(M). Hence, just looking at the first two pieces

of gr, M' we already get the estimate:
es(M') > (1 —=d)v(M) +v(nM') > (1—d+v(n) —v(im))v(M) +v(mM).
But it follows from our assumptions that
v(n) —v(m)+1—d > 2 — depth(gr,,(M)).

Thus, a comparison of the two estimates shows that eg(M) < eg(M’).
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Finally, if m < n?, note that M'/n*M’ is free over S/n*S, whence
es(M') =1(M'JJM") > (1 +v(n) —d)-v(M),
whereas we have as above that
er(M) < 2v(M) + 1(mM/(m* + I)M) < (24 v(m) — d)v(M).

Since we are free to assume that v(n) — v(m) > 1, this again shows that eg(M) <
es(M'); and since rankgM = rankgM’, we may divide by the rank in any of the
cases in order to see that ep < eg, as claimed.

Now suppose instead that we have only a sequence of MCMs { M;} with reduction
degrees approaching 3. By Proposition 2.2.3, the sequence of modules { M;} also has
reduction degrees approaching 3. And since M; has the same rank and multiplicity
as M7, it follows that any sequence {N;}, where each Nj is either M; or M}, will
have reduction degrees approaching 3. Hence, we are free to replace each M; by its
dual, if necessary, so as to obtain a new sequence of MCMs approaching reduction
degree 3, but with the further property that v(M;) > r(M;) for each i. We shall
henceforward assume that the original sequence {M;} has this property.

We may again assume that v(n) — v(m) > 2, and then the same argument as

given above shows that for each i,

l (ﬁ) + 7 (M;) < es(M;).

Because the M; have reduction degrees approaching 3, we know that

becomes insignificant compared to the rank of M; as i increases.

Finally, from the exact sequence
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where the map on the right is given by a vector whose entries are the generators of

the maximal ideal, we see that

Thus er(M;) = I(M;/IM;) < eg(M]) + v(m) - €. Dividing through by rank(M/;) and

taking the limit then shows that ez < eg, as above. O

Note that if (R, m) is an N-graded algebra over a field K, and if the MCM modules
M; are actually graded by powers of m (i.e. M; = gr, M;), then we may dispense
with the extra hypothesis on embedding dimensions or on the embedding of m into
the square of the maximal ideal of S (since Lech has proved the conjecture in the
case that v(n) — v(m) < 1, we are free to assume that the difference of embedding
dimensions is at least 2). Moreover, it is then reasonable to state the conclusion for
all flat local extensions of R, since we may use Lemma 4.1.3 in order to reduce to the

case of a flat local extension of rings of the same dimension. This gives the following:

Corollary 4.3.2. Let (R,m) be an N-graded domain, and let (S,n) be a flat local
extension of R. Suppose R possesses a MCM module M with red(M) = 3, or even a
sequence of MCM modules {M;} with reduction degrees approaching 3, and that all

of the modules M; are graded by powers of m. Then er < eg.

Moreover, using the existence results of chapter 3, we may obtain substantial
new results concerning Lech’s conjecture in the case that R is positively graded of

characteristic p.

Corollary 4.3.3. Let R be a positively graded algebra, generated by its 1-forms,
over a perfect field K of characteristic p > 0. Suppose that R possesses a graded

MCM module M of positive rank, with all generators in the same degree, and that
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the dimension of R does not exceed 4. Then Lech’s conjecture holds for any flat local
extension (R, m) C (S,n). If the dimension of R is 5, and if we have reduced to the
case that dim(S) = 5 (as in Lemma 4.1.3), then we still obtain ep < eg, provided

that either m < n* or edim(S) — edim(R) > 6.

Proof: By Theorem 3.4.1, R has, at worst, a sequence of MCMs with reduction
degrees approaching dim(R) — 2. Moreover, it follows from Lemma 4.1.3 that we
may reduce to the case in which dim(S) = dim(R). The conclusion is the same as
that of Proposition 4.1.5 in the case that dim(R) = 3, and follows from Theorem
4.3.1 in the case that dim(R) = 5.

If the dimension of R is 4, we can do somewhat better than is indicated by
Theorem 4.3.1. For this, note that the modules {W;} constructed in the proof of
Theorem 3.4.1 have reduction degrees approaching 2. Moreover, it follows from Note

3.4.3 that I(I + m?)W;/m*W; is asymptotic in ¢ = p’ to at least
4-(1/2)er(W;) - ¢* > 20(W;) - ¢*.

Thus, ex(W;) < v(mW;) —v(W;) (asymptotically in ¢). Since we may assume v(n) —
v(m) > 2, we get

es(W)) > v(mW;) — v(W;),

for each 7, as in the proof of Theorem 4.3.1. This completes the proof of the corollary.

O

In the case that R and S are 3-dimensional rings of prime characteristic p, we
may still often obtain MCM modules with reduction degrees approaching 3. An
argument similar to that of Theorem 4.3.1 provides some new results on Lech’s

conjecture in this case, as well (although we obtain slightly better results). Recall



79

that the conjecture was proved by Lech in the case that edim(S) — edim(R) < 1.

Proposition 4.3.4. Let (R, m) be a local ring of dimension 3 and prime characteris-
tic p > 0, with perfect residue field, and suppose that R possesses a finitely generated
MCM module N of positive rank. If (R, m) C (S,n) is a flat local extension of rings

of dimension 3, and if either edim(S) > edim(R)+3 or else m < n?, then eg < eg.

Proof: We may first reduce to the case in which both R and S are complete. In
particular, this implies that R is F-finite.

Since dim(R) = 3, we know that the MCM modules R have reduction degrees
approaching 3 (Proposition 2.3.4). As before, one may replace this sequence by one
in which the number of generators is always as great as the type.

If v(n) > v(m) + 3, then we know by the result of the previous section that for

any MCM module M over R, and M' = S ®p M, that
es(M') > v(M) +v(mM).
Note that if M = “N, then
v(M) 4+ v(mM) = I(N/(m*)DN) > I(N/m*N),

and the latter is asyptotic in ¢ to (4/3)er(N) - ¢*. On the other hand, ep(M) is
asymptotic to eg(N) - ¢*. We have thus shown that, in fact, eg > (4/3) - ex.

In the case that m < n?, note that for any MCM module M over R, we have
M’/TLQM’ o~ (S/TIQ)V(M)

It follows that

whereas
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But by the same argument as for the graded case, it suffices to show that
es(M') > 2v(M) + I(mM/(I +m*)M

for any such M. This clearly follows from the two given estimates, provided that

v(n) —v(m) > 1, and the remaining case was proved by Lech. O

4.4 The reduction to characteristic p > 0

In this section I would merely like to note that the results of section 4.3 should
be amenable to the process of reduction to characteristic p. Such arguments are
generally quite detailed, and the proofs remain to be given. Nevertheless, it appears

that the process can be carried out, resulting in the following more general results:

Conjecture 4.4.1. Let R be a positively graded algebra, generated by its 1-forms
over a field K (of any characteristic). Suppose that R possesses a graded MCM
module M of positive rank, and that the dimension of R does not exceed 5. Then

Lech’s conjecture holds for any flat local extension (R, m) C (S, n).

Conjecture 4.4.2. Let (R, m) be a an equicharacteristic local ring of dimension 3,
and suppose that R possesses a finitely generated MCM module N of positive rank.
If (R,m) C (S,n) is a flat local extension, and if either edim(S) > edim(R) + 3 or

else m < n?, then eg < eg.

These results are to be proved by showing that if there were a counterexam-
ple in which the rings had equal characteristic 0, then a counterexample could be
constructed over a field of characteristic p > 0.

In the case that (R,m) C (S,n) is a flat local extension of finitely generated

graded algebras over a field K of characteristic 0, the reduction should not present
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great difficulties. We should be able to replace the field K by a finitely generated Z-
algebra A C K, and R, S, and a MCM R-module M by finitely generated A-algebras

R, and S, and a finitely generated R -module M, in such a way that:

e Ry, My, and S, are all A-free; and K ® 4 R4 = R, K ®, S4 = S, and

K&y My = M.

e S, is free over Ry, and M, is free over Alzy,...,z4], where zy,... 24 is a

homogeneous system of parameters of R with coefficients in A.

e For any residue field k of A, M,, = k® 4 M 4 has the same rank over R, = k@ R

as M has over R.
e For any such k, R, and S, have the same multiplicities as R and S, respectively.

Given a counterexample to conjecture 1, this would produce a new counterex-
ample in which the field K is finite, hence perfect of positive characteristic. Since
we have already proved the theorem in this case, we would thus have a proof in
characteristic 0, as well.

In the case that either or both of the rings R and S fails to be affine over K it
will be necessary to first apply the theory of approximation rings in order to reduce
to the case of affine algebras. We may reduce to the case that R and S are complete,
and then R is module-finite over a power series ring 7'. Expressing all of the rele-
vant properties by equations over 7', we may hope to descend the counterexample to
one in which the rings R and S are module-finite over a regular affine subring of T
Then we may proceed as above to produce a counterexample over a field of positive

characteristic p.



CHAPTER V

Hilbert-Kunz multiplicities and Lech’s Conjecture

5.1 Basic Applications of the Hilbert-Kunz multiplicity

In the paper [12], Christer Lech proved the following result, which gives an ap-
proximation to his conjecture on the multiplicities of rings under a flat local homo-

morphism.

Proposition 5.1.1. Let (R,m) C (S,n) be a flat local extension of rings of dimen-
sion d. Then ep < d!-eg, where e and eg stand for the ordinary multiplicities of

the respective rings.

What I would like to note is that if the rings have prime characteristic p > 0, and
if we adopt some more recent terminology, then the proof may essentially be broken
into two pieces. First, what Lech shows is that e > cg, the Hilbert-Kunz multiplicity
of R. Secondly, it is easy to show that for any R, we have cp < er < d'-cg. It then
follows that ep < d! - eg.

Now, if R is an F-finite Cohen-Macaulay local domain with perfect residue field,
we may give a short proof of the inequality es > cr. To do this, simply consider
the MCM modules R over R, which for large e have rank equal to ¢¢, and whose

numbers of generators is asymptotic in g to cgq? (where ¢ = p°). Clearly now
esq’ = e(S® “R) > v(°R) =~ crq’,

82
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and dividing through by the rank gives the result.
Before moving on to prove some results on Hilbert-Kunz multiplicities in the next
section, I would like to give a further application of this line of reasoning. First we

need to formally state the following:

Lemma 5.1.2. Let (R,m) C (S,n) be a flat couple of local rings of the same di-
mension. Let J be a parameter ideal of S, let M be a MCM module over R, and
set M' = S®@r M. Then e(J; M') > 1(S/(mS + J))-v(M). In particular, if J is a

minimal reduction of n, then we have e(M') > 1(S/(mS + J)) - v(M).

Proof: Clearly e(J; M') = I(M'/JM'") > I(M'/(m + J)M'). But since M’ is ten-
sored up from R, we know that M'/mM' = (S/mS)“M). Thus [(M'/(m+J)M') =

I(S/(mS+J))-v(M), and the lemma is proved. O

In particular, suppose that (R, m) is a d-dimensional F-finite ring of positive
prime characteristic p, with perfect residue field. If M is a MCM module of positive
rank, then we may apply the lemma to the modules M, which have rankg(°M) =
q? - rankg(M) and v(*M) = cgrq® - rank(M). This gives the stronger result that
es > 1(S/(mS + J)) - cg for any flat local extension S of dimension d, which implies
that

I(S/(mS+J
oo > (S/( . ))_eR_

This obviously gives some new cases of Lech’s conjecture:

Proposition 5.1.3. Let (R,m) C (S,n) be a flat local extension of local rings of
positive prime characteristic p and Krull dimension d, with R/m perfect, and assume
that R possesses a MCM module M of positive rank. If 1(S/(mS+J)) > d! for some

minimal reduction J of n, then es > eg. In particular, if edim(S) — edim(R) >
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d'+d—1, then eg > eg.

The proof follows immediately from Lemma 5.1.2 and a reduction to the case
that R is complete and has perfect residue field. Of course, it is trivial that, given
the ring R, there exists some number a such that any flat local extension S with
[(S/(mS + J)) > a will have multiplicity greater than or equal to that of R (for
example, one might just choose a = er). What is interesting about the proposition
is that it gives a uniform constant for all rings of a given dimension.

In a similar vein, we would like to say that if the maximal ideal of R embeds into
a high power of the maximal ideal of S, then the multiplicity of S must be greater

than or equal to that of R. Some such statement is made possible by the following;:

Lemma 5.1.4. Let (R,m) C (S,n) be a flat local extension of Cohen-Macaulay
rings, and assume that R is not reqular. Then mS is not contained in any parameter

tdeal of S.

Proof: Let J be a parameter ideal of S, and choose a non-free MCM module M over
R of positive rank (a sufficiently high syzygy module of the residue field will do).
Since S is Cohen-Macaulay and flat over R, we know that M' = S ®g M is MCM of
positive rank (see e.g. [15], section 23), and is not free over S. As above, we see that
M'/mM' is free of rank v(M) over S/mS. Hence e(J; M') > 1(S/(mS + J)) - v(M).

Now, because M is not free, we know that e(.J; M') < e(J;S) - v(M). Thus, if it

were the case that mS C .J, we would have

e(J; M"Yy > 1(S/JS) - v(M) > e(J; M'),

a contradiction. O
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In the case that R is Cohen-Macaulay, the lemma is yet another generalization
of the statement that R is regular if any flat local extension is regular. Moreover,
we now have the sort of result we were looking for with regard to Lech’s conjecture

(although the estimate is very rough), namely:

Proposition 5.1.5. If (R,m) C (S,n) is a flat couple of d-dimensional Cohen-
Macaulay local rings of prime characteristic p > 0, with R/m perfect, and if m

embeds into n®, then ep < eg.

Proof: By Proposition 5.1.3, we need only show that [(S/(mS+.J)) > d!, where J is
a minimal reduction of n. But by Lemma 5.1.4, we have that m.S is not contained in
J (we may certainly concentrate on the case where R is not regular), which implies
that n? is not contained in J. Thus I(S/(mS + J)) > d! (a very crude estimate
indeed!), and we see that

es >d -cp>ep. O

5.2 Inequalities on Hilbert-Kunz multiplicities

We now know, for a flat local extension R C S of rings of characteristic p > 0,
that es > cg, eg > cg, and eg > cr. Moreover, it is conjectured that eg > eg.
So the only question left to ask about the ordering of the four invariants is whether
¢s > cgi. In other words, can we prove the Lech-type conjecture with ordinary
multiplicity replaced by Hilbert-Kunz multiplicity?

The answer turns out to be positive; in fact, one may more or less follow Lech’s
program for proving the same results about ordinary multiplicities, developed in [12]

and [13]. The step which proved intractable before was to prove the inequality on
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multiplicities for a flat local extension of rings of the same dimension. But if we work

with Hilbert-Kunz multiplicities instead, this statement may be proved as follows.

Proposition 5.2.1. Let (R,m) C (S,n) be a flat local extension of rings of the
same dimension d, and assume that the rings have prime characteristic p > 0. Then

cr < cs. In fact, for any q = p°, we have [(R/m/®) < 1(S/nld)).

Proof: Set a = Ig(S/mS), which is finite since R and S have the same dimen-
sion. For any ideal I of R, we then know that ((S/IS) = a - [(R/I); in particular,
1(S/ml?S) = a - I(R/ml?) for any ¢ = p°.

Now consider a composition series
mSzIogflg...gIa,lzngfa:S

(where I,41/1; = S/n for each j). When we apply the Frobenius functor to this

series, we get the new series
mldg =1 cdc crv —nldcg

All we now need to note is that each quotient ]J[-‘ﬂl/lj[-ﬂ still needs only one generator
as an S-module, and is killed by nl?. Thus I(S/ml9S) < a-1(S/nl7).

Putting together the conclusions of the previous two paragraphs, we see that
U(R/ml) < 1(S/nl1)
for any ¢ = p®, as claimed. O
Now suppose that the flat extension ring S has dimension greater than that of

R. 1f we choose a prime P of S which is minimal over mS, then we get a new

flat extension (R,m) C (Sp, PSp) of rings of the same dimension, and we may
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conclude that cp < ¢g,. Moreover, we may choose P in such a way that height(P) +
dim(R/P) = dim(S) (see e.g. [15], section 15). So in order to prove that cg < cg, it
would suffice to prove that for a prime P of S with height(P)+dim(R/P) = dim(S),
we have cg, < cg. Lech was able to prove the corresponding theorem for ordinary
multiplicies, with only mild restrictions on the ring, and we may deduce the result
for Hilbert-Kunz multiplicities by a similar sequence of arguments (but in our case

we achieve full generality!).

Theorem 5.2.2. Let (R, m) be a Noetherian local ring of characteristic p > 0, and
let P be a prime ideal of R such that height(P) + dim(R/P) = dim(R). Then
crp < cg. In fact, if t = dim(R/P), then [(R/ml?) > ¢' - I(Rp/PYRp) for every

q=p-

It is clear that the theorem follows by induction, if we prove it in the case where
height(P) = dim(R) — 1, so from now on we will assume this to be the case. In
following Lech’s program, we will begin with the following simple, but fundamental
case. In fact, this is where the proof of the theorem on localization most differs from

the one given for ordinary multiplicities.

Lemma 5.2.3. Let R and P be as in the theorem, and assume in addition that
m = P+ (f) for some f € R. Then cg, < cg. In fact, for any q = p°, we have

I(R/m!") > q-1(Rp/P"Rp).

Proof: To begin with, let us set P9} = PR, N R. Since ml4d = Pl 4 (f9), and
since P9 C P9} we have I(R/m!@) > I(R/(P" + f7)). Moreover, since f is a
nonzerodivisor mod P19} it is clear that I(R/ (P + f9)) = q-1(R/(P{9} + f)). Thus
it is sufficient to show that I(R/(P1%} + f)) > I(Rp/PUYRp).

In showing this, we may without loss of generatlity pass to the ring S = R/P{7},
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Now the claim is that [(S/fS) > [(Sp). But since f is a nonzerodivisor in S, and

since P is the unique minimal prime of S, we have that
[(S/fS) > es =e(S/PS)-1(Sp)

by the additivity formula for multiplicities. All that remains is to note that, by
hypothesis, S/P = R/P is a DVR, and so e(S/PS) = 1. This completes the proof

of the lemma. O

The condition that R/P be a DVR is equivalent to the condition that R/P is
normal. This is not true in general, but we will adapt Lech’s reduction to this case by
using the module-finiteness of the integral closure (R/P)" over R/P. The difference
here is that, since we already have the proposition on flat local extensions of the

same dimension, this need not be stated as an assumption.

Lemma 5.2.4. The proof of the theorem may be reduced to the case in which the

integral closure (R/P)" of R/P is module-finite over R/P.

Proof: Let R denote the completion of R, and let P* be a minimal prime of PR
with dim(R/P*) = dim(R/PR). It is clear that R and R have the same Hilbert-
Kunz functions; and since Rp C Rp* is a flat local extension of rings of the same

dimension, we have by the proposition that
I(Rp-/(P*)) > I(Rp/PYRp)

for every ¢ = p°. Thus it suffices to prove the theorem for R and P*, and we may
assume the R is complete local.
But then it is a well-known fact that any homomorphic image domain of R has

integral closure which is finitely generated as a module. Hence we may reduce to
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this case. O

As in the proof for ordinary multiplicities, we also need the following preliminary

lemma;:

Lemma 5.2.5. Let R be a Noetherian ring of characteristic p, and let M and m be
prime ideals of the polynomial extension R|z] and R, respectively, such that MNR =

m. Then for any q = p°®, we have

if M = mR|[z|; and otherwise

(o) = (i)

Proof: We may as well assume from the beginning that (R, m) is local; let us also
set (S,n) = (R[z]pm, MR[z]ar). In the case that M = mR[z], R C S is a flat local

extension with n = mJS. Hence, for any ¢, we have
1(S/nly = 1(S/ml1S) = 1(S/mS) - I(R/ml!) = I(R/m!9)).

So now assume M # mR[z]. Then we must have M = mR|[z] + (f) for some
monic polynomial f € R[z].

Now, R|[f] is also isomorphic to a polynomial ring over R, and the length of
(m + )l in R[f] is ¢ - I(R/m!9)). Moreover, R|[z] is still flat over R[f], and M =

(m + f)R|z]; so it follows as in the first case that

()1 (2e) -+ ()

as desired. O
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Proof of Theorem 5.2.2:
Recall that we are now assuming dim(R/P) = 1, and that the normalization
(R/P)" of R/P is module-finite over R/P. Set (R/P) = (R/P)[ci,...,¢j], and

consider the composition of surjective homomorphisms
Rlz, ..., 2] = (R/P)[~,... %] — (R/P).

If we let P* and M* denote the inverse images in R[zi, ..., z;] of the (0) ideal and
an arbitrary maximal ideal M in (R/P)’, then we immediately see that M*NR = m,
P*NR=P,and R[z,...,2]lm/P*R[z,...,2;lm~ is a DVR.

Now we know the result for P*, M*, and R[z,...,%]; and by Lemma 5.2.5,
we have that cp = c¢(R[21,...,2;lm+) and cg, = c¢(R[z, ..., z]p-). Thus we have
completed the proof that cg, < cg.

In fact, applying the lemma inductively shows that there exist positive integers

s and t such that for any ¢ = p°,

1R = 1R/ O1)9) = g AR/ (P)) = ¢ - URp /PO ),

where s and ¢ are each at most j. A consideration of the dimensions of the rings
involved implies that s > ¢, so to complete the proof it suffices to show that t = j.
But note that, for every 1 < i < j, there are nonzero elements a; and b; in R/P
such that a;c; = b;. Hence, there exist elements x; and y; in R, with z; not in P,
such that x;z; — y; € P*. Tt follows that P* N Rz, ... , z] is for no i generated by
P*N R[z,...,%_1]. Thus, it follows from Lemma 5.2.5 that ¢ = j, and we may

divide by ¢’ above to see that
1(S/m!9) > q-1(Rp/PYRp)

for every ¢. O
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Of course, this completes the proof of the theorem on flat extensions, as well. We

may now record the theorem in its full generality:

Theorem 5.2.6. Let (R,m) C (S,n) be a flat local extension of rings of positive
prime characteristic, where dim(S) — dim(R) = t. Then cg < cg; moreover, for any

q = p°, it is in fact the case that ¢* - [(R/m!4) < 1(S/nld),

This result is not only more easily proved than Lech’s conjecture, but also has a
significantly stronger conclusion. It should serve as a poignant example of the power

of characteristic p techniques.



CHAPTER VI

Splitting Results and existence of small Cohen-Macaulay
modules

6.1 More special conditions on MCM modules in characteristic p > 0

In this section we will show how to use splitting arguments over a ring of posi-
tive prime characteristic p in order to generate MCM modules with certain special
properties. The proofs given here do rely heavily upon characteristic p methods, but
some consideration will be given at the end of the chapter to what can be done in
equal characteristic 0, or in the non-graded case.

Recall the theorem 1.5.3 Hartshorne-Peskine-Szpiro, which produced MCM mod-
ules over certain graded rings of characteristic p > 0. The crux of the argument was
that lower local cohomology modules H! (M) had bounded lengths for all e. Hence,
for large enough e, one of the direct summands of ®M/ must have vanishing i** local
cohomology. The same sort of argument will be applied here in order to produce
modules with other nice properties.

First, even for a finitely generated graded maximal Cohen-Macaulay module M
over R, it is not true that HZ (M) has finite length for d = dim(R). But it is true,
since the module H? (M) is Artinian, that the part of this module in nonnegative
degrees must have finite length. Thus, we may introduce the concept of the a-

inwvariant of a finitely generated graded R-module M. The definition given here

92
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generalizes the notion of the a-invariant of the ring R.

Note 6.1.1. Let R be a finitely generated positively graded K-algebra, where Ry =
K and dim(R) = d. Recall that the a-invariant of R is given by a(R) = sup{a :
[H2(R)], # 0} (see [6]). Also, if R is Cohen-Macaulay, 1, ... ,z, is a homogeneous
system of parameters, and [ = (z1,...,2,); then a(R) = deg(G) —>_ deg(x;), where

G is a form of largest degree in R\ IR (see e.g. [9]).

Definition 6.1.2. For R as above, and M a finitely generated graded R-module,
the a-invariant of M is given by a(M) = sup{a : [HZ(M)], # 0} — B(M), where

B(M) = min{b: M(b) # 0}.

As for the ring R, one can show that if M is maximal Cohen-Macaulay and
I = (z1,...,24) is a parameter ideal, then a(M) 4+ (M) = deg(G) — > deg(z;),
where G is a homogeneous element of M \ IM of largest degree. Also note that if
we replace M by a twist so that its generator of least degree is in degree 0, then the
a-invariant of M is just the maximal degree in which HZ (M) fails to vanish.

If the ring R is generated over a field by 1-forms, and the module M is MCM with
all its generators in the same degree, then the above notion is really no different from
that of the reduction degree of the module M. In fact, one has a(M)+d+1 = red(M),
where d is the dimension of the ring. To see this, note that neither side of the equality
is changed by replacing M by a twist which is generated in degree 0. Then if I C R is
generated by a system of parameters of 1-forms, and if G is a homogeneous element

of M \ IM of maximal degree, we have
a(M) +d = deg(G) = red(M) — 1.

In particular, M is linear if and only if a(M) = —d. Moreover, in this case, the

following theorem has already been proved in chapter 1, since red(M) < d if and
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only if a(M) < 0. Nevertheless, for the present section, the notion of a-invariant will

still be the better one with which to work.

Theorem 6.1.3. Let (R, m) be a finitely generated positively graded equidimensional
K-algebra, with K a perfect field of characteristic p > 0. Suppose R has a graded
module M, of the same dimension, which is Cohen-Macaulay except possibly at the
origin (i.e. Mp is MCM over Rp for any prime P # m). Then R has a MCM

module M with a-invariant a(M) < 0.

Proof: By Theorem 1.5.3, R possesses a finitely generated graded MCM module N.
Without loss of generality, we may replace N by a suitable twist and assume that
Ny =0 fort < 0.
We know that H? (°N) = ¢He (N) for any e > 0, and it is easy to see that the
grading on HY (¢N) is obtained from that on H¢ (N) by dividing all degrees by ¢.
Thus, we must also have equality of the nonnegative part of the highest lo-

cal cohomology for all e, i.e. [H%(°N))iso = [*(HZ(N))]i>0. If follows that the
nonnegative part of the dth local cohomology of M has fixed finite K-dimension
v = dimg[HZ(N)];>o for all e. For e large enough, *N will split into more than ~
direct summands. Since the operation [HY (-)];>¢ commutes with direct summands,
we will therefore be able to find a MCM summand N’ of °N with [HZ (N")];>0 = 0.

Since °N is still 0 in negative degrees, the same will be true of N', and thus a(N') < 0.

O

The above theorem will be applied in section 6.2 to prove a new case of the
conjecture on the existence of small Cohen-Macaulay modules. It turns out that the
condition a(M) < 0 is precisely what is needed in order to ensure that the Segre

product of two MCM modules remains Cohen-Macaulay.
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But first I wish to note that the same argument can be used in some cases to
produce MCMs upon which the action of an ideal becomes indistinguishable from
that of its tight closure. Recall that, in the case that an F-finite Cohen-Macaulay
local (or positively graded) ring (R, m) has its maximal ideal equal to the Frobenius
closure of a parameter ideal, the modules ¢ R are in fact lin MCMs for e >> 0 (Lemma
2.4.2). Moreover, the same proof shows that for such a ring R and for any ideal I,
one can find a MCM module M for R such that IM = I" M. In the graded case,
if we assume a sufficient abundance of test elements, we may obtain similar results

with regard to tight closures of ideals.

Proposition 6.1.4. Let (R, m) be an F-finite positively graded Cohen-Macaulay K-
algebra, where K s a perfect field of characteristic p > 0. Suppose that R has an
m-primary ideal of test elements I (in particular, this is the case if R has isolated

non-Gorenstein and non-F-reqular locus). Then for any finite set of ideals {.J;} of

R, there exists a MCM-module M over R such that J;M = J;M for each i.

Proof: Given an ideal J, set s = v(J*), the minimal number of generators of the
tight closure ideal J*. For any ¢ € I, we know that c(J*)ld C JI¢ for all ¢ = p°.
Thus I(J*)9 C J9 for any ¢ = p® and any ideal .J.

Thus, for any e > 0, J*(°R)/.J(°R) = (J*)4/ Jl9 has length less than or equal to
I(R/I)-s =b, since this module is killed by I and needs at most as many generators
as J*. Now, if ¢ = p° is chosen large enough so that ‘R splits into more than b
direct summands, then at least one summand will be a MCM module M such that
J*M = JM.

Clearly the same method can be used to get a MCM module on which finitely
many ideals become equal to their tight closures: we just need to take e large enough

so that the number of direct summands of *R is larger than a sum of finitely many
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constants b;. The details are omitted. O

Corollary 6.1.5. If R satisfies the hypotheses of the proposition, and if the homo-
geneous maximal ideal m is equal to the tight closure I* of some parameter ideal I,

then R has a linear MCM module.

Finally, we would like to show how a weaker requirement on the ideal of test
elements suffices for rings with multi-gradings. The point is that if [ is an ideal of
test elements with dim(R/I) = r, then for large ¢, the modules (.J*)l9 /.Jl4 are killed
by I, and hence can be thought of as R/I-modules. It follows that their lengths
should eventually be bounded by a poynomial function of degree r in ¢q. But if R
has a nontrivial s-multigrading, then the modules ¢R will split into roughly ¢* direct
summands. As long as s > r, we should be able to get the same conclusion as in the

proposition above. We do need to be careful about the hypotheses.

Proposition 6.1.6. Let R be an F-finite Cohen-Macaulay K-algebra, where K 1is
a perfect field of characteristic p > 0, and suppose that R has a nondegenerate
multigrading by s copies of the natural numbers. Moreover, suppose that R has an
ideal of test elements I with dim(R/I) = r < s. Then for any finite set {J;} of ideals
of R with the property that J; + I is primary to the homogeneous mazximal ideal m

for each i, there exists a MCM-module M for R such that J;M = J;M for each 1.

Proof: One can use the multe-grading to see that for large e, the module *R will
split into at least aq® nonzero MCM direct summands, where a is some positive
constant. All that really concerns us is that, for any polynomial function F' of degree
less than s in ¢, °R will have more than F'(¢q) direct summands for large enough e.
Now let J be an ideal of R such that I + .J is m-primary, and let h = v(J*).

Then for any e, the module W, = J*(°R)/J(°R) = (J*)l//.J4) is killed by I + J!
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and needs at most h generators. Since dim(R/I) =r and (J + I)/I is m-primary in

R/, it follows from general results on Hilbert-Kunz functions that for e sufficiently

large the length of W, is bounded by a polynomial function of degree r in ¢ = p°.
Thus, ¢R eventually has a MCM summand M such that J*M = JM, and it is

clear how to modify the argument in order to handle a finite set of ideals {J;}. O

6.2 Small MCM modules over Segre product rings

As alluded to in the introduction to this chapter, the existence of MCMs with
negative a-invariant will allow us to prove the existence of small Cohen-Macaulay
modules over certain Segre products of graded rings. The Segre product is defined

as follows:

Definition 6.2.1. Let R and S be positively graded algebras over a a field K, with
Ry = Sp = K. Then the Segre product ring R ®,., S is the positively graded

K-subalgebra of R ®k S with graded pieces (R ®k S); = R; ® S; for all t > 0.

If R and S are the homogeneous coordinate rings of projective varieties X and Y
over K, then R®,., S is the homogeneous coordinate ring of the Segre embedding of
the product variety X x Y. It is well-known that the product of Cohen-Macaulay pro-
jective varieties remains Cohen-Macaulay; but even if the corresponding coordinate
rings are Cohen-Macaulay, the Segre product may not be. Nevertheless, if Ry,... , R,
are positively graded rings which possess small (graded) MCM modules, or are them-
selves Cohen-Macaulay, we may ask whether the Segre product R) ®geq - - - Qe In,
possesses a small MCM module.

A partial answer to this question was given by Frank Ma in [14]. His result is:

Proposition 6.2.2 (Ma). Let R be the coordinate ring of Cy x Cy X - - - x C,,, where
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each C; is a smooth projective curve over an algebraically closed field k. Then R has

a finitely generated maximal Cohen-Macaulay module.

Given finitely generated graded modules M; over the coordinate rings R;, one
may form the Segre product M ®gey - - - Ry M, in the analogous way, and it is easy
to see that this is a finitely generated graded module over the Segre product ring
R ®geq*+* @geq [2n. What Ma shows is that if the M; are chosen to be suitably nice
MCM modules, then the Segre product module is MCM over the Segre product ring.
In the language of this paper, the relevant property of the M; turns out to be that
they have a-invariant less than 0. The following result can then be easily derived

from the work [6], and much of Ma’s proof is incorporated into the proof given here.

Theorem 6.2.3. Let R = Ry Qgeq Ro - - Ryeq Ry, be a Segre product of finitely gen-
erated positively graded rings R; over a field K, and assume that each of the rings
R; has dimension at least 2. If, for each i, R; has a graded MCM-module M; with

a(M;) < 0, then R possesses a (small) graded MCM module.

Proof: Let m; be the homogeneous maximal ideal of the corresponding ring R; for
each 7. Note that, by suitably twisting M;, we may assume that [M;];«o = 0, and
that [H,dni(Mi)]t =0 for ¢t > 0. Now just let M = M; ®yeq - - - ®seq M, be the Segre
product of the modules M;. We will show that M is a MCM module for R.

For each i, let X; = Proj(R;), and let MZ be the sheaf associated to M; on Xj.
Since M; is MCM of depth at least 2 over R;, we know that M; = @,z HY(X;, M;(t));
and that for j > 1, HiF'(M;) = @,z H'(X;, Mi(t)). Now set d = dim(R) =
(>_dim(R;) — 1) + 1, and let m represent the homogeneous maximal ideal of R.

What we need to show is that H’ (M) = 0 for i < d. In order to do this, we will
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apply the Kunneth formula (which holds for any i and ¢):
H'(X, x Xy x...x X, M(t)) = @@ @ H"(X,, M,(1))
Jit+jet.Jn=1

To begin with, we may apply the formula with ¢ = 0 to see that

HX) x Xy x ... x Xp, M(t)) = @, HY(X,, M,(t)) = @"_,[M,], = M,.

r=1

Thus, the Serre map s : M — @,czH°(X, M(t)) is an isomorphism, and we have
Hi! (M) =0 fori=0,1.

For 0 < j < d — 1 we have that HIT (M) = @, HI (X, M(t)).; so we need to
show that H7(X, M(t)) = 0 for any integer ¢, where X = X; x X, x ... x X,,. But
because of the way that the M; were originally chosen, we see that each term of the
sum on the right hand side of the relevant Kunneth formula is 0 unless either (1)
jr = 0 for all 7, and ¢ > 0; or else (2) j, = dim(X,) for all r, and ¢ < 0. It follows
that H7(X, M(t)) =0 for any 0 < 7 < d — 1, which completes the proof that M is a

MCM module over R. O

Of course, this theorem has been proved with the results of the previous section in
mind, which tell us that if the product is taken over a perfect field of characteristic
p > 0, any reasonable hypotheses on the rings R; will allow us to produce MCM
modules over these rings with a-invariant less than 0. Putting the two results together

yields the following very general result in characteristic p:

Corollary 6.2.4. Let Ry, ..., R, be finitely generated positively graded algebras over
a perfect field of characteristic p > 0, with (R;)o = K. If each ring R; has a graded
mazimal Cohen-Macaulay module, then the Segre product Ry ®geq Ro ®seq - - - Qgeq I,

also has a small (graded) mazimal Cohen-Macaulay module.
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Note 6.2.5. The corollary of course follows immediately from theorems 6.1.3 and
6.2.3. But if the MCM modules over the rings R; are denoted by M;, then the
Kunneth formulas used in the proof above show that the Segre product module
M = My Qgeq -+ ®seg My, has lower local cohomology modules of finite length over
the Segre product ring Ry ®geg Ro Qseq * - - @seq [1y, Which is still a finitely generated
graded algebra over a perfect field. Thus, the existence of a MCM module over the

Segre product ring also follows from Theorem 1.5.3.

The methods used for showing the existence of MCM modules with a-invariant
less than 0 are in general not applicable for rings of characteristic 0. Nevertheless,
Theorem 6.2.3 is independent of the characteristic, so whenever it is possible to
show the existence of such modules, partial results to the Segre product problem in

characteristic 0 may be obtained. A few cases are treated below.

1. If R is a positively graded Cohen-Macaulay ring, it may be the case that R
itself has a-invariant less than 0. This is true, for example, in the the case that

R is a monomial subring of a polynomial ring over a field.

2. In fact, it is even sufficient for a(R) = 0. For one may consider an exact

sequence of graded MCM modules:
O—-M-—R"—N—0,
where M embeds into mR". The exact sequence
O — HY(M)— HY(R") — H%(N) — 0,

where the map on the left still has entries of positive degree, then clearly implies

that a(M) < 0.
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3. If (R, m) is a positively graded K-algebra, and M is a graded linear MCM R-
module, then M' = gr, M is a lin MCM over R which has generators all in the
same degree, and it is easy to see that a(M') < 0. Thus it is a consequence of
[1] that homogeneous complete intersections have MCMs with a-invariant less

than 0.

4. In fact, upon closer inspection of the proof given in [1], one sees that the

following more general conclusion may just as easily be reached:

Note 6.2.6. If R is a positively graded ring which possesses a graded MCM
module M with a(M) = s, and if x is a homogeneous form in R which is a
non-zerodivisor on M, then the ring R/xR possesses a graded MCM module

M' with a(M') < s+ 1.

In particular, if R is Cohen-Macaulay with a(R) = s, and if 21, ... , 24 is part of
a homogeneous system of parameters for R, then R/(xy,...,z4)R has a graded

MCM with a(M) < s +d.

This will of course provide more rings possessing MCMs of negative a-invariant.
For example, if R possesses a graded MCM M with a(M) < 2, then any hyper-
surface R/f, with f homogeneous, possesses a graded MCM with a-invariant

less than 0.

5. Let R be a Cohen-Macaulay ring which admits, for an infinite sequence of
positive integers ¢, ring homomorphisms f; : R — R such that the image of f;
is contained in R®, R is module-finite over the image of f,, and the image of
f; contains a minimal reduction of m!. Given such maps, one may proceed as

in the case of characteristic p > 0: R splits into ¢ direct summands over the
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image of f;, and for large enough ¢, one of these summands will necessarily have

a-invariant less than 0.

Thus, any Segre product over a field K of rings of one of the above types will

possess a MCM module, regardless of the characteristic of K.

6.3 Further approaches to characteristic 0 or non-graded rings

Many of the results of the preceding sections are obtained by methods only avail-
able in the characteristic p > 0 or N-graded cases. But as in the study of Segre
products, we wish to determine the extent to which similar results may be obtained
without these hypotheses. In particular, we might ask whether the problem of exis-
tence of a certain kind of module for a local ring R is amenable to the methods of

reduction to characteristic p.

Question 6.3.1. Can the existence of small Cohen-Macaulay modules (or linear
MCM modules, or graded MCM modules with negative a-invariant) be reduced to

the case of characteristic p > 07

If the modules which occur when one passes to various prime characteristics are
not bounded in some way, then this method has little hope of success. There is no
apparent way in which one may express the condition of not having such a module
in terms of finitely many equations. But this would be possible if, for example, one
could bound the ranks of the free modules occuring in presentations of the desired
modules in characteristic p.

Another approach to the characteristic 0 case is to just try to mimic the methods

applied in characteristic p:
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Proposition 6.3.2. Let R be a positively graded, equidimensional ring (which is a
homomorphic image of a regular ring), with Ry = K a field; and suppose R has
1solated non-Cohen-Macaulay singularity. Then for suitably large n, the Veronese

subring R™ has a MCM-module (with a-invariant less than 0).

Proof: For any D > 0, there exists some ng such that R splits into at least D
direct summands over R for every n > ng. As R™ contains a system of parame-
ters for R, we know that H&R(n) (R) is isomorphic to, and hence has the same finite
length as, H (R) for all i < dim(R). Likewise, the length of the positive degree

part of H%(R) is preserved. Thus, for sufficiently large n, one of the summands of

R as an R™_-module must be a MCM-module for R™ with a-invariant less than 0. O

The reason that this method falls short in characteristic 0 is that there is in
general no natural homomorphism from R to R™ (such endomorphisms do exist for
monomial subrings of polynomial rings, but in this case the polynomial ring itself
will be a finitely generated MCM with a-invariant less than 0).

Even if we restrict ourselves to the case of rings of characteristic p > 0, we may
hope to get similar results to the ones above for rings which are local instead of
positively graded. In particular, we can recover similar splitting results in the case

that R has Krull dimension 1, as proved by Hochster in [7].

Proposition 6.3.3 (Hochster). If R is a complete local domain of dimension 1
and characteristic p > 0, with perfect residue field K, and if M is any torsion-free

R-module, then ¢M splits for e >> 0.

If we could produce such splitting results in higher dimensions, we would obtain

new results on the existence of small MCM modules for many non-graded rings.
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Finally, we note the following proposition, which was essentially proved in [10]
by M. Hochster and J. Roberts. The only difference is that Hochster and Roberts
assumed the ring to be graded, whereas the argument given here shows this condition

to be unnecessary.

Definition 6.3.4. A ring homomorphism R — S is called pure if M — S ®pg M for
every R-module M. A ring R of prime characteristic p > 0 is called F-pure if the

Frobenius endomorphism R — R is pure.

Proposition 6.3.5. Let R be an F-finite local ring of characteristic p > 0, with
perfect residue field K. Suppose R has isolated non-C-M singularity, and that R
is F-pure. Then for all ¢ > e, the module M = Coker(F¢ ¢ : ‘R — “R) is a

MCM-module for R.

Proof: See [10] for the details on local cohomology.

Since R is F-pure, the map induced by F on the local cohomology modules
H! (°R) is injective. This implies, in the first place, that for a given i < dim(R)
all of the modules H! (°R) are isomorphic K -vector spaces; and it follows that the
maps on the local cohomology modules induced by F' must be isomorphisms for all
i < dim(R). Now it is apparent from the long exact sequence on local cohomology

induced by the short exact sequence

0= ‘R'™S" ‘R M =0

that H! (M) = 0 for all i < dim(R). O
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ABSTRACT

Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the

Theory of Multiplicities

by

Douglas Hanes

Chair: Melvin Hochster

The dissertation explores the existence of maximal Cohen-Macaulay modules sat-
isfying certain special conditions which are generalizations of the linearity property.
In particular, the existence of linear maximal Cohen-Macaulay modules is proved for
certain classes of graded rings.

The existence of such modules is then exploited in order to prove some new cases
of Lech’s conjecture on multiplicities under flat local extensions. The conjecture is
proved in many cases in which the base ring R has prime characteristic p; and is
either 3-dimensional, or else graded by 1-forms over a field and of dimension less
than or equal to 5.

Lech-type theorems on flat extensions and localization are proved for the Hilbert-
Kunz multiplicity. Moreover, the existence of small maximal Cohen-Macaulay mod-

ules is shown for certain Segre product rings.



